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Task relevance modulates the 
cortical representation of feature 
conjunctions in the target template
Reshanne R. Reeder1, Michael Hanke   2,3 & Stefan Pollmann   1,3

Little is known about the cortical regions involved in representing task-related content in preparation 
for visual task performance. Here we used representational similarity analysis (RSA) to investigate 
the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions 
during conjunction viewing and target template maintenance prior to visual search. Subjects were 
cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD 
signal during cue and delay periods before the onset of a search display. RSA of delay period activity 
revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed 
general representational differences between task relevant and task irrelevant dimensions (e.g., 
orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational 
differences between cue images (regardless of task) at the occipital pole and additionally in the frontal 
pole. Our data show that task and sensory information are represented differently during viewing and 
during target template maintenance, and that task relevance modulates the representation of visual 
information across the cortex.

When you look for a banana in a fruit basket, you can guide your search towards distinct features (e.g., color, cur-
vature) while ignoring other features or feature dimensions. Such goal-directed attention requires a large network 
of brain regions interacting in different ways. Classically, a frontoparietal network (superior and middle frontal 
gyri to intraparietal sulcus) is thought to be responsible for directing spatial attention control signals to visual 
cortex1, 2 even prior to visual stimulation3, suggesting these regions contribute to preparatory attention. There is 
evidence this network is also involved in biasing attention to task relevant features, both during viewing4, 5 and 
in preparation for viewing expected features6. Anterior regions of cortex are thought to be involved in sending 
attention control signals to more posterior sensory regions, where stimulus contents are thought to be represented 
in working memory7, 8. There is also evidence that stimuli that are currently not task relevant are suppressed in 
sensory cortices9.

Studies have typically analyzed changes in regional blood-oxygen-level-dependent (BOLD) amplitudes to 
infer attention modulation based on task relevance, but have more recently adopted computational methods 
to investigate voxel-level activity patterns associated with different experimental conditions of interest; this has 
enabled us to analyze the representational content of brain activation10. These methods have particular use in 
investigating feature representation in working memory in the absence of visual stimulation. Maintaining task 
relevant information in working memory corresponds to a theoretical “target template”1, 11. The pre-activation of 
target-specific patterns has been observed throughout the ventral visual stream: from striate visual cortex12, 13 to 
extrastriate areas12, 14 and lateral occipital cortex (LOC15–17), representing various stimulus-related information 
such as precise visual features (e.g., oriented bars), feature dimensions (e.g., orientation or spatial frequency; SF), 
objects, and categories.

There are currently mixed findings about the extent to which frontoparietal attention control regions18, 19 
are involved in preparation for target detection. Several studies using pattern classification methods have found 
evidence that posterior parietal cortex is involved in both sending control signals to ventral visual areas and 
representing the contents of working memory20, 21. Some results maintain that frontal regions are content-free20, 
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but a recent study reconstructed working memory content activated in frontal cortex using encoding model 
techniques22.

In the current study, we used representational similarity analysis (RSA23, 24) to investigate the similarity of 
activity patterns elicited by task relevant and task irrelevant feature dimensions (e.g., a target defined by its ori-
entation vs. SF) during viewing and target template maintenance prior to visual search. During fMRI, subjects 
were instructed at the beginning of each trial to search for the orientation or SF of a cue Gabor grating. Cues 
were followed by a fixation period (delay), after which a search display appeared containing six Gabor gratings, 
one of which contained the cued feature. In the SF search task, the target appeared with a different orientation 
than the cue, and in the orientation search task, the target appeared with a different SF than the cue (see Fig. 1). 
Subjects were therefore motivated to prepare only for the current task relevant information and to ignore the task 
irrelevant information provided by the cue. Our time periods of interest were the cue period (i.e., the stimulus 
processing period) and the delay period prior to the onset of the search display (i.e., the target template mainte-
nance period). The durations of both time periods were jittered orthogonally so we could analyze their BOLD 
responses separately.

It has been long known that attention weighting of a target-defining feature dimension can facilitate visual 
search25, 26. Therefore, we investigated where in the brain task relevant feature dimensions are represented as part 
of a general attention mechanism. Based on the working memory literature, as well as on previous neuroimaging 
studies of dimension-specific visual search27, we expected the task relevant feature dimension to be represented 
maximally differently from the task irrelevant feature dimension (see Fig. 2a) in classical attention regions extend-
ing from the frontal eye fields to posterior parietal cortex along the intraparietal sulcus.

To investigate the representation of purely sensory-driven information (i.e., the different feature conjunctions 
presented as cues unconstrained by task demands), we used a model of early sensory processing23, 28 to find brain 
regions that represent feature conjunctions as a unique pattern, regardless of search task performed (see Fig. 2b). 
Of particular interest was the question if left frontopolar cortex, an area had been observed to be activated dur-
ing visual dimension changes27 would represent the task-relevant feature dimension or rather stimulus features 
independent of task relevance. The former would signal the result of a dimension change whereas the latter would 
indicate that left frontopolar cortex receives information about attended as well as not attended features, a pre-
condition for detecting changes in the unattended dimension that may require a re-weighting of dimensional 
attention27.

Materials and Methods
Subjects.  Three subjects were excluded due to low average accuracy on the search tasks (<70%). Remaining 
subjects were 11 students and researchers (3 female) recruited from the Universitätsklinikum fMRI subject pool 
in Magdeburg, Germany (age range = 25–35 years, mean age = 30.1 years). Subjects were all right-handed native 
German speakers and had participated in previous fMRI experiments unrelated to the current study. Subjects had 
normal or corrected-to-normal vision and received a monetary reimbursement for their participation. Prior to 
experimentation, subjects completed an fMRI screening questionnaire, received details about the experiment, and 
provided written, informed consent to take part in the experiment. These measures were approved by the research 
ethics committee of Otto-von-Guericke University Magdeburg in accordance with the approved guidelines.

Stimuli.  Stimuli were presented via a D-ILA projector to a back-projection screen placed in the bore of the 
scanner behind the participant’s head. Subjects viewed the screen through a mirror mounted on top of the head 
coil with 60 Hz refresh frequency. The experiment was coded in Python and implemented with the PsychoPy psy-
chophysics toolbox29 version 1.82.01 on a Debian operating system using the NeuroDebian30 software platform.

Stimuli were Gabor gratings generated in PsychoPy with the function “GratingStim”, all with a sinusoidal tex-
ture and Gaussian mask (See Fig. 1a). Cue Gabors were a constant 5 degrees of visual angle in diameter. The cue 
Gabor could appear at one of three possible orientations (15, 75, or 135 degrees) and one of three possible SFs (1, 
2, or 3 cycles per degree of visual angle). A search array was composed of 6 Gabors equally spaced in a circle with 
a radius of 8.37 degrees of visual angle. Gabors in the search display could appear at one of 9 possible orientations 
(each of the three cued orientations plus 35, 55, 95, 115, 155, 175) and one of 8 possible SFs (each of the three cued 
SFs plus 0.7, 1.3, 1.5, 3.8, or 4.3 cycles per degree of visual angle). These values were chosen to control for task 
difficulty behaviorally, but were not important for the fMRI analyses (only the BOLD responses in the cue period 
and delay period prior to the onset of the search display were analyzed).

Experimental Procedure.  The experiment was a visual search task in which subjects were required to 
respond whether a cued feature appeared on the left or right side of a search display (See Fig. 1b). Before the 
first experimental block, subjects completed practice trials to ensure they understood task instructions. At the 
beginning of each experimental block, an instruction message appeared that read: “Wenn die vorher gezeigte 
Eigenschaft auf der linken Seite erscheint, druecken Sie die 1. Wenn die vorher gezeigte Eigenschaft auf der 
rechten Seite erscheint, druecken Sie die 2” (If you see the cued feature on the right, press 1. If you see the cued 
feature on the left, press 2). All text appeared black against a gray screen and was presented at a height of 1 degree 
of visual angle. Following the block instructions, an fMRI trigger initiated the trial sequence.

Each trial started with an instruction screen for 1 second (s), prompting subjects to attend to a particular 
feature dimension of the cue: “TILT” (i.e., orientation), “SF”, or “EXACT IMAGE” (exact image trials were not 
analyzed in the current experiment). There were 9 trials for each task instruction within a block, with each task 
instruction presented in a pseudo-randomized, counterbalanced order using De Bruijn sequences for each 
block31.
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Following the task instructions, a cue Gabor appeared for a duration determined by a logarithmic distribution 
so subjects could not predict cue offsets. The distribution of cue durations was restricted to 9 values between 
1–2.5 s, which were each repeated 3 times per block of trials (total of 27 trials). The cue Gabor appeared in the 
center of the screen with a pseudo-randomly selected orientation and SF. Each of the 9 possible orientation/SF 
combinations appeared three times within a block – once for each task instruction – but the precise order of cues 
was shuffled every block.

After the cue, a central fixation point (a black visual grating stimulus generated in PsychoPy with a SF of 0 
and size of 0.5 degrees of visual angle) was presented on screen for an inter-stimulus-interval determined by a 
logarithmic distribution so subjects could not predict fixation offsets or search display onsets. The distribution 
of fixation durations was restricted to 9 values between 2.5–6.5 s, which were each repeated 3 times per block of 
trials (total of 27 trials). These values were chosen independently of cue duration to maximally separate BOLD 
signal elicited during the cue period and delay period.

After fixation, a search display appeared for 4 s. If the task was to search for SF, all 6 Gabors shared the same 
orientation (randomly selected from the 6 orientations that were never the cued orientation) and all 6 Gabors 
appeared with different SFs (one of which was shared by the cue). If the task was to search for orientation, all 6 
Gabors shared the same SF (randomly selected from the 5 SFs that were never the cued spatial frequency), and 
all 6 Gabors appeared with different orientations (one of which was shared by the cue). Gabors in a given search 
display were separated by 20 degrees, which removed a ceiling effect behaviorally (which possibly could have 
affected the precision of the target template).

If the task was to search for an exact image, 2 Gabors in the search display shared the same orientation as 
the cue (with different SFs), 2 Gabors shared the same SF (with different orientations), 1 Gabor appeared with a 
unique SF and orientation (different from all other Gabors in the display, to keep the number of Gabors with the 
same SF or same orientation as the cue consistent), and 1 Gabor appeared with the same SF and orientation as 
the cue. Exact image search trials were recorded for a separate study and were not included in the analyses of the 
current study. All models, analyses, and results of the current study are based on responses in the SF search and 
Orientation search tasks only.

Subjects were instructed to make a “left” or “right” response as fast and accurately as possible following the 
onset of the search display. Responses did not terminate a trial. Each block lasted 5 minutes 22 s. All subjects 
performed 8 blocks of trials, with approximately 45 minutes total experiment time with 72 trials per search task.

fMRI data acquisition.  Subjects were scanned on a 3 Tesla MAGNETOM Prisma (Siemens) at the 
Universitätsklinikum in Magdeburg, Germany. fMRI data were collected using a gradient-echo echo-planar 
imaging (EPI) sequence (TR, 2000 ms; TE, 30 ms; flip angle, 90°; matrix size, 80 × 80; FOV, 240 mm; 36 slices with 
interleaved acquisition; 3 × 3 × 3 mm voxels; 0.3 mm interslice gap). Each scanning session lasted 316 s. We also 
acquired structural data for each subject using a T1-weighted MPRAGE sequence (TR 2.5 s; TE 2.82 ms; TI 1.1 s; 
flip angle 7°; 1 mm isotropic resolution).

fMRI preprocessing.  fMRI data preprocessing was carried out in FSL version 5.0.832. For each subject, we 
registered functional images to their respective T1-weighted anatomical space and then to Montreal Neurological 
Institute (MNI) space using FSL’s FLIRT linear registration tool33. Specifically, functional images were first regis-
tered to the middle-timepoint functional image for each run, which were then registered to the brain-extracted 
T1-weighted image34, and finally to the MNI template. For univariate analyses, these data were then smoothed 
with a 6 mm FWHM Gaussian kernel prior to analysis.

Figure 1.  (a) The 9 Gabor images used as cues in the experiment. (b) The experimental procedure for the two 
search tasks.
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One experimental model was analyzed for each subject in the univariate analyses, modeling the cue period 
and delay period so that these time periods could be directly compared. The cue period and delay period were 
modeled separately for the searchlight analyses because a model that takes time period as an added parameter 
would have to include predictions about how each condition in the cue period would fit to each condition in the 
delay period (and vice versa), and we did not want to make such assumptions. For the model-driven searchlights, 
we smoothed the data with a 4 mm FWHM Gaussian kernel (to keep fine spatial patterns intact) using the Nilearn 
Python package35, and fitted an event-related hemodynamic response function (HRF) model to the smoothed 
dataset using NiPy36. Regressors for the HRF model were determined separately for the cue period and delay 
period based on precise onsets and offsets of each time period on a trial-by-trial basis, and were modeled for 18 
separate experimental conditions (see “Model-driven analyses” in the “Analyses” section below). Finally, we vox-
elwise Z-scored across all HRF parameter images prior to group level analyses.

Analyses.  Univariate analyses.  Group level univariate analyses were conducted using FSL’s FEAT function32 
on functional data registered to MNI space. BOLD responses were analyzed for the cue period and the delay 
period in a single model, and regressors were created based on precise timing of onsets and offsets of these peri-
ods on a trial-by-trial basis. We modeled the BOLD signal with a double-gamma HRF and we corrected for mul-
tiple comparisons using cluster-based thresholding on group level data with FSL’s FEAT function for higher-level 
analyses. The cluster-forming Z-threshold was set to 2.3 and all univariate results shown in the current paper are 
above this threshold. All clusters reported in the paper have a significance threshold of p < 0.01.

Task contrasts of interest were cue period > delay period BOLD and delay period > cue period BOLD. These 
contrasts were performed to determine whether the time periods of interest were functionally separable and 
whether we could replicate long-standing assumptions that delay period signals are dominant in frontal regions 
and stimulus processing signals are dominant in posterior regions37. We further performed the univariate con-
trasts Orientation search task > SF search task and SF search task > Orientation search task within each time 
period separately, to evaluate the BOLD responses attributed to general task differences.

Representational Similarity Analysis (RSA).  RSA24 is a pattern analysis technique that can be used to determine 
the similarity between patterns of activity for different conditions of interest. Each condition of interest is com-
pared to each other in a representational dissimilarity matrix (RDM) that encodes the distance between all pair-
wise combinations of conditions. Correlation distance was used as the representational distance (RD) metric of 
choice in this study, calculated as 1 minus the Pearson correlation between conditions, so if a RD value is low for a 
pair of conditions (i.e., close to 0), then correlations are high. RD values are on a scale from 0–2, with 0 being per-
fectly correlated, 1 being not correlated, and 2 being perfectly anti-correlated. In our study, correlations between 
beta weights were calculated for 18 conditions of interest (9 cue images × 2 search tasks) contributing to a model. 
All RSA results report the Fisher z-transformation values on the Pearson correlation distance between conditions.

To investigate the influence of task relevance on feature dimension representation, we created a 
dimension-weighted model RDM that followed specific hypotheses: that the task relevant feature dimension 
would be represented maximally differently from the task irrelevant feature dimension, and that stimuli would be 
represented maximally similarly within the task relevant feature dimension (see Fig. 2a). The latter followed from 
the assumption that attention to a feature dimension leads to enhanced processing of all features on the relevant 
dimension relative to features on the irrelevant dimension.

To investigate sensory feature representation, we generated an HMAX C1 RDM to model the representa-
tional information provided by the cue images unconstrained by task demands. HMAX is a model that simulates 
responses to visual input throughout the brain and the C1 layer of the model simulates complex cell responses 
in visual cortex. To generate simulated responses, we input each cue image into the model, which delivered an 
output of expected beta values in response to viewing the images. We then created a matrix that gauged the corre-
lation between simulated beta values for each cue image, resulting in the model shown in Fig. 2b.

To determine clusters with significant group level correlations between observed RDMs and the models we 
employed a bootstrapped permutation analysis38 implemented in PyMVPA. For each subject 150 additional 
searchlight correlation maps were computed using newly permuted RDM labels for every iteration24. By randomly 
selecting one map per subject and averaging (Fisher z-transformed) correlation maps across all subjects, 10000 
bootstrap samples were generated. The voxel-wise cluster forming threshold was determined by inspecting the 
distribution of z-values estimated via the bootstrap at each voxel, choosing the threshold to match a probability of 
pcorrected < 0.01 for observing a score of this magnitude or higher. Subsequently, the distribution of cluster sizes was 
determined from the thresholded bootstrap correlation maps. The reported results reflect super-threshold cluster 
with sizes corresponding to pcorrected < 0.01 (FWE-corrected). In addition to size and probability, we report mean 
and maximum Fisher z-transformed Pearson correlation between the models and observed RD patterns for each 
cluster. It should be noted that the reported probabilities do not correspond to individual correlation magnitudes, 
but represent cluster-level statistics.

The HMAX C1 model did not reveal any significant clusters of activity when the cluster-forming threshold 
was pcorrected < 0.01; therefore, for this model, the cluster-forming threshold was raised to pcorrected < 0.05. We per-
formed the thresholding procedure for correlation clusters at the group level for the cue period and delay period 
separately for each model.

Results
Behavioral results.  We analyzed each subject’s accuracy, reaction time (RT; only correct trials included), 
and Inverse Efficiency Score (IES; an accuracy-weighted RT value (RT/accuracy) that controls for speed-accu-
racy tradeoffs) for each of the search tasks. Behavioral results (accuracy, RT, IES) were submitted to separate 
paired-samples t-tests (SF search vs. Orientation search).
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There were no significant differences in accuracy between the two task conditions, t(10) = −1.05, p = 0.32 
(standard error of the mean (SEM) is reported here; SF search task: 81.4% ± 2.2%, Orientation search task: 
85.3% ± 2.6%). There were significant differences in RT between the two tasks, t(10) = −3.87, p = 0.003 (SF 
search task: 1.97 s ± 0.11 s, Orientation search task: 2.20 s ± 0.10 s). However, when both speed and accuracy were 
taken into account (using IES as the measure of performance), the differences between conditions vanished: 
t(10) = −1.12, p = 0.288 (SF search task: 2.44 s ± 0.16 s, Orientation search task: 2.60 s ± 0.13 s). These results sug-
gest the search tasks were well matched for difficulty when controlling for speed-accuracy tradeoffs.

Imaging results.  Univariate results.  There were 2 large clusters with significant cue period > delay period 
BOLD signal amplitudes. The first cluster extended from the occipital pole ventrally to bilateral occipital fusiform 
gyrus, and LOC, and dorsally along the full extent of the bilateral intraoccipital/intraparietal sulcus; the second 
cluster was observed bilaterally at the junction of superior precentral sulcus and superior frontal sulcus, i.e., the 
location of the frontal eye fields, extending medially to the location of the supplementary eye fields and laterally to 
middle frontal gyrus. There was a third small cluster in the rostral part of the parahippocampal gyrus, extending 
into the left thalamus (see Fig. 3a). There were 3 clusters with significant delay period > cue period BOLD ampli-
tudes: one extending through large regions of the frontal lobes, including frontal pole, bilateral superior frontal 
gyrus, orbitofrontal gyrus, and anterior cingulate cortex; one in angular gyrus extending into anterior temporal 
cortex; and one extending from the posterior portion of anterior cingulate cortex to posterior cingulate gyrus, 
precuneus and retrosplenial cortex; see Fig. 3a).

There were no significant clusters in any region of the brain for either of the further delay-period univariate 
contrasts performed (Orientation search task > SF search task, SF search task > Orientation search task). The 
absence of a significant difference in BOLD signal amplitudes between the single-feature search tasks in the delay 
period assures that representational differences found with RSA for this time period cannot simply be attrib-
uted to regional blood flow changes due to general task differences, such as task difficulty. Further cue period 
univariate contrasts revealed regional blood flow differences between attending to viewed orientations vs. SFs 
(see Fig. 3b). The Orientation search task > SF search task contrast revealed 6 significant clusters: one extending 
bilaterally through the lingual gyrus and calcarine cortex extending into supracalcarine cortex; one in right supe-
rior parietal lobule and precuneus; bilaterally in left and right middle temporal gyrus; and bilaterally in posterior 
left and right superior frontal gyrus, including the frontal eye fields. The SF search task > Orientation search task 
contrast revealed 2 significant clusters bilaterally in fusiform gyri, extending into the occipital pole region.

RSA results.  Figure 4a shows Fisher z-transformed correlations with the dimension-weighted model for the 
cue period (dark-to-light blue) and the delay period (red-to-yellow) with cue period activity depicted as a trans-
parent overlay on delay period activity. There were 8 clusters in the cue period that showed significant correlated 
activity patterns with the model. The largest clusters were in left superior LOC and left superior parietal lobule. 
Smaller clusters appeared in a region overlapping precentral gyrus, left inferior frontal gyrus pars opercularis, and 
left middle frontal gyrus; left occipital pole overlapping the lingual gyrus, calcarine and supracalcarine cortices; 
right superior LOC extending into precuneus; right superior LOC extending into occipital pole; and right middle 
temporal gyrus extending into angular gyrus. The delay period showed much more extensive activity patterns 
compared to the cue period. There were large bilateral clusters covering extensive posterior regions running ven-
trally from the occipital pole through inferior LOC (the location of the cluster maximum) into middle temporal 
gyrus and inferior temporal gyrus, and dorsally along the whole extent of the intraparietal sulcus. Smaller clusters 
of significant correlations with the model also extended anteriorly from the junction of superior precentral sulcus 

Figure 2.  (a) The dimension-weighted model RDM, with the cue images represented maximally similarly 
within the task relevant feature dimension and maximally differently from the task irrelevant feature dimension. 
(b) The HMAX C1 model RDM, representing correlations between simulated visual activity in response to the 9 
viewed cue images in the experiment.
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and superior frontal sulcus corresponding to the frontal eye fields, in medial frontal cortex corresponding to the 
supplementary eye fields, and in left prefrontal cortex reaching into rostral frontal cortex. Comparing the cue 
period to the delay period, many of the cue period clusters overlapped those activated during the delay period 
(see Fig. 4a), with the exception of 2 clusters unique to the cue period found in left precentral gyrus overlapping 
inferior frontal gyrus pars opercularis and middle frontal gyrus; and left occipital pole overlapping lingual gyrus 
and calcarine cortex. See Tables 1 and 2 for a full breakdown of significant searchlight clusters for the cue period 
and delay period.

Figure 4b shows Fisher z-transformed correlations with the HMAX C1 model of sensory processing. There 
were 13 significant clusters that emerged in the cue period. The largest cluster appeared in a region of right 
inferior LOC at the occipital pole (shown in more detail in Fig. 5). Additional clusters occurred in left frontal 
regions including the frontal pole, right temporooccipital regions, and bilateral temporal pole (see Table 3 for a 
breakdown of all reported clusters for this model). Of note, a significant correlation was observed in left fron-
topolar cortex, at the junction of the intermediate frontal sulcus and the frontomarginal sulcus, an area that has 
previously been observed in cross-dimensional attention weighting39.

a. Correlations with the dimension-weighted model (overlaps in purple)

Fisher z

Cue Delay
0

 >.4

b. Correlations with the HMAX C1 model (cue period only)
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0

   >.08

z=64 z=52 z=40 z=28 z=16 z=4 z=-8 z=-20

z=64 z=52 z=40 z=28 z=16 z=4 z=-8 z=-20

Figure 4.  (a) Axial slices in MNI space depicting the Fisher z score distributions within clusters that showed 
significant correlations with the dimension-weighted model RDM in the cue period (dark-to-light blue) 
and delay period (red-to-yellow) at a significance threshold of pcorrected < 0.01. (b) Axial slices in MNI space 
depicting the Fisher z score distribution within clusters that showed significant correlations with the HMAX C1 
model RDM in the cue period (dark-to-light blue) at a significance threshold of pcorrected < 0.05.

Figure 3.  All colored areas represent z-values above 2.3 at a significance threshold of pcorrected < 0.01. (a) Axial 
slices in MNI space depicting univariate contrasts for cue period > delay period BOLD in dark-to-light blue and 
delay period > cue period BOLD in red-to-yellow. (b) Axial slices in MNI space depicting univariate contrasts 
for cue period SF search task > Orientation search task in dark-to-light pink and cue period Orientation search 
task > SF search task in dark-to-light green.
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Discussion
How does the brain represent a target in preparation for visual search? Here we investigated the representation 
of task relevant feature dimensions as attention templates, i.e., working memory representations of targets in an 
upcoming search task. Previous work has consistently found dorsal and ventral attention network involvement 
in crossdimensional feature conjunction search40–42, attention shifts between dimensions, dimensional uncer-
tainty27, and within-dimension conjunction search43. In the present study, we provide evidence that this network 
is involved in the representation of task relevant feature dimensions in a target template using RSA. Correlations 
with the dimension-weighted model were observed bilaterally across the whole attention network18, in lateral 
prefrontal cortex and in occipital visual areas.

To our knowledge, this is the first paper to show that widespread regions of frontal, posterior parietal, and 
occipitotemporal cortices represent feature dimensions differently depending on their task relevance. Left 
superior parietal lobule at the border to the anterior intraparietal sulcus showed one of the highest correlations 
between observed RD patterns and the dimension-weighted model in the delay period (see Table 2). Previous 
studies have found that this area is involved in sustaining task-related signals in working memory over a delay44, 45  
performing inefficient visual search for conjunction objects46, binding features into conjunctions47, and shifting 
attention between different feature dimensions presented simultaneously in a display5, 48. The results of our study 
show that anterior superior parietal lobule is additionally involved in representing task relevant feature dimen-
sions in a target template.

Smaller clusters in frontal cortex corresponding to frontal eye fields and lateral prefrontal cortex also showed 
correlations with our dimension-weighted model. There is ample evidence that the frontal eye fields are involved 
in preparing eye movements for visual search during spatial working memory49, but this region has also been 
implicated in feature-based attention in both humans50 and monkeys51. Our finding that the frontal eye fields are 
involved in representing task relevant feature dimensions during the delay period suggests an additional role for 
this region in target template maintenance.

Cluster 
#

Size 
(voxels)

Max 
Fisher z

Max location 
(MNI)

Mean 
Fisher z Std

Center of mass 
(MNI) pcorr

Structure (Harvard-Oxford Cortical 
Structural Atlas)

1 711 0.1984 −30, −84, 32 0.0980 0.0210 −24.8, −75.9, 36.3 0.0003 Left Superior Lateral Occipital Cortex

2 641 0.1723 −30, −50, 72 0.1029 0.0185 −38, −45.7, 57.2 0.0003 Left Superior Parietal Lobule

3 298 0.1641 −54, 2, 34 0.1029 0.0176 −48.9, 0.6, 43.9 0.0009
Left Precentral Gyrus overlapping 
Inferior Frontal Gyrus pars opercularis, 
Middle Frontal Gyrus

4 261 0.1453 −20, −98, 8 0.0955 0.0163 −9, −91.3, 2.9 0.0009 Left Occipital Pole overlapping Lingual 
Gyrus, Calcarine Cortex

5 161 0.1576 30, −66, 58 0.1012 0.0180 31.3, −64.1, 55.9 0.0027 Right Superior Lateral Occipital Cortex 
overlapping Precuneous

6 151 0.1535 34, −80, 30 0.1021 0.0160 30.5, −83.9, 28 0.0027 Right Superior Lateral Occipital Cortex 
overlapping Occipital Pole

7 139 0.1657 12, −68, 46 0.1045 0.0194 10.4, −65.4, 53.3 0.0028 Right Precuneous overlapping Superior 
Lateral Occipital Cortex

8 105 0.1715 50, −48, 8 0.1045 0.0175 46.7, −51, 9.7 0.0051
Right Middle Temporal Gyrus 
temporooccipital part extending into 
Angular Gyrus

Table 1.  Clusters from the cue period that showed significant correlated activity patterns with the dimension-
weighted model.

Cluster 
#

Size 
(voxels)

Max 
Fisher z

Max location 
(MNI)

Mean 
Fisher z Std

Center of mass 
(MNI) pcorr

Structure (Harvard-Oxford Cortical 
Structural Atlas)

1 27895 0.4164 46, −62, −2 0.1274 0.0520 4.5, −59.5, 30.1 0.0001

Right Inferior Lateral Occipital Cortex 
extending ventrally from Occipital Pole 
to bilateral Inferior Temporal Gyrus 
and Middle Temporal Gyrus. Extending 
dorsally to bilateral Superior Lateral 
Occipital Cortex, Angular Gyrus, and into 
Superior Parietal Lobule

2 3915 0.3070 56, 10, 24 0.1078 0.0314 42.4, 18.1, 34.7 0.0001
Right Precentral Gyrus extending into 
Inferior Frontal Gyrus pars opercularis, 
Middle Frontal Gyrus, Superior Frontal 
Gyrus, and Frontal Pole

3 2582 0.2621 −44, 14, 26 0.1021 0.0296 −38.8, 5, 33.6 0.0001
Left Inferior Frontal Gyrus pars opercularis 
and pars triangularis extending into Middle 
Frontal Gyrus, Precentral Gyrus, and 
Frontal Pole

4 222 0.1421 0, −38, 36 0.0898 0.0150 3.2, −35.3, 38.2 0.0031 Posterior Cingulate Gyrus

Table 2.  Clusters from the delay period that showed significant correlated activity patterns with the dimension-
weighted model.
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Lateral prefrontal cortex is a particular region linked to working memory, and its role has traditionally 
been seen as an attention-directing region similar to posterior parietal cortex, rather than a region that repre-
sents the contents of visual stimuli52. Nevertheless, recent evidence suggests lateral prefrontal cortex does code 
content-specific information during a delay22, consistent with the current findings. Finally, posterior temporal 
cortex has previously been found to represent the contents of complex objects in the target template15, 53, as well 
as showing high-level feature and shape-selective processing during object viewing54–56 and conjunction process-
ing57. The current results provide evidence for a role of posterior temporal cortex in representing task relevant 
feature dimensions.

One question we must address concerning these results is whether the observed correlations with the 
dimension-weighted model were simply due to global signal strength differences between tasks. We do not 
think this is likely. We observed stronger univariate activation elicited by the orientation search task during the 
cue period, but not during the delay period. In contrast, RSA revealed more widespread correlations with the 
dimension-weighted model during the delay period than the cue period. This reverse temporal pattern appears to 
rule out a major contribution of global signal strength to the observed correlations with the dimension-weighted 
model.

The dimension-weighted model was represented in large parts of the frontoparietal attention network. This 
differed strongly from the representation of the HMAX C1 model, which modeled the similarity between sensory 
features as they would be coded by complex cells in visual cortex23. The HMAX model was mostly represented in 
visual cortex, as expected. In accordance with the foveal presentation of our cues, the HMAX model representa-
tion was observed in the right foveal confluence zone58 (confluence of foveal representations of V1, V2, and V3) 

Figure 5.  Sagittal, coronal, and axial slices in MNI space of the posterior cluster extending from the right LOC 
to the right occipital pole at a significance threshold of pcorrected < 0.05.

Cluster 
#

Size 
(voxels)

Max 
Fisher z

Max location 
(MNI)

Mean 
Fisher z Std

Center of mass 
(MNI) pcorr

Structure (Harvard-Oxford 
Cortical Structural Atlas)

1 213 0.1029 32, −90, 0 0.0645 0.0104 30.4, −88.6, −1.5 0.0393 Right Inferior Lateral Occipital 
Cortex overlapping Occipital Pole

2 192 0.1029 0, 60, 30 0.0694 0.0094 8.8, 60.4, 27.3 0.0393 Left Frontal Pole overlapping with 
Superior Frontal Gyrus

3 174 0.1070 34, −50, −20 0.0678 0.0094 47.8, −53.8, −20.1 0.0393
Right Temporal Occipital Fusiform 
Cortex overlapping Inferior 
Temporal Gyrus

4 172 0.0996 54, −28, 6 0.0678 0.0097 61.8, −33.5, −3.6 0.0393
Right Posterior Superior Temporal 
Gyrus overlapping Posterior Middle 
Temporal Gyrus

5 172 0.1094 46, −10, 28 0.0678 0.0111 46.5, −6.1, 31.1 0.0393 Right Post− and Precentral Gyrus

6 163 0.1339 −40, 14, −22 0.0784 0.0156 −38.6, 15.7, −22.3 0.0393 Left Temporal Pole extending into 
Frontal Orbital Cortex

7 155 0.1094 −4, 36, 58 0.0702 0.0113 −1.2, 34.1, 55.2 0.0393
Left Superior Frontal Gyrus 
extending into right Superior Frontal 
Gyrus

8 133 0.0939 −2, 28, 22 0.0719 0.0096 −3, 28, 21.9 0.044 Left Anterior Cingulate Gyrus

9 127 0.0972 −32, 46, 18 0.0686 0.0085 −29.3, 49.7, 10.1 0.044 Left Frontal Pole

10 127 0.1053 46, 26, −26 0.0710 0.0100 43.8, 20.1, −24.4 0.044 Right Temporal Pole

11 120 0.1176 −20, −26, 70 0.0727 0.0122 −22.6, −25.4, 70.7 0.0461 Left Precentral Gyrus

12 118 0.1429 8, −6, 48 0.0727 0.0147 5.2, −6.5, 49 0.0461
Right Juxtapositional Lobule Cortex 
extending into Anterior Cingulate 
Gyrus

13 115 0.0849 36, −80, 18 0.0621 0.0071 38.5, −79.8, 16.4 0.0461 Right Superior Lateral Occipital 
Cortex extending into Occipital Pole

Table 3.  Clusters from the cue period that showed significant correlated activity patterns with the HMAX C1 
model.
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around the occipital pole. The right dominance of this representation is likely to be a thresholding effect, but it is 
in accordance with an anatomically larger area of the right confluence zone58.

Unexpectedly, activation at the junction of the intermediate frontal sulcus and frontomarginal sulcus in left 
frontopolar cortex also correlated with the HMAX model in the cue period. Activation in this rostral frontal 
area was previously observed during visual dimension changes27. Moreover, it is likely involved in the allocation 
of attention resources across a broad range of paradigms 59. The present data show that left frontopolar cortex 
represents not the attended visual dimension, but stimulus features independent of the attended dimension. This 
fits with the hypothesis that left lateral frontopolar cortex is vital for detecting potential targets in previously unat-
tended dimensions, thereby enabling subsequent attention changes to the previously unattended dimension60.

Together these results paint a picture of task relevant representations activated in various cortical regions 
prior to search, from cue processing to the template maintenance period. Specifically, we provide evidence that 
frontal, posterior parietal, lateral occipital, and early visual cortex all contribute to the representation of target fea-
ture dimensions and frontal cortex and ventral visual regions contribute to the representation of viewed features 
regardless of task relevance. In conclusion, top-down factors greatly influence the cortical representation of visual 
information during preparation for visual search.
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