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Introduction

Thyroid diseases can be subclinical or present with 
structural (goiters, nodules, and cancer) or functional 
(hypothyroidism, hyperthyroidism) symptoms (1). 

Functional thyroid disorders include Graves disease and 
lymphocytic (Hashimoto) thyroiditis, which can lead to 
hyperthyroidism or hypothyroidism, respectively, with 
Graves disease accounting for 60–80% of hyperthyroidism 
and Hashimoto thyroiditis being the primary cause of 
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hypothyroidism (2). Neoplastic thyroid conditions, such as 
cysts, adenomas, and multinodular goiter, can be further 
categorized into benign and malignant types. Thyroid 
nodules are present in about 5% population: most of these 
are benign and commonly include colloid nodules, cysts, 
nodular thyroiditis, or benign neoplasm, whereas about 
5% are malignant (3). Thyroid cancer is the ninth most 
common disease in the world, with 586,000 cases reported 
in 2020 (4), while thyroid functional disorders affect more 
than 300 million people worldwide (5). 

Several examinations are typically carried out to assess the 
thyroid, including ultrasound (US), computed tomography 
(CT), magnetic resonance imaging (MRI), and thyroid 
scintigraphy (6). Thyroid US is recommended to evaluate 
the size of a goiter or to classify the malignant risk of thyroid 
nodules and is often followed by fine-needle aspiration 
biopsy (FNAB) to support the diagnosis (7). Thyroid 
examination typically relies on gray-scale imaging and color 
Doppler flow imaging (CDFI), supplemented by more 
advanced technologies such as US elastography (USE) and 
contrast-enhanced US (CEUS) (8,9). CT and MRI thyroid 
scans are mainly used for surveillance and investigation of 
lesion metastasis, as they provide high-resolution imaging 
that can highlight the invasion of critical structures such 
as the neck blood vessels, trachea, and esophagus (10). 
Thyroid scintigraphy can reveal alterations in blood 
flow, function, and metabolism of organs or lesions (11). 
Imaging systems process these scanned images, allowing 
radiologists to quantify and measure them. The quantitative 
and qualitative features of images provide information for 
disease prediction and diagnosis, but there is often overlap 
in imaging features between different thyroid diseases (6). 
Moreover, medical imaging analysis is highly dependent on 
skill and experience, particularly under conditions of a heavy 
workload, and errors are therefore inevitable. Furthermore, 
there remains uncertainty in managing thyroid disease, such 
as whether subtle changes in thyroid function and structure 
actually indicate a disease requiring treatment, and this 
uncertainty can lead to misdiagnosis, overdiagnosis, and 
inappropriate treatment (12).

Deep learning (DL) is a subfield of artificial intelligence 
(AI)  involving the computational  architecture of 
interconnected nodes as inspired by biological neural 
networks (13). In recent years, DL has risen to prominence 
in medical imaging due to the increase of computational 
power and the availability of large-scale datasets (14). DL has 
been extensively used for image analysis in the radiology and 
digital pathology domains, including for the imaging of the 

brain, liver, thorax, and breast (15). DL is data-driven, and 
provided sufficient image pixels and corresponding medical 
image labels, it can automatically extract deep features 
from images that are indiscernible to human experts (16). 
Developments in DL have the potential to further improve 
diagnostic precision and workflows (12), and a review of the 
evidence, limitations, and future prospects related to DL in 
thyroid disease imaging is provided in this paper. 

The aim of this review is to create a much-needed 
reference concerning the latest developments in the 
research of DL for thyroid imaging and its potential 
integration into clinical practice. This paper discusses key 
aspects ranging from model construction to actual clinical 
applications, highlighting new opportunities for building 
DL models based on practical needs. The majority of the 
articles in this review effectively discuss and elaborate upon 
the experimental design and construction of DL models. 
Nonetheless, a small portion of the articles reviewed are 
vague in their description of the clinical trial component, 
resulting in a lack of detailed information in assessment of 
study design according to the Population, Intervention, 
Control, Outcome, Study Design (PICOS) approach. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-908/rc).

Methods

We searched PubMed, Web of Science, and Google Scholar 
for literature on DL applications in thyroid imaging 
published between April 2018 and April 2023. The following 
search terms were used: artificial intelligence or deep learning, 
thyroid diseases, and thyroid nodule or thyroid carcinoma. The 
inclusion criteria were as follows: (I) a discussion of models 
based on DL; (II) a focus on at least one thyroid imaging 
method; and (III) English-language articles. Meanwhile, 
reviews, letters, editorials, comments, case reports, and 
unpublished articles (unavailable full texts and preprints) 
were excluded (Table 1).

Overview of DL

The term deep learning describes a class of machine 
learning techniques based on artificial neural networks 
(ANNs) where deep represents the numerous hidden layers 
of neurons between the input and output layers (14).  
Various types of deep architecture can be obtained through 
the combination of different layer types including fully 

https://qims.amegroups.com/article/view/10.21037/qims-23-908/rc
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connected (FC), convolution, and pooling layers in a 
deep structure or by considering the directed, undirected, 
or recurrent connections between layers (17). The 
achievements of DL with convolutional neural networks 
(CNNs) for spatial data, recurrent neural networks (RNNs) 
for temporal data, and generative adversarial networks 
(GANs) for generated data in the medical imaging domains 
have heightened the expectations of and research into 
intelligent image analysis (Figure 1).

CNNs

A CNNs is a type of DL algorithm designed to process data 
that exhibit natural spatial invariance, particularly in those 
images whose meanings do not change under translation (14). 
CNNs include an input layer, an output layer, and hidden 
learning layers, which in most cases consist of convolutional 
and pooling sublayers. The convolutional and pooling layers 
act as feature extractors from the input image, while the FC 
layer acts as a classifier to output results (15,18).

After the superior performance of AlexNet was first 
demonstrated (19) on the ImageNet dataset in 2012, CNN-
based image processing and computer vision tasks have 
come to the fore. Since AlexNet was proposed, researchers 
developed a variety of deeper, wider, and lighter CNN 
models. Subsequently, deeper network structures emerged, 
such as visual geometry group network (VGGNet) (20) and 
GoogLeNet (21), which have significantly improved the 
accuracy in classification tasks. The VGGNet increased 
image recognition accuracy by deepening the network depth 
to 19 layers. In the same year, GoogLeNet introduced the 

inception module, an innovative concept which involved 
several parallel convolution routes for extracting features at 
different spatial scales. Residual network (ResNet) (22) and 
dense convolutional network (DenseNet) (23) overcame 
the challenge of gradient disappearance and reduced the 
risk of overfitting by introducing the concept of skipping 
connections and by significantly increasing the depth of the 
network. The creation of inception network represented 
a breakthrough in developing CNN classifiers. With the 
inception network, an optimal sparse design in a local 
convolutional vision framework can be made reliable with 
the use of dense components that are readily accessible (24). 
In the segmentation task of CNN structures, the concept of 
fully convolutional networks was proposed to image semantic 
segmentation (25), and U-Net, with more multiscale features, 
was applied more frequently to medical image segmentation 
tasks (26). The approaches of object detection can be 
divided into two-stage approaches, such as region CNN  
(R-CNN) (27), and one-stage approaches, such as you only 
look once (YOLO) (28) and single-shot multibox detector 
(SSD) (29). We discuss the segmentation and detection 
tasks in detail in subsequent sections. Many new-generation 
networks have attracted the interest of researchers, including 
MobileNetV3, Inception-v4, and ShuffleNet series. 
Generally, the completion of medical imaging tasks currently 
involves all of the above architectures as the main backbone 
or the construction of new DL architectures.

RNNs 

An RNN is a neural network that processes sequential 

Table 1 Summary of the literature search strategy

Items Specification

Date of search Initial search time 30/04/2023, update on 25/09/2023

Databases and other sources searched PubMed, Web of Science, and Google Scholar

Search terms used MeSH: artificial intelligence or deep learning, thyroid diseases, thyroid nodule or thyroid 
carcinoma

Timeframe April 2018 to September 2023

Inclusion and exclusion criteria Inclusion criteria: (I) models based on deep learning; (II) a focus on at least 1 thyroid 
imaging method; (III) articles published in English

Exclusion criteria: reviews, letters, editorials, comments, case reports, and unpublished 
articles (full text unavailable and preprints)

Selection process Two reviewers (W.T.Y. and Y.C.) independently performed abstract and full-text 
screening as well as data collection; any discrepancies were resolved via consensus
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Figure 1 The overview of the deep learning models in thyroid imaging. (A) Thyroid ultrasound (gray-scale imaging, color Doppler flow 
imaging, ultrasound elastography, and contrast-enhanced ultrasound) of a patient with papillary thyroid carcinoma. (B) Neck computed 
tomography of a patient with thyroid cancer and lymph node metastasis. (C) Neck magnetic resonance imaging of a patient with thyroid 
cancer and lymph node metastasis. (D) Thyroid scintigraphy of a patient with hyperthyroidism. (E) Convolutional neural network 
architecture. (F) Recurrent neural network architecture. (G) Generative adversarial network architecture.

information while maintaining a state vector within its 
hidden neurons (30). CNNs extract spatial features well, 
while RNNs are more suited to identifying temporal 
features (31). RNNs are useful tools in the processing of 
time-series data such as video, language, and speech. Each 
two-dimensional image frame in the video and the order of 
each frame (temporal features) are important. There are two 
popular types of RNN, long short-term memory (LSTM) 
and gated recurrent unit (GRU). The structure of LSTM 
allows it to contain information over a long duration, 
solving tasks that are challenging or impossible to do with 

traditional RNNs (32). GRU, as a simplified version of 
the LSTM, requires less memory, meaning that larger 
volumes can be fed into the network and larger networks 
can be designed for the same volume size (33). In image 
description generation, the encoder-decoder framework of 
RNN involves “translating” the semantic feature vector of 
the image into the text sequence (34). Furthermore, RNNs 
have the ability to gather time-series data over multiple time 
points, making them more sensitive to early pathological 
changes. Analysis of this longitudinal data can help monitor 
disease progression (15).
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GANs 

A GAN sets two networks against each other, with 
the generator network generating synthetic data from 
exemplars provided during training and the discriminator 
network evaluating the agreement between the generated 
and original data (35). The objective of a GAN is to reduce 
the degree of classification error of the second network, 
which results in the generation of images that more closely 
resemble the original (36-38). GANs have been used to 
perform traditional tasks such as classification, detection, 
and segmentation, in addition to synthesis, reconstruction, 
and image registration (39). 

The strength of GANs lies in their ability to learn in an 
unsupervised or weakly supervised manner (40). Similar to 
other DL neural networks, the demonstrated applications 
of GANs have directly improved radiology workflow and 
patient management. Medical imaging has benefited from 
the generative aspect of GANs, which can help explore 
and discover the underlying structure of training data and 
learn to generate new images (41). This provides several 
applications, including augmentation of training data and 
image quality and resolution improvement (42). Generally 
speaking, GANs can be used for multimodal image fusion; 
for example, CNNs can obtain the required different 
imaging modal features, and information obtained from 
CNNs can be combined by GANs in some manner to make 
a clinical decision (35). Yang et al. proposed the dual-path 
semisupervised GAN for thyroid classification, integrating 
US B-mode images and the USE images (43); other 
proposals employed the fusion multimodal method based 
on GANs for thyroid nodule diagnosis (44,45).

Medical imaging tasks

Computer vision tasks for the thyroid field are common 
applications in the field of radiology and include 
classification (43%), segmentation (29%), detection (19%), 
and reconstruction (9%) (18,45). Building an appropriate 
model for a task or a multitask learning model can improve 
the overall performance. 

Classification
Classification is a fundamental part of medical image analysis 
and typically involves the processing of images or videos as 
input data, in which the model assigns weights and biases to 
different input features and then distinguishes them from 
each other (39). CNNs represent a breakthrough in this 

field. In the construction of classification model, selecting 
the activation function, loss function, and optimizer, along 
with tuning many other hyperparameters, greatly impacts 
model performance (46). Within a deep neural network, 
lies an activation function positioned between two layers. 
The last layer employs commonly used activation functions 
for classification, such as sigmoid for binary tasks and 
softmax for multiclassification tasks (47). Loss functions 
can be paired with CNNs to address both regression and 
classification issues, including mean absolute error, mean 
square error, cross entropy, and others (48). Optimizers 
are used during training to reduce the loss function and 
achieve optimal network parameters in a reasonable time; 
an example of this is gradient descent methods often being 
used to train CNN models (49). Several studies have used 
classical models such as ResNet, DenseNet, AlexNet, and 
VGGNet to complete tasks, from determining the presence 
or absence of disease to identifying malignancies (50). In 
addition to the previously mentioned CNN models, recent 
research has also proposed using the existing structures 
as the backbone coupled with different modifications for 
training. In one study, the DenseNet architecture was 
modified via addition of trainable weight parameters to each 
skip connection (51). In another study, the VGG16 model 
was used as the backbone for training, and the network was 
optimized using stochastic gradient descent and the cross-
entropy function as a loss function (52). A model that was 
updated with the stochastic gradient descent algorithm 
was demonstrated to be capable of rapidly distinguishing 
between benign and malignant nodules, with only limited 
hardware usage (53). Some models may incorporate modules 
to improve performance; for example, the attention module 
can be used to shift attention to the most important regions 
of an image and ignore the irrelevant parts (54). One study 
employed ResNet50 as the backbone and incorporated the 
convolutional block attention module prior to the addition 
of a fire module (55). The use of RNNs in the diagnosis of 
thyroid disease, compared to the use of CNNs, is limited 
to a small number of studies. To optimally leverage both 
convolution and sequence processing, several frameworks 
combining CNNs and RNNs are being used for medical 
imaging. For instance, in one study, the VGG16 was used 
to complete classification tasks, while the LSTM network 
was used to map visual information to generate concise 
text description from thyroid US images (56). In other 
research, the conceptual framework of RNNs for processing 
sequential data was used for the analysis of CEUS and US 
video data as a time series (57).
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Standard biostatistical measures such as accuracy, 
sensitivity,  and specificity can be used for simple 
categorization, such as determining the presence of a given 
disease (39):

TP TNAccuracy
TP FN TN FP

+
=

+ + + 	 [1]

TPSensitivity
TP FN

=
+ 	

[2]

TNSpecificity
TN FP

=
+ 	

[3]

True positive (TP) and true negative (TN) indicate 
the correctly classified positive and negative samples, 
respectively, while false positive (FP) and false negative 
(FN) indicate the incorrectly classified negative and 
positive samples, respectively. A receiver operating 
characteristic (ROC) curve can be used to plot the TP rate 
(sensitivity) against the FP rate (1 − specificity) to thus 
determine the tradeoff between sensitivity and specificity 
and aid in adjusting the decision threshold. In the case of 
multiclassification tasks (e.g., for multiple types of lesions), 
statistical data for each classification can be reported (39). 

Detection
Detection tasks consist of the localization and identification 
of regions of interest or lesions in the full image space (58). 
Accurate detection of the thyroid target region is an 
essential step for diagnosis, patient monitoring, and surgical 
intervention planning. 

Typical detection architectures fall into two groups 
according to the number of stages within the detector. 
A common type is the two-stage detector, such as faster 
R-CNN and mask R-CNN (27). The first stage submits 
areas of interest for consideration, and the second stage 
predicts bounding box objects and classifications. In general, 
the process involves a network that proposes the potential 
location of objects and another that enhances the proposed 
areas, commonly referred to as a region proposal network 
(RPN) or a detection network (59). Applications of this 
architecture type include a multitask mask R-CNN model 
for automated localization of the bounding box of thyroid 
nodules in each frame of the US sweep (60) and a cascade 
R-CNN model based on US videos for automatic detection 
and segmentation of the thyroid gland and its surrounding 
tissues (61). 

Another type of architecture is the one-stage model, such 

as YOLO and SSD (28,29). Compared to the two-stage 
models, it is quicker and easier to run these models. These 
networks avoid the region proposal stage and directly detect 
objects by evaluating the probability of their appearance 
at each point in the image (62). An example of this 
architecture includes a multiscale detection model based 
on YOLO for detecting and tracking thyroid nodules and 
surrounding tissues in thyroid US videos (63). Moreover, 
an SSD network was able to demonstrate, for the first time, 
that the pyramidal shape of the feature hierarchy of a CNN 
could be leveraged to predict objects at different scales, with 
for instance, the multiple predictive characteristic layers of 
the SSD network being able to detect thyroid nodules of 
different scales (62). Compared with SSD, faster R-CNN 
generally has a meaningful advantage in providing the 
detection and diagnosis of smaller nodules and in using 
the layer concatenation strategy to extract more detailed 
features of low-resolution US images (64). However, while 
one-stage models are faster than two-stage models, it is 
challenging for them to achieve higher accuracy without 
an RPN. 

Commonly used evaluation metrics for target detection 
tasks include the intersection over union (IoU), average 
precision (AP), mean AP (mAP), and recall (39). Typically, 
the IoU of a predicted bounding box and a ground truth 
bounding box is used to measure the precision of the 
target detection model for object localization. A higher 
IoU indicates that the model’s predicted bounding box has 
a higher degree of overlap with the actual ground truth 
bounding box (53). The precision-recall (PR) curve of the 
model is plotted with recall as the horizontal coordinate and 
precision as the vertical coordinate. The area under the PR 
curve represents the AP value of the model (53). The IoU, 
the target detection precision, detection recall, and F1 score 
of the model can be calculated as follows:

A BIoU
A B

=




	 [4]

TPPrecision
TP FP

=
+ 	

[5]

TPRecall
TP FN

=
+ 	

[6]

2 21
2

Precision Recall TPF
Precision Recall TP FP FN
× ×

= =
+ + + 	

[7]

A represents the labelled bounding box of the actual 
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object position in the sample, while B represents the 
predicted bounding box of the object by the target 
detection model; FP and FN indicate the incorrectly 
classified negative and positive samples, respectively; and 
TP indicates the correctly classified positive samples.

Segmentation
Segmentation tasks require the identification of the 
corresponding target, the accurate depiction of its boundaries, 
and a determination of whether a given pixel belongs to the 
background or a target classification (50). Recently, medical 
image segmentation has been significantly improved by DL 
methods such as encoder-decoder neural networks, fully 
convolutional neural networks (FCNs), GANs, and U-net 
and its variants (64).

However, the gray value of pixels at the edge of thyroid 
nodules tends to be very similar to the surrounding pixels, 
and thus the important low-level features used to represent 
thyroid boundaries may be lost. Bi et al. developed two 
innovative self-attention pooling techniques to enhance 
boundary features and generate optimal boundary 
locations (65), and Yu et al. added an edge-based attention 
mechanism to strengthen the nodule edge segmentation 
effect (66). 

Individual variability and perspective are significant 
sources of variation in the nodule size and distribution. 
This fact increases the importance of the ability of a 
network to detect target areas that are multiscale in nature. 
A frequency-domain enhancement network, based on the 
U-net, has been introduced with a cascaded cross-scale 
attention module that integrates various features of different 
receptive fields to overcome the insensitivity of the network 
to changes in target scale (67). A U-Net was constructed 
as the backbone, with an adaptive multiscale feature fusion 
module that fuses features and channel information at 
different scales (65). 

A 2D network structure can often overlook contextual 
issues related to differences in the US diagnostic process 
between the thyroid and other organs or tissues. Transformer 
is a model architecture that eschews recurrence and instead 
relies entirely on an attention mechanism to draw global 
dependencies between input and output (55). A encoder-
decoder framework and context-attention module based 
on transformer was proposed to add global associative 
information to the model (68). The development of 
alternatives to 3D CNNs includes the combination of 2D 
CNNs with neural networks specializing in sequence data, 
allowing for the processing of sequential 2D images of a 

3D volume (39). To explore interframe contextual features 
for thyroid segmentation, a 3D transformer U-net was 
proposed, which involved integrating a designed 3D self-
attending transformer module into the bottom layer of 
3D U-net to refine contextual features (69). The primary 
challenge of dynamic CEUS-based segmentation is 
modelling the dynamic enhancement evolution patterns 
associated with differences in blood supply status. To 
effectively represent real-time enhancement characteristics 
and aggregate them in a global view, Wan et al. introduced 
the perfusion excitation gate and cross-attention temporal 
aggregation module for the automatic segmentation of 
lesions using dynamic CEUS imaging (70). Other authors 
proposed a trans-CEUS model for CEUS analysis for 
spatial temporal separation aggregation and global spatial-
temporal fusion methods, with the aim of extracting the 
enhanced perfusion from the dynamic CEUS picture (71). 

Segmentation performance experiments are typically 
evaluated using the Dice similarity coefficient (DSC) and 
the Jaccard index (JI) (68). Specifically, the DSC is the ratio 
of a twofold product of the intersection of the predicted 
value and the ground truth value to the sum of the predicted 
value and mask area. Meanwhile, the JI is the percentage of 
the intersection area between the predicted and true values 
of image segmentation in the predicted value and the sum of 
the true value. Both DSC and the JI range from 0 to 1, and 
the higher these coefficients are, the closer the predicted 
and true values of image segmentation (69). The definitions 
can be mathematically expressed as follows:

2
DSC

Y G
Y G
  =
+


	 [8]

JI
Y G

Y G Y G
  =

+ −   





	 [9]

where Y and G represent the predicted segmentation result 
and the ground truth, respectively.

Reconstruction
Reconstruction tasks either involve learning how to translate 
raw sensory input directly into output images or completing 
a postprocessing step to reduce image noise and remove 
artifacts (72). A more recent trend for further advancing 
biomedical image reconstruction has been to exploit DL to 
improve resolution accuracy and speed up reconstruction 
results. Within the realm of CT and MRI, a variety of 
topics have been examined, including artifact reduction, 
denoising, and sparse-view and low-dose reconstruction (73).  
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Within the field of US, DL has been mainly applied to 
rebuild quality images. Hyun et al. presented a framework for 
speckle reduction in US B-mode imaging using ANNs (74).  
A custom 3D fully CNN (3DCNN) was proposed to reduce 
diffuse reverberation noise in the channel signals (75).  
The 3DCNN showed improvements in image quality 
metrics such as generalized contrast-to-noise ratio and 
lag-one coherence (75). Shear-wave elastography (SWE) 
permits local estimation of tissue elasticity, an important 
imaging marker in biomedicine (8). In one study, a deep 
convolutional neural networks (DCNN) model served as 
an end-to-end nonlinear mapping function, transforming 
2D B-mode US images to 2D SWE images (76). With 
DL technologies, longitudinal sound speed has become an 
alternative approach to diagnosis based on tissue elasticity. A 
type of fully CNN, which only uses convolutional layers and 
various nonlinear activations to recover sound speed maps 
from plane wave US channel data, has been proposed (77).

Acknowledging the difficulty of modeling the whole US 
image acquisition pipeline, several studies have attempted to 
incorporate additional AI components, with DL techniques 
being used for freehand reconstruction of 3D US from 2D 
probes with image-based tracking. Prevost et al. described 
a network architecture based on CNN that is able to learn 
the complete 3D motion of the US probe between two 
successive frames (78). Wein et al. proposed the DL-based 
trajectory estimation of individual clips followed by an 
image-based 3D model optimization of the overlapping 
transverse and sagittal image data (79).

Data

During the data collection phase, potential data sources 
and variables of interest are identified. The data are then 
analyzed and annotated with varying degrees of human 
involvement. A standard strategy for improving and 
predicting the applicability of a model is to randomly 
divide a dataset into three distinct subsets: training, 
validation, and testing (80). The process of training models 
involves identifying weight values that lead to a model that 
appropriately fits the training dataset. The validation set 
assesses the performance of the model and retunes it if the 
expected training performance is not met. The test dataset, 
which the model has not encountered during training, is 
used to determine the model’s ability to generalize to new 
data (80). Finally, the real-world performance of a model 
can be evaluated by separate datasets that are completely 
external from the original data collection (81). 

Advances in architecture have allowed for improved 
performance. However, it is still rare to achieve a perfect 
training dataset, especially in medical imaging. The process 
of data labeling is costly and time-consuming, which limits 
the accessibility of large medical image datasets (82). 
Data limitations associated with medical image datasets, 
specifically the scarcity and weakness of annotations, have 
proven to be challenging obstacles (83). We examined a 
variety of solutions, from those relying on human experts (45) 
to those devising fully automated solutions using unlabeled 
images and self-monitored pre-training techniques (84). 
The most common approach to scarcity labelling includes 
training a CNN on a task with significant data, known as 
transfer learning (85). The reusability of pretrained models 
on generic image datasets, such as ImageNet, has enabled 
many researchers to improve the performance of their image 
recognition models by fine-tuning the architecture (19).  
This fine-tuning typically involves adapting the final 
layers of the pretrained network to the requirements of a 
relatively small and specific dataset (50). Transfer learning 
can mitigate data requirements for model convergence and 
has become routinely used in medical imaging research (40).  
Some studies have utilized the domain knowledge of 
clinicians to create networks that resemble their trained and 
diagnostic patterns or focus on their particular features and 
areas of interest (86,87). Meanwhile, in ensemble learning, 
a set of features with a variety of transformations is first 
extracted, and then multiple learning algorithms are used to 
produce weak predictive results; the subsequently produced 
informative knowledge is then fused to achieve knowledge 
discovery and better predictive performance based on an 
adaptive voting mechanism (88). These integrated models 
not only improve diagnostic ability with limited data but 
also enhance the explainability of a given feature. Models are 
trained using several methods, including supervised learning, 
semisupervised learning, and self-supervised learning. In 
supervised learning, input data must be accurately labeled, 
often necessitating manual annotation from medical  
experts (89). The unsupervised and weakly supervised 
approaches can solve the problem of having a large 
number of unlabeled images in medical imaging tasks. Self-
supervised learning involves pretraining the network with 
unlabeled images (84). Semisupervised learning includes 
two approaches: the first is pseudolabeling, where a DL 
model labels unlabeled images and incorporates them as new 
examples while training (38,90), while the second approach 
involves using both labeled and unlabeled images together to 
train a model without relying on pseudolabeling (66,91). 
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The digitization and sharing of medical records have 
increased concerns about data leakage, thus propelling 
privacy to the forefront. One effective solution is the 
removal of sensitive biometric or personal information from 
medical records that are irrelevant to healthcare (92). Data 
can be encrypted before being sent to the cloud, allowing 
clinicians or AI algorithms to review the reconstructed 
data (92). Another effective means to addressing privacy 
concerns is to generate realistic synthetic data, which can 
provide acceptable data quality and be used to improve 
model performance (93). Synthetically generated data 
can be shared publicly without privacy concerns and can 
facilitate numerous opportunities for collaborative research, 
including building predictive models and finding patterns. 
As synthetic data generation is inherently a generative 
process, GAN models have attracted considerable attention 
in this field (94). 

Clinical applications of DL in thyroid imaging

This section outlines the clinical applications of DL 
according to various thyroid imaging modalities (Table 2, 
Figure 2).

Management of thyroid nodules and carcinoma

Although the Thyroid Imaging Reporting and Data System 
(TI-RADS) has provided radiologists with a standardized 
risk stratification and management system to improve 
their performance in diagnosing thyroid nodules (10), 
the question remains as to whether more can be done to 
further optimize its use. Several studies have evaluated the 
diagnostic performance of DL models directly through 
radiologist assessments, most of which showed that they 
were comparable. The DL models integrated with TI-
RADS performed more effectively and could prevent 
unnecessary invasive biopsies (96,111,112). In one study, a 
DL model for thyroid nodule classification was developed 
based on multitask DL using TI-RADS characteristics, 
while another DL model was trained only on benign and 
malignant diagnostic labels, and the TI-RADS-based model 
performed better (101). Among patients with Hashimoto 
thyroiditis, a thyroid parenchyma background repeatedly 
damaged by chronic inflammation makes it more difficult 
to distinguish benign nodules from malignant ones (113). In 
one study, a modified DenseNet model performed slightly 
more effectively than did the radiologists with different 
experiences in diagnosing thyroid nodules underlying 

Hashimoto thyroiditis (100). Dynamic AI based on CNN 
has been demonstrated to provide real-time synchronous 
dynamic analysis for diagnosing benign and malignant 
nodules against a background of Hashimoto thyroiditis (114). 
Over numerous studies, DL algorithms have achieved the 
same specificity and sensitivity as those of expert radiologists 
in thyroid nodule detection and classification tasks  
(64,96,115-117). Nonetheless, in a real-world setting, the 
final diagnosis should be made by radiologists. In one study, 
a DL-assisted strategy improved the pooled area under the 
curve (AUC) of the radiologists by 4.5% for US images and 
by 1.2% for US videos (96). Several studies have examined 
multimodality DL models combining CDFI, USE, or CEUS 
(45,111,118). The experimental results demonstrated that the 
accuracy of the proposed methods is better than that of other 
single-data source methods under the same conditions. A 
DL-based multimodal feature fusion network was proposed 
for the automatic diagnosis of thyroid disease based on three 
modalities: gray-scale US, SWE, and CDFI images (84). US 
image collection can capture and store data from a full sweep 
of the entire neck structure, including the entire thyroid 
lobe in a single volume and all surrounding tissue. However, 
previous US-based DL models have typically used only 
partial 2D US images. The recent DL frameworks provide a 
broader range of perceptions for acquiring tissue and global 
features of anatomical components, which is superior to 
local information on lesions (61,95,97,98). Moreover, the 
development of DL models in the thyroid field has become 
progressively more specific to subtle features. Multiview 
CNN models from multiple US images were developed to 
prevent slight deviations during thyroid scanning (119). For 
example, a dual-path network containing region and shape 
paths was shown to be capable of learning the texture and 
boundary features of nodules, respectively (99). Additionally, 
a triple-branch classification network was developed which 
consisted of a fundamental branch for extracting semantic 
characteristics from input patches, a context branch and 
a margin branch for extracting improved contextual and 
marginal features (64). Cordes et al. used a neural network 
to distinguish papillary thyroid carcinoma (PTC), follicular 
thyroid carcinoma, poorly differentiated thyroid carcinoma, 
and anaplastic thyroid carcinoma (120). 

Risk evaluation of thyroid cancer metastasis

Patients with thyroid cancer have a high overall survival 
rate because most cases of PTC are typically indolent 
tumors with slow progression and low invasion (3). 



Yang et al. DL in thyroid imaging2078

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):2069-2088 | https://dx.doi.org/10.21037/qims-23-908

T
ab

le
 2

 C
lin

ic
al

 a
pp

lic
at

io
ns

 o
f d

ee
p 

le
ar

ni
ng

 m
od

el
s 

in
 th

yr
oi

d 
di

se
as

es

R
ef

er
en

ce
Im

ag
in

g 
 

m
et

ho
d

C
lin

ic
al

 ta
sk

D
at

as
et

Va
lid

at
io

n 
m

et
ho

d
M

od
el

 a
rc

hi
te

ct
ur

es
P

er
fo

rm
an

ce

Z
ha

o 
(5

5)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
 s

et
: 1

,2
10

 n
od

ul
es

;  
te

st
 s

et
: 5

20
 n

od
ul

es
In

te
rn

al
 v

al
id

at
io

n
D

et
ec

tio
n:

 S
S

D
 n

et
w

or
k 

A
P

 8
2.

1%
, A

C
C

 9
4.

8%
,  

S
E

N
 9

8.
8%

, S
P

E
 8

7.
5%

C
la

ss
ifi

ca
tio

n:
 R

es
N

et
50

 

M
a 

(9
5)

U
S

M
an

ag
em

en
t o

f t
hy

ro
id

 
no

du
le

/c
ar

ci
no

m
a

7,
16

3 
im

ag
es

 fr
om

 v
id

eo
s

In
te

rn
al

 v
al

id
at

io
n

S
P

R
-M

as
k 

R
-C

N
N

: f
as

te
r-

R
-C

N
N

, 
R

es
N

et
, R

P
N

m
A

P
 6

1.
1%

, A
P

50
 8

2.
8%

,  
A

P
75

 6
8.

5%

Lu
o 

(6
1)

U
S

 v
id

eo
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
59

 p
at

ie
nt

s
In

te
rn

al
 v

al
id

at
io

n
C

as
ca

de
 R

-C
N

N
: R

es
N

et
, f

ea
tu

re
 

py
ra

m
id

 n
et

w
or

k,
 R

P
N

A
P

 6
0.

8%
, A

P
50

 8
5.

9%
,  

A
P

75
 6

8.
0%

Ya
ng

 (4
5)

U
S

 (B
-m

od
e 

an
d 

el
as

to
gr

ap
hy

)

M
an

ag
em

en
t o

f t
hy

ro
id

 
no

du
le

/c
ar

ci
no

m
a

3,
09

0 
im

ag
es

5-
fo

ld
 c

ro
ss

-v
al

id
at

io
n

P
re

-t
ra

in
ed

 V
G

G
13

, U
-n

et
 to

 s
eg

m
en

t, 
a 

du
al

-p
at

h 
se

m
i-s

up
er

vi
se

d 
co

nd
iti

on
al

 
ge

ne
ra

tiv
e 

ad
ve

rs
ar

ia
l n

et
w

or
k

A
C

C
 9

0.
0%

, S
E

N
 8

7.
5%

,  
S

P
E

 9
2.

2%
, A

U
C

 9
1.

1%

W
an

g 
(8

6)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
: 2

,7
94

 n
od

ul
es

;  
te

st
in

g:
 1

98
 n

od
ul

es
In

te
rn

al
 v

al
id

at
io

n
R

es
N

et
50

 a
nd

 X
G

B
oo

st
A

C
C

 7
6.

8%
, S

E
N

 6
9.

2%
,  

S
P

E
 8

1.
7%

, A
U

C
 8

0.
0%

P
en

g 
(9

6)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
 s

et
: 1

8,
04

9 
im

ag
es

;  
te

st
 s

et
: 4

,3
05

 im
ag

es
E

xt
er

na
l v

al
id

at
io

n
R

es
N

et
, R

es
N

eX
t, 

an
d 

D
en

se
N

et
 

A
C

C
 8

9.
1%

, S
E

N
 9

4.
9%

,  
S

P
E

 8
1.

2%
, A

U
C

 9
4.

4%

X
u 

(3
1)

C
E

U
S

M
an

ag
em

en
t o

f t
hy

ro
id

 
no

du
le

/c
ar

ci
no

m
a

84
 p

at
ie

nt
s

In
te

rn
al

 v
al

id
at

io
n

LS
TM

R
is

e 
tim

e 
ra

tio
 A

U
C

: 8
5.

6%
;  

tim
e 

to
 p

ea
k 

ra
tio

 A
U

C
: 7

9.
4%

;  
m

ea
n 

tr
an

si
t t

im
e 

ra
tio

 A
U

C
 7

6.
1%

G
on

g 
(9

7)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
 s

et
: 2

,8
79

 n
od

ul
es

;  
te

st
 s

et
: 6

14
 n

od
ul

es
5-

fo
ld

 c
ro

ss
-v

al
id

at
io

n
A

 th
yr

oi
d 

re
gi

on
 p

rio
r-

gu
id

ed
 fe

at
ur

e 
en

ha
nc

em
en

t n
et

w
or

k
Ja

cc
ar

d 
68

.4
%

; D
ic

e 
81

.3
%

Z
ha

o 
(9

8)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
21

,5
97

 im
ag

es
5-

fo
ld

 c
ro

ss
-v

al
id

at
io

n
A

 lo
ca

l a
nd

 g
lo

ba
l f

ea
tu

re
 d

is
en

ta
ng

le
d 

ne
tw

or
k

A
C

C
 8

9.
6%

, S
E

N
 9

2.
4%

,  
A

U
C

 9
5.

3%

S
un

 (9
9)

U
S

M
an

ag
em

en
t o

f t
hy

ro
id

 
no

du
le

/c
ar

ci
no

m
a

Tr
ai

ni
ng

 s
et

: 2
,5

20
 im

ag
es

;  
va

lid
at

io
n 

se
t: 

28
0 

im
ag

es
;  

te
st

 s
et

: 9
86

 im
ag

es

10
-f

ol
d 

cr
os

s-
va

lid
at

io
n

TN
S

N
et

: a
 d

ua
l-

pa
th

 n
et

w
or

k 
 

co
nt

ai
ni

ng
 a

 re
gi

on
 p

at
h 

an
d 

a 
sh

ap
e 

pa
th

; D
ee

pL
ab

V
3+

A
C

C
 9

5.
8%

, S
E

N
 8

7.
7%

,  
S

P
E

 9
7.

4%
, D

ic
e 

85
.3

%

H
ou

 (1
00

)
U

S
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
 s

et
: 2

,3
64

 n
od

ul
es

;  
te

st
 s

et
: 5

68
 n

od
ul

es
10

-f
ol

d 
cr

os
s-

va
lid

at
io

n
P

re
-t

ra
in

ed
 D

en
se

N
et

A
C

C
 8

5.
2%

, S
E

N
 8

8.
1%

,  
S

P
E

 8
4.

6%
, A

U
C

 0
.9

24

C
he

n 
(1

01
) 

U
S

M
an

ag
em

en
t o

f t
hy

ro
id

 
no

du
le

/c
ar

ci
no

m
a

Tr
ai

ni
ng

 s
et

: 1
,3

45
 n

od
ul

es
;  

te
st

 s
et

: 2
43

 n
od

ul
es

5-
fo

ld
 c

ro
ss

-v
al

id
at

io
n

In
ce

pt
io

nR
es

N
et

V
2 

an
d 

a 
fu

lly
  

co
nn

ec
te

d 
cl

as
si

fie
r

S
E

N
 8

3%
, S

P
E

 8
7%

, A
U

C
 0

.9
1

N
i (

57
)

U
S

 v
id

eo
M

an
ag

em
en

t o
f t

hy
ro

id
 

no
du

le
/c

ar
ci

no
m

a
Tr

ai
ni

ng
 a

nd
 v

al
id

at
io

n 
se

t: 
71

3 
vi

de
os

; 
in

te
rn

al
 te

st
 s

et
: 1

53
 v

id
eo

s;
  

ex
te

rn
al

 te
st

 s
et

: 1
52

 v
id

eo
s

In
te

rn
al

 v
al

id
at

io
n 

(7
:3

) 
an

d 
ex

te
rn

al
 v

al
id

at
io

n
D

en
se

N
et

12
1,

 R
es

N
et

50
, I

nc
ep

tio
nV

3,
 

an
d 

LS
TM

In
te

rn
al

 te
st

 s
et

: A
C

C
 9

1.
3%

, S
E

N
 

94
.5

%
, S

P
E

 0
.8

29
%

, A
U

C
 0

.9
29

E
xt

er
na

l t
es

t s
et

: A
C

C
 9

1.
2%

, S
E

N
 

93
.9

%
, S

P
E

 8
1.

8%
, A

U
C

 0
.8

96

Q
i (

10
2)

 
U

S
R

is
k 

ev
al

ua
tio

n 
of

  
th

yr
oi

d 
ca

nc
er

 
m

et
as

ta
si

s

Tr
ai

ni
ng

 a
nd

 v
al

id
at

io
n 

se
t: 

4,
44

1 
no

du
le

s;
 

in
te

rn
al

 te
st

 s
et

: 2
22

 n
od

ul
es

;  
ex

te
rn

al
 te

st
 s

et
: 1

43
 n

od
ul

es

In
te

rn
al

 v
al

id
at

io
n 

an
d 

ex
te

rn
al

 v
al

id
at

io
n

M
as

k-
R

-C
N

N
 n

et
w

or
k,

 R
es

N
et

50
,  

R
P

N
, b

ou
nd

in
g 

bo
x 

re
gr

es
si

on
,  

an
d 

th
e 

R
O

IA
lig

n 
la

ye
r

In
te

rn
al

 te
st

 s
et

: A
C

C
 8

7%
, S

E
N

 
80

%
, S

P
E

 9
2%

, A
U

C
 0

.9
1

E
xt

er
na

l t
es

t s
et

: A
C

C
 8

5%
, S

E
N

 
92

%
, S

P
E

 8
1%

, A
U

C
 0

.8
8

W
an

g 
(1

03
)

C
T

R
is

k 
ev

al
ua

tio
n 

of
  

th
yr

oi
d 

ca
nc

er
 

m
et

as
ta

si
s

Tr
ai

ni
ng

 s
et

: 4
23

 n
od

ul
es

;  
in

te
rn

al
 te

st
 s

et
: 1

82
 n

od
ul

es
;  

ex
te

rn
al

 te
st

 s
et

: 6
6 

no
du

le
s

5-
fo

ld
 c

ro
ss

-
va

lid
at

io
n,

 e
xt

er
na

l 
va

lid
at

io
n

P
re

tr
ai

ne
d 

D
en

se
N

et
, c

on
vo

lu
tio

na
l  

bl
oc

k 
at

te
nt

io
n 

m
od

ul
e

In
te

rn
al

 te
st

 s
et

: A
C

C
 7

8%
,  

S
E

N
 7

1%
, S

P
E

 8
4%

, A
U

C
 0

.8
4

E
xt

er
na

l t
es

t s
et

: A
C

C
 7

3%
,  

S
E

N
 6

2%
, S

P
E

 9
2%

, A
U

C
 0

.8
1

T
ab

le
 2

 (c
on

tin
ue

d)



Quantitative Imaging in Medicine and Surgery, Vol 14, No 2 February 2024 2079

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):2069-2088 | https://dx.doi.org/10.21037/qims-23-908

T
ab

le
 2

 (c
on

tin
ue

d)

R
ef

er
en

ce
Im

ag
in

g 
 

m
et

ho
d

C
lin

ic
al

 ta
sk

D
at

as
et

Va
lid

at
io

n 
m

et
ho

d
M

od
el

 a
rc

hi
te

ct
ur

es
P

er
fo

rm
an

ce

Le
e 

(1
04

)
C

T
R

is
k 

ev
al

ua
tio

n 
of

  
th

yr
oi

d 
ca

nc
er

 
m

et
as

ta
si

s

Tr
ai

ni
ng

 s
et

: 7
87

 im
ag

es
; i

nt
er

na
l v

al
id

at
io

n 
se

t: 
10

4 
im

ag
es

; t
es

t s
et

: 1
04

 im
ag

es
; 

ex
te

rn
al

 v
al

id
at

io
n 

se
t: 

3,
83

8 
im

ag
es

In
te

rn
al

 v
al

id
at

io
n 

(8
:1

:1
) a

nd
 e

xt
er

na
l 

va
lid

at
io

n

V
G

G
16

, V
G

G
19

, X
ce

pt
io

n,
 In

ce
pt

io
nV

3,
 

In
ce

pt
io

nR
es

N
et

V
2,

 D
en

se
N

et
12

1,
 

D
en

se
N

et
16

9,
 a

nd
 R

es
N

et

A
C

C
 7

5.
7%

, S
E

N
 8

2.
8%

,  
S

P
E

 7
5.

3%
, A

U
C

 0
.8

46

W
u 

(1
05

)
U

S
, c

lin
ic

 
re

co
rd

s
R

is
k 

ev
al

ua
tio

n 
of

  
th

yr
oi

d 
ca

nc
er

 
m

et
as

ta
si

s

Tr
ai

ni
ng

 s
et

: 1
,0

31
 p

at
ie

nt
s;

  
va

lid
at

io
n 

se
t I

I: 
50

 p
at

ie
nt

s;
  

va
lid

at
io

n 
se

t I
I: 

50
 p

at
ie

nt
s

E
xt

er
na

l v
al

id
at

io
n

In
ce

pt
io

nR
es

ne
tV

2,
 m

ul
til

ay
er

 
pe

rc
ep

tr
on

, a
nd

 L
S

TM
Va

lid
at

io
n 

se
t I

: A
C

C
 9

0.
0%

, S
E

N
 

92
.0

%
, S

P
E

 8
8.

0%
, A

U
C

 0
.9

70

Va
lid

at
io

n 
se

t I
I: 

A
C

C
 8

6.
0%

, S
E

N
 

96
.0

%
, S

P
E

 7
6.

0%
, A

U
C

 0
.9

76

Yu
 (1

06
)

U
S

R
is

k 
ev

al
ua

tio
n 

of
  

th
yr

oi
d 

ca
nc

er
 

m
et

as
ta

si
s

M
ai

n 
se

t: 
1,

01
3 

ca
se

s;
  

te
st

 s
et

 1
: 3

68
 c

as
es

;  
te

st
 s

et
 2

: 5
13

 c
as

es

In
te

rn
al

 c
ro

ss
-

va
lid

at
io

n 
(8

:2
) a

nd
 

ex
te

rn
al

 v
al

id
at

io
n

A
 tr

an
sf

er
 le

ar
ni

ng
 r

ad
io

m
ic

s 
m

od
el

 
M

ai
n 

te
st

 s
et

: A
C

C
 0

.8
4,

  
S

E
N

 0
.9

4,
 S

P
E

 0
.7

7,
 A

U
C

 0
.9

3 

Te
st

in
g 

se
t 1

: A
C

C
 0

.8
6,

  
S

E
N

 0
.8

3,
 S

P
E

 0
.8

9,
 A

U
C

 0
.9

3

Te
st

in
g 

se
t 2

: A
C

C
 0

.8
4,

  
S

E
N

 0
.9

5,
 S

P
E

 0
.7

5,
 A

U
C

 0
.9

3

Q
ia

o 
(1

07
)

Th
yr

oi
d 

sc
in

tig
ra

ph
y

D
is

cr
im

in
at

io
n 

be
tw

ee
n 

th
yr

oi
d 

fu
nc

tio
n 

di
so

rd
er

s

C
on

tr
ol

: 1
75

 h
ea

lth
y 

pa
tie

nt
s;

  
G

ra
ve

s 
di

se
as

e:
 8

34
 p

at
ie

nt
s;

 s
ub

ac
ut

e 
th

yr
oi

di
tis

: 4
21

 p
at

ie
nt

s

In
te

rn
al

 v
al

id
at

io
n 

(7
:3

)
A

le
xN

et
, V

G
G

N
et

, a
nd

 R
es

N
et

A
C

C
 8

5.
56

–9
2.

78
%

,  
S

P
E

 8
3.

83
–9

7.
00

%

Z
ha

o 
(1

08
)

U
S

D
is

cr
im

in
at

io
n 

be
tw

ee
n 

th
yr

oi
d 

fu
nc

tio
n 

di
so

rd
er

s

Tr
ai

ni
ng

 s
et

: 1
6,

53
3 

im
ag

es
 w

ith
 H

T 
an

d 
14

,8
90

 im
ag

es
 w

ith
ou

t H
T;

 v
al

id
at

io
n 

se
t: 

4,
13

3 
im

ag
es

 w
ith

 H
T 

an
d 

3,
72

3 
im

ag
es

 
w

ith
ou

t H
T

In
te

rn
al

 v
al

id
at

io
n 

(8
:2

)
V

G
G

19
, R

es
N

et
, d

en
se

 n
et

w
or

k,
 a

nd
 

ef
fic

ie
nt

 n
et

w
or

k
A

C
C

 8
9.

2%
, S

E
N

 8
9.

0%
,  

S
P

E
 8

9.
5%

, A
U

C
 0

.9
4

M
a 

(5
1)

Th
yr

oi
d 

sc
in

tig
ra

ph
y

D
is

cr
im

in
at

io
n 

be
tw

ee
n 

th
yr

oi
d 

fu
nc

tio
n 

di
so

rd
er

s 

G
ra

ve
s 

di
se

as
e:

 7
80

 im
ag

es
; H

T:
  

43
8 

im
ag

es
; s

ub
ac

ut
e 

th
yr

oi
di

tis
:  

81
0 

im
ag

es
; c

on
tr

ol
: 8

60
 im

ag
es

In
te

rn
al

 v
al

id
at

io
n

A
 m

od
ifi

ed
 D

en
se

N
et

 
A

C
C

 9
9.

08
–1

00
%

, S
E

N
  

98
.5

0–
10

0%
, S

P
E

 9
9.

50
–1

00
%

Z
ha

ng
 

(1
09

)
U

S
D

is
cr

im
in

at
io

n 
be

tw
ee

n 
th

yr
oi

d 
fu

nc
tio

n 
di

so
rd

er
s 

Tr
ai

ni
ng

 s
et

: 1
06

,5
13

 im
ag

es
;  

in
te

rn
al

 te
st

 s
et

 1
: 4

8,
80

3 
im

ag
es

;  
in

te
rn

al
 te

st
in

g 
se

t 2
: 1

85
 v

id
eo

s;
  

ex
te

rn
al

 te
st

 s
et

: 5
,3

04
 im

ag
es

In
te

rn
al

 c
ro

ss
-

va
lid

at
io

n,
 e

xt
er

na
l 

va
lid

at
io

n

R
es

N
et

In
te

rn
al

 te
st

 s
et

 1
: A

C
C

 0
.8

32
,  

S
E

N
 0

.8
26

, S
P

E
 0

.8
35

In
te

rn
al

 te
st

 s
et

 2
: A

C
C

 0
.8

32
,  

S
E

N
 0

.8
46

, S
P

E
 0

.8
27

E
xt

er
na

l t
es

t s
et

: A
C

C
 0

.8
21

  
S

E
N

 0
.8

42
 S

P
E

 0
.8

13
.

Z
ha

o 
(1

10
)

Th
yr

oi
d 

sc
in

tig
ra

ph
y

D
is

cr
im

in
at

io
n 

be
tw

ee
n 

th
yr

oi
d 

fu
nc

tio
n 

di
so

rd
er

s 

Tr
ai

ni
ng

 a
nd

 in
te

rn
al

 te
st

in
g 

se
t 1

: 2
,5

81
 

im
ag

es
; e

xt
er

na
l t

es
tin

g 
se

t: 
61

3 
im

ag
es

In
te

rn
al

 v
al

id
at

io
n 

(8
:2

), 
5-

fo
ld

 c
ro

ss
-

va
lid

at
io

n,
 e

xt
er

na
l 

va
lid

at
io

n

R
es

N
et

-3
4,

 A
le

xN
et

, S
hu

ffl
eN

et
V

2,
  

an
d 

M
ob

ile
N

et
V

3
G

ra
ve

s 
di

se
as

e:
 S

P
E

 9
9.

0%
,  

P
R

E
 9

6.
9%

, A
U

C
 0

.9
97

C
on

tr
ol

: S
P

E
 9

7.
2%

,  
P

R
E

 9
1.

3%
, A

U
C

 0
.9

91

S
ub

ac
ut

e 
th

yr
oi

di
tis

: S
P

E
 9

9.
2%

, 
P

R
E

 9
7.

6%
, A

U
C

 0
.9

92

Tu
m

or
: S

P
E

 9
7.

1%
, P

R
E

 9
1.

5%
, 

A
U

C
 0

.9
80

U
S

, u
ltr

as
ou

nd
; S

S
D

, s
in

gl
e-

sh
ot

 m
ul

tib
ox

 d
et

ec
to

r;
 R

es
N

et
, r

es
id

ua
l n

et
w

or
k;

 A
P,

 a
ve

ra
ge

 p
re

ci
si

on
; A

C
C

, a
cc

ur
ac

y;
 S

E
N

, s
en

si
tiv

ity
; S

P
E

, s
pe

ci
fic

ity
; C

N
N

, c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k;

 R
-C

N
N

, 
re

gi
on

-C
N

N
; 

R
P

N
, 

re
gi

on
 p

ro
p

os
al

 n
et

w
or

k;
 A

U
C

, 
ar

ea
 u

nd
er

 t
he

 c
ur

ve
; 

C
E

U
S

, 
co

nt
ra

st
-e

nh
an

ce
d

 u
ltr

as
ou

nd
; 

D
en

se
N

et
, 

d
en

se
 c

on
vo

lu
tio

na
l 

ne
tw

or
k;

 L
S

TM
, 

lo
ng

 s
ho

rt
-t

er
m

 m
em

or
y;

 C
T,

 
co

m
pu

te
d 

to
m

og
ra

ph
y;

 V
G

G
N

et
, v

is
ua

l g
eo

m
et

ry
 g

ro
up

 n
et

w
or

k;
 H

T,
 H

as
hi

m
ot

o 
th

yr
oi

di
tis

; P
R

E
, p

re
ci

si
on

.



Yang et al. DL in thyroid imaging2080

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):2069-2088 | https://dx.doi.org/10.21037/qims-23-908

Figure 2 Alluvial diagram of DL techniques. *, a recently built model that does not use the CNN, RNN, GAN, or any of the mentioned 
models as the backbone. USE, ultrasound elastography; US, ultrasound; CEUS, contrast-enhanced ultrasound; CT, computed tomography; 
SSD, single-shot multibox detector; GAN, generative adversarial network; YOLO, you only look once; DenseNet, dense convolutional 
network; CNN, convolutional neural network; R-CNN, region CNN; LSTM, long short-term memory; DL, deep learning; VGGNet, 
visual geometry group network; ResNet, residual network.

However, some individuals with PTC exhibit a poorer 
prognosis associated with early metastasis and recurrence 
following thyroidectomy (121). Therefore, research 
into the risk factors for highly invasive PTC is crucial. 
Several characteristics are associated with an unfavorable 
prognosis ,  inc luding larger  pr imary  tumor s ize , 
extrathyroidal extension (ETE), lymph node metastasis 
(LNM), and distant metastasis (122). The feasibility of 
active surveillance versus surgical intervention, as well 
as the extent of surgery, must be assessed according 
to preoperative imaging, clinical information, and 
intraoperative conditions (10). 

LNM, observed in 30–60% of patients with PTC, is an 

important indicator of PTC prognosis and is correlated 
with an increased risk of local recurrence. Improving the 
diagnostic level of cervical lymph nodes will help reduce 
unnecessary lymph node dissection (122). Therefore, 
accurate identification of cervical LNM occurrence bears 
considerable clinical importance. Wang et al. constructed 
the DeepLabv3+ networks to detect and quantify 
calcifications of thyroid nodules, which are considered 
one of the most important features in the US diagnosis 
of thyroid cancer, and to further investigate the value of 
calcifications in predicting the risk of LNM (123). Other 
studies have also shown that the combination of DL and 
radiomics provides higher accuracy and is more clinically 
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valuable than either used alone. For example, a transfer 
learning radiomics model based on US images of thyroid 
lesions yielded an AUC value of 0.93 (106); meanwhile, 
DL algorithms that integrated health records and US 
multimodal images to predict LNM achieved an average 
AUC of 0.973 (105). Wu et al. proposed an end-to-end 
deep multimodal learning network, called the multimodal 
classification network, which used both clinical records 
and gray-scale US and CDFI images as input and 
corresponding metastatic status as output (105). In 
addition to DL models based on US images, those based 
on CT have been shown to be capable of predicting LNM 
preoperatively in patients with PTC (103,104). Patients 
with gross ETE are more likely to have LNM and distant 
metastasis, higher rates of tumor recurrence, and worse 
overall survival (124). However, as imaging examinations 
are unreliable in diagnosing ETE, one study developed a 
DL model to locate and evaluate thyroid cancer nodules 
in US images, assessing the presence of ETE before  
surgery (102). 

Discrimination between thyroid function disorders

Most of the above-mentioned models have focused 
exclusively on the benign and malignant classification of 
individual thyroid nodules, while other common disorders, 
such as hyperthyroidism, hypothyroidism, and thyroiditis, 
have received insufficient attention (5). Functional thyroid 
diseases are often insidious, and their early symptoms can 
be nonspecific, leading to a delay in diagnosis (110). US 
imaging can indicate the presence of abnormal thyroid 
parenchyma but cannot assess changes in thyroid function. 
Thyroid scintigraphy is useful for evaluating abnormal 
thyroid function consistent with overt or subclinical 
hyperthyroidism (125). However, existing imaging 
modalities cannot identify the etiological factors that lead 
to hypothyroidism versus hyperthyroidism, such as Graves 
disease, Hashimoto thyroiditis, and subacute, postpartum, 
sporadic, and suppurative thyroiditis (6). Furthermore, the 
lack of defined standardized features leads to variability 
in the accurate recognition and consistent interpretation 
by radiologists. In contrast, using an automated learning 
procedure, the DL method offers significant advantages 
in overcoming heterogeneity issues. In one study, a 
DL-assisted strategy managed to identify the region of 
Hashimoto thyroiditis based on thyroid US images (108). 
Zhang et al. showed that a ResNet developed with thyroid 

US images could achieve high performance in the diagnosis 
of Hashimoto thyroiditis on static images and video  
streams (109). Other studies have used thyroid scintigraphy 
to construct DL models. DL-based models might also serve 
as tools in the diagnosis of Graves disease and subacute 
thyroiditis (107). A modified DenseNet architecture 
was tested for categorizing Graves disease, Hashimoto 
thyroiditis, and subacute thyroiditis (51). Moreover, a 
deep CNN-based model was reported to perform well in 
identifying Graves disease, subacute thyroiditis, and thyroid 
tumors (110). 

Limitations of DL in thyroid imaging

Critical issues still need to be addressed before wider clinical 
application of DL. One of these challenges is the “black 
box” problem (38), in that it is difficult to determine how a 
network arrives at its conclusion. For example, although we 
can explain the process of construction with mathematical 
algorithms, if there is an error in the hidden layer of the 
algorithms, there is no means of determining which layer it 
is, making it difficult to resolve this issue (126). Strategies 
have been proposed to reveal the complex internal operation 
and behavior of these models, including deep convolutional 
networks, gradient backpropagation, class activation maps, 
gradient-weighted class activation maps, and saliency 
maps for multiple CNN architectures (127). Despite these 
attempts, there is little insight into why these models achieve 
such good performances or how they may be improved. 
However, interpretable patterns enable radiologists to learn 
what features are found within a particular nodule and how 
important they are, thus serving as a potential tool to train 
junior radiologists (128).

Continuing to build and grow large-scale, well-
annotated open datasets is just as crucial as developing new 
algorithms for strengthening the completion of clinical 
tasks (39). The limited performance of DL models trained 
from a single institution or vendor on external validation 
data sets raises concerns regarding the broad clinical utility 
of AI models (82). If subsequent studies use DL models 
developed from independent training and validation 
datasets containing data images from different devices 
and multicenter training cohorts may be able to provide 
good performance and clinical utility in real-world clinical 
settings. Moreover, for these AI technologies to take hold, 
adherence to consensus reporting standards and evaluation 
criteria for AI image interpretation are needed.
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Future directions

Most DL models in this field only examine PTCs and not 
follicular, medullary, or lymphatic types. Therefore, there 
is a need to validate and expand these diagnostic models 
using various types of data. We anticipate that the issues of 
imbalanced and inadequate data will promote breakthroughs 
in DL research, particularly in the cases of rare neoplasms 
with limited availability of imaging data. 

The use of DL algorithms in medical diagnosis based on 
images, particularly US, is still in the early stages of clinical 
trials. Due to the complexity of the anatomy of the thyroid 
region, the resolution of these images is typically insufficient 
for algorithms to identify representative features. The use 
of ANNs has provided a framework for reducing speckle 
in gray-scale US images. Despite the limited US scanning 
time in the clinical workflow, image optimization reduces 
costs while offering the prospect of multimodality and 
improved temporal and spatial resolution. Multimodal and 
multidimensional DL models may be a future direction 
of thyroid image analysis. In the thyroid field, DL models 
are built by combining multimodal data such as thyroid 
2D or 3D imaging (from US, MRI, CT and radionuclide 
scans), clinical records, pathology findings, serum thyroid-
stimulating hormone levels, thyroid antibody levels, and 
multiomics. These data can facilitate the refinement of 
disease management and improve the prognostic relevance 
of AI-generated biomarkers derived from standard 
radiographic images to support radiologists in disease 
diagnosis, imaging quality optimization, data visualization, 
and clinical assessment. DL models can enable the more 
accurate and meaningful modelling of healthy and disease 
states, thus supporting precision medicine.

Conclusions

From a review of studies in thyroid disease, it can be 
surmised that the main advances in this field involve 
standardizing the process of acquiring thyroid images and a 
more comprehensive assessment of thyroid disease images. 
This has consequently improved diagnostic accuracy, 
enabled further differential diagnosis, and reduced the 
number of time-consuming and energy-consuming routine 
tasks. DL methods are particularly suited for prediction 
based on existing data but lack precise predictions regarding 
distant future outcomes. Thus, a DL model can serve as a 
second opinion in the radiology process to minimize the 
influence of subjectivity. Although predictive algorithms 

cannot eliminate medical uncertainty, they have the 
potential to provide equal access to diagnostic tools in 
community hospitals and rural regions. With more ongoing 
research being conducted and more data being generated, 
we expect clinical settings to improve in the future.
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