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Background
The function of non-coding RNA, which includes gene expression regulation (miR-
NAs, piRNAs, lncRNAs), RNA maturation (snRNAs, snoRNAs) and protein synthesis 
(rRNAs, tRNAs), strongly depends on the hierarchical folding of RNA molecules. Given 
their sequence of bases (primary structure), RNAs fold into secondary structures, such 
as stem loops and pseudoknots, before folding into higher level (tertiary and quaternary) 
structures. The secondary structure is considered to be a list of base pairs. The base 
pairs can include canonical (Watson-Crick pairs [1, 2]), non-canonical interactions, and 
crossing or pseudoknot interactions [3]. Compared to other interactions, non-canoni-
cal interactions occur with reduced frequency. The crossing or pseudoknot interactions 
occur when two canonical or non-canonical interactions cross each other [3].
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Considering pseudoknots in designing functional RNAs is vital given their role in real-
ising biological functions. In modern bio-engineering, one must solve the RNA inverse 
folding problem to be able to design RNA molecules performing specific functions [4–
6]. Here, we consider the RNA secondary structure inverse folding problem. The goal is 
to find RNA sequences that fold into a given target secondary structure, with or without 
pseudoknots.

A key prerequisite to addressing the RNA inverse problem is a reliable solution to the 
folding problem. Computationally folding an RNA molecule consists of searching in 
the space of all possible secondary structures for one that minimises the free energy. 
Designing sequences for a pseudoknotted target structure is computationally more 
expensive than a pseudoknot-free target because of the folding algorithms’ complexity. 
Specifically, the time complexity of the pseudoknot-free secondary structure prediction 
is O(n3) when using dynamic programming approaches such as RNAfold [7, 8], or less 
with heuristic folding methods (e.g. O(n) for LinearFold and O(n2 log n) for RAFFT 
[9]). By contrast, when considering a special class of pseudoknots, the time complex-
ity of folding goes up to O(n6) for an exact thermodynamic prediction using a dynamic 
programming approach such as [10]. In this work, we consider only two heuristics tools 
(IPknot [11] and HotKnots [12]) chosen for their lower time complexity O(n4).

Many of the studies addressing the inverse folding of RNA considered only pseudo-
knot-free secondary structures [13–26]. There are, however, four exceptions: MCTS-RNA 
[24], antaRNA [27], Modena and Inv [28]. MCTS-RNA uses a Monte Carlo tree search 
(MCTS) technique. This technique has recently shown exceptional performance in 
Computer Go. It is used to initialise the RNA sequences solutions in MCTS-RNA and the 
solutions are further improved through local updates at the nucleotide positions. MCTS-
RNA uses pkiss as a folding tool, whereas the older tools support a broader range of 
folding tools. antaRNA utilises an ”ant-colony” optimisation technique. The technique 
begins with an initial population of sequences generated via a weighted random search; 
next, the solutions are evaluated, and the sequence fitness values are used to refine the 
weights and improve the sequences over generations. Another approach (Modena) 
implements a multi-objective evolutionary algorithm measuring both the stability of 
the designed sequences and the similarity of folded sequences to the target structure. 
Although the first version of Modena was implemented for pseudoknot-free structure 
[17], it has since been extended to support pseudoknotted RNAs, and a new crossover 
operator [29]. Inv is the first inverse folding tool handling pseudoknotted RNA target 
structures but is restricted to a specific type of pseudoknot pattern called 3-crossing 
nonplanar pseudoknots.

Since the genetic algorithm (or more generally evolutionary algorithm) was proposed 
by John Holland [30] in the early 1970s, it has emerged as a popular search heuristic 
and found application in many disciplines that deal with complex landscape optimisa-
tion problems. In a prior publication [31], we presented aRNAque, a simple evolution-
ary inverse folding algorithm guided by local (or one-point mutations). Although a local 
search can efficiently discover optima in a simple landscape, more complex landscapes 
pose challenges to the design of evolutionary algorithms that rely solely on local search. 
This is especially true on a landscape with high neutrality where local search may be 
inefficient or risk getting stuck on a plateau (or local optimum). To avoid this pitfall, 
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we propose here an extension of aRNAque which implements a new mutation scheme 
inspired by Lévy flights (called Lévy mutation) and supports pseudoknotted RNA target 
structures.

Lévy flights are random walks with a Lévy (or any heavy-tailed) step size distribution. 
The concept originates in the work of Mandelbrot on the fluctuation of commodities 
prices in the 1960s [32] but has since found many more physical applications [33]. The 
term ”Lévy flight” was also coined by Mandelbrot, who used one specific distribution 
of step sizes (the Lévy distribution, named after the French mathematician Paul Lévy). 
Lévy flights also play a key role in animal foraging, perhaps because they provide an 
optimal balance between exploration and exploitation [34, 35]. For a recent review of 
applications of Lévy flights in biology from the molecular to the ecological scale, [36].

Similar to a Lévy flight, a Lévy mutation scheme allows simultaneous search at all 
scales over the landscape. New mutations often produce nearby sequences (one-point 
mutations) but occasionally generate mutant sequences far away in genotype space 
(macro-mutations). In this work, the number of point mutations distribution at every 
step is taken to follow a Zipf distribution [37].

The optimisation approach implemented in aRNAque is an evolutionary algorithm, 
which consists of a population of RNA sequences that all perform separate random 
walks (are mutated) in the space of possible sequences, and whose step sizes (number 
of point mutations) follow a Zipf distribution. After each step, the probability of surviv-
ing is proportional to the fitness of each sequence, which is evaluated by its ability to 
approximate a given target structure. We provide a brief overview of that approach in 
the following subsection.

Earlier works have applied similar ideas in genetic programming [38], and in differen-
tial evolutionary algorithms [39]. This has motivated us to investigate the possible ben-
efit of a Lévy flight in designing RNA sequences. Using a Lévy mutation scheme, we aim 
to speed up our prior evolutionary algorithm and increase the diversity of the designed 
RNA sequences.

We compared the performance of our modified version of aRNAque to existing tools 
through a benchmark on two well-known RNA datasets: PseudoBase++ [40] for the 
pseudoknotted targets and Eterna100 [41] for the pseudoknot-free targets. On the 
PseudoBase++ dataset, the difference between the local mutation and the Lévy muta-
tion concerning the number of generations (or evaluations) was significant (with a p 
value ≈ 0.00004 ). Using the two pseudoknot folding tools HotKnots and IPknot, our 
designed sequences were of better quality than the ones produced by antaRNA regard-
ing the average base pair distance to the desired targets. We performed a second bench-
mark on the Eterna100 dataset. Considering the Eterna100-V1 dataset, the Lévy 
mutation scheme solved 89 targets out of 100 whereas the local mutation scheme solved 
91/100. Combining the two benchmark results obtained using both mutation schemes, 
we counted the number of distinct targets solved by aRNAque. aRNAque designs suc-
cessfully 92/100 of the Eterna100-V1 dataset and 94/100 of the Eterna100-V2 
dataset.
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Implementation of aRNAque
aRNAque implements an evolutionary algorithm approach. Below, we provide a brief 
overview of our evolutionary search algorithm and our mutation scheme.

Overview

In general, an evolutionary search algorithm on any fitness landscape consists of three 
main parts, which in the context of RNA inverse folding are as follows:

•	 Initialization: generating a random initial population of RNA sequences compat-
ible with the given target secondary structure.

•	 Evaluation and selection: evaluating a population of RNA sequences consists of 
two steps: (1) fold each sequence into a secondary structure and assign it a weight 
based on its similarity to the target structure. (2) select a weighted random sam-
ple with replacement from the current population to generate a new population. 
A detailed description of the objective function used in aRNAque is provided in 
[31].

•	 Mutation (or move) operation: define a set of rules or steps used to produce new 
sequences from the selected or initial ones. This component is elaborated further 
in the following subsection.

aRNAque’s pseudocode is provided in the Additional file 1 (see SI 4).

Mutation mode

For a given target RNA secondary structure σ ∗ of length L, the space of potential solu-
tions to the inverse folding problem is S = {A,C,G,U}L . An evolutionary algorithm 
explores the space S through its move (or mutation) operator.

Given a sequence φ ∈ S , a sequence φ′ ∈ S is said to be an n-point mutation of φ if 
it differs from φ at n nucleotides; i.e. h(φ,φ′) = n where h(., .) is the hamming distance 
on S.

A mutation mode is a random variable U taking values in {1, ..., L} . We define 
P(U = n) as the probability that exactly n nucleotides, selected uniformly at random, 
undergo point mutation during a mutation event. U can generally be any probabil-
ity distribution. We examined the binomial and Zipf distributions for local and Levy 
search, respectively:

•	 Binomial mutation: U has a binomial distribution: 

for some 0 ≤ µ ≤ 1 , such that the average number of point mutations u = µ · L . We can 
think of this mutation mode arising from each nucleotide of an RNA sequence indepen-
dently undergoing a point mutation with probability µ , i.e. µ is the per-nucleotide or point 
mutation rate.

•	 Lévy mutation: U has a Zipf distribution given by: 

P(U = n) =
L

n
µn(1− µ)L−n
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Where c > 0 is the value of the exponent characterizing the distribution. Larger values of 
c are associated with a more significant proportion of local search, while smaller values of 
c imply a more considerable proportion of long-range search.
Figure 1 shows the distribution of the number of point mutations on a sequence of 
length 88 nucleotides for both mutation schemes. Both distributions have the same 
mean but differ markedly in their tails.

Throughout this paper, the local mutation will refer to binomially distributed muta-
tion with parameter µ ≈ 1/L or one-point mutation.

New feature

We provide an updated version of aRNAque supporting pseudoknotted RNA tar-
get structures. In addition to the support for pseudoknots, we provide an updated 
mutation mode based on a Zipf distribution. We present the mutation algorithm in 
Algorithm 1.

P(U = n) =
1/nc

∑

L

k=1 1/k
c

Fig. 1  Binomial vs. Zipf distributions. a Samplings Binomial and Zipf distributions for the best binomial 
mutation rate µ∗ (respectively c∗ for the best Zipf exponent parameter). Both distributions have a mean of 
8.7 point mutations for a sequence of length 88 nucleotides. b Tuning of binomial mutation rate parameter. 
For each µ ∈ [0, 1] with a step size of 0.005 and the pseudoknotted target PKB00342 of length 88, 50 
sequences were designed using aRNAque. (b) shows the median generations and the success percentage 
vs. the mutation rate ( µ ). The best mutation rate is µ∗ = 0.085 (with a median number of generation 93.5 
and a success rate of 92%). c Tuning of Levy exponent. Similar to (b), for each c ∈ [0, 7] with a step size of 0.1 
and for the same pseudoknotted target structure, 100 sequences were designed using aRNAque. It shows 
the median generations and the percentage of success vs. the exponent parameter (c). The Zipf exponent 
distribution that produced the highest success rate and the minimum number of generations is c∗ = 1.4
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Parameter analysis and benchmark data
Here we analyse mutation parameters and compare local and Lévy mutation modes.

Benchmark data

To compare our new version of aRNAque with existing tools in the literature, we used 
the PseudoBase++ benchmark datasets for pseudoknotted target structures and the 
Eterna100 dataset for pseudoknot-free target structures.

The PseudoBase++ is a set of 266 pseudoknotted RNA structures used to bench-
mark Modena. It was initially 342 RNA secondary structures, but the redundancy and 
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the non-canonical base pairs 76 structures were excluded. To group the dataset with 
respect to the pseudoknot motifs (Fig. 2), we used the test data from antaRNA’s paper. 
The test data contains 249 grouped into four categories: 209 hairpin pseudoknots (H), 29 
bulge pseudoknots (B), 8 complex hairpin pseudoknots (cH) and 3 kissing hairpin pseu-
doknots (K). Out of the 266 structures, only 185 (with 150 H-type, 3 K-type, 25 B-type 
and 7 cH-type) structures were included in the test data. So for that reason, we have 
used only 185 target structures for the pseudoknot motif performance comparison and 
the 266 structures for the different target lengths performance comparison.

The Eterna100 dataset [42] is available in two versions and both contain a set of 100 
target structures extracted from the EteRNA puzzle game and classified by their degree 
of difficulty. The Eterna100-V1 was initially designed using ViennaRNA 1.8.5, which 
relies on Turner1999 energy parameters [43]. Out of the 100 target secondary structures, 
19 turned out to be unsolvable using the version of ViennaRNA 2.4.14 (which relays on 
the Turner2004 [44]). Subsequently, an Eterna100-V2 [42] was released in which the 
19 targets were slightly modified to be solvable using ViennaRNA 2.4.14 and any ver-
sion that supports the Turner2004 energy parameters. The main difference between the 
two dataset relay on the energy parameters used to generate the data.

Methodology

Folding tools

This work considers two pseudoknotted RNA folding tools: HotKnots and IPknot. 
For pseudoknot-free RNA folding, we used RNAfold. For the mutation parameter and 
GC-content analysis presented in our work, we used IPknot, and both HotKnots and 
IPknot for PseudobBse++ benchmarks. To be able to use HotKnots in aRNAque 

1 31
(D): Kissing (K)

1 24

1 39

1 22

(C): Complex Hairpin (cH)

(A): Hairpin (H) (B): Bulge (B)

Fig. 2  Types of pseudoknots accommodated by aRNAque. a Hairpin (H-type) pseudoknot. b Bulge (B-type) 
pseudoknot. c Complex hairpin (cH-type) pseudoknot. d Kissing hairpin (K-type) pseudoknot. The B-type and 
cH-type are all complex form of H-type. The pseudoknot interactions are highlighted in red
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without copying aRNAque in the bin directory of Hotknots, we have performed some 
modifications on Hotknots source code. Details on the modifications are provided in 
the Additional file  1: SI 6. Furthermore, we considered pkiss, a well known tool for 
K-type pseudoknot prediction, but since the PseudoBase++ dataset contains just 4 
K-type pseudoknotted structures and pKiss has higher time complexity ( O(n6) ), we did 
not find it efficient for the benchmark we performed.

Mutation parameters tuning

An evolutionary algorithm’s main challenge is to find optimum parameters such as 
mutation rate, population size and selection function. We used 80 pseudoknotted tar-
gets with lengths from 25 to 181 nucleotides for the mutation parameter analysis. We 
set the maximum number of generations T to 200 and the population size n to 100. The 
stopping criteria are two: 1) the number of generations (t) is equal to the max number 
of generations (T) or 2)the minimum hamming (or base pair) distance of the best RNA 
sequence solution to the target is 0. The best mutation parameters ( c∗ for Levy and µ∗ 
for Binomial) are those that have the lowest median number of generations. The best 
mutation parameters obtained for both binomial and Lévy mutation modes are used to 
benchmark and compare the results on the entire datasets of RNA structures.

Benchmark on the PseudoBase++ dataset

Four benchmarks are performed on the pseudoknotted dataset: 1) mutation parameter 
analysis, 2) the GC-content and diversity analysis, 3) Local search versus Lévy search, 
4) aRNAque (Lévy search) versus antaRNA. For the aRNAque (Binomial and Lévy) 
case, the four benchmarks share the same number maximum number of generations 
(T = 200), population size (n = 100), stopping criteria (t = T or min fitness equals 0). 
We used a T-test to compare local-search (Binomial with low mutation rate) means of 
the number of generations distributions to the ones of the Lévy search. The p values 
and t-values are presented in the result section. For the antaRNA benchmark, the maxi-
mum number of iterations was set to 1200, and a slight modification was made to allow 
the support of the folding tool HotKnots (See Additional file 1: SI 6). For booth tools 
and each benchmark, 20 runs were launched independently in parallel on a computer 
with the same resources, resulting in 20 designed sequences per pseudoknotted target 
structure. Each designed sequence s is folded into a secondary structure σ , and the simi-
larities between σ and σ ∗ are computed using the base pair distance. For the GC-content 
benchmark, four GC-content values are considered, {0.25, 0.5, 0.75, 1} and the setting of 
each tool reminds the same.

Benchmark on the Eterna100 dataset

We performed two benchmarks are one the Eterna100 dataset: 1) a benchmark on the 
Eterna100-V1 dataset using the Turner1999 energy parameter and the both ver-
sions of aRNAque (one point and Lévy mutation), 2)a benchmark on the Eterna100-
V2 dataset using the Turner2004 energy parameter and both versions of aRNAque 
(one point and Lévy mutation). For each of the Eterna100 benchmark we used the 
same evolutionary algorithm parameters; a maximum of T =  5000 generations (i.e. a 
maximum of 500,000 evaluations), a population size of n = 100 and the same stopping 
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criteria (the number of generation t = T or min fitness equals 0). For local and Lévy 
search, 5 runs were launched independently, resulting in 5 designed sequences per tar-
get. We define success rate simply as the number of successfully designed targets. A tar-
get is considered successfully designed when at least one of the designed sequences folds 
into the target structure.

Results
We first compared the performance of aRNAque using Lévy mutations to the previous 
version with local mutations. Secondly, we compared aRNAque to the existing pseu-
doknotted RNA inverse folding tool antaRNA using two folding tools: HotKnots and 
IPknot. Finally, we compared the performance of aRNAque (Lévy mutation) to the one 
of Ivry et al. on a tripod RNA secondary structure.

Analysing the best mutation parameter on PseudoBase++:  Levy mutation vs. local 

mutation

The advantage of using a Lévy mutation is its capacity to allow a simultaneous search at 
all scales over the landscape. The search at different scales is often dictated by the expo-
nent parameter of the heavy-tailed distribution. In this first result section, we analyse 
the distributions of the best mutation parameters for 80 pseudoknotted target structures 
and for both mutation schemes.

•	 Binomial mutation: From Fig. 1b, the critical range was identified to be from 0 to 0.2, 
and as µ becomes greater than 0.1, the success rate decreases and the average num-
ber of generations increases. For each of the 80 target structures with pseudoknots, 
20 sequences were designed for µ ∈ [0, 0.2] with a step size of 1/L. Figure 3b shows 
the histogram of the best mutation rate found for each target structure. Two main 
regimes are apparent: one where the best mutation rate is a shallow mutation rate 
( ≈ 1/L ) and another where the high mutation rate is optimal.

•	 Lévy mutation: From Fig. 1c, the critical range of c was identified to be [1, 2]. For 
c ∈ [1, 2] and a step size of 0.1, an optimum exponent parameter c∗ was investigated 
for all the 80 target structures. Figure  3a shows the histogram of c∗ . Contrary to 

Fig. 3  Parameter tuning for both binomial and Lévy mutation schemes. a Lévy mutation parameter tuning. 
Histogram of best exponent parameter ( c∗ ) for a set of 81 target structures with different pseudoknot 
patterns and various lengths. The most frequent best exponent value is 1. b Binomial parameter tuning. 
Histogram of best mutation rate ( µ∗ ) for the same set of 81 target structures with different pseudoknots and 
various lengths. The most frequent best parameter is the low mutation rate ( ≈ 1/L ). For some structures, the 
best mutation rate is the high one for different lengths as well
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binomial mutation, the optimum exponent parameter does not vary too much ( ∀σ , 
c∗ ≈ 1).

Figure  3 shows that when using a Lévy mutation, the optimal mutation rate is the 
same for most target structures. In contrast, the optimum binomial mutation rate 
parameter µ∗ mostly varies with different targets. Although both mutation schemes 
(for the best mutation parameters) have approximately the same success rates, the 
Lévy flight mutation scheme is more robust to different targets.

Performance on PseudoBase++: Levy mutation vs. local mutation

Figure 4 shows box plots for the base pair distance (Hamming distance) and the num-
ber of generations for increasing target lengths under our two mutation schemes: 
binomial at low mutation rate (or one point mutation) and the Lévy mutation. For 
each pseudoknotted RNA target structure in the PseudoBase++ dataset, we 
designed 20 sequences. The results show that using the Lévy mutation instead of a 
local mutation scheme can significantly increase the performance of aRNAque. The 
gain was less significant in terms of designed sequences quality (base pair distance 
distributions, with a t value ≈ −1.04 and p value ≈ 0.16 ) but more significant in 
terms of the average number of generations needed for successful matches to target 

Fig. 4  Lévy mutation mode vs local mutation (one-point mutation). a Hamming distance distributions vs. 
target structure lengths. b Number of generations distributions for different length groups. In both (a) and 
(b), lower values indicate better performance. The target structures are solvable in less than 100 generations 
for both mutation schemes and most length groups. Still, the difference in the number of generations gets 
more significant as the target lengths increase, except for the two last length groups for which both mutation 
schemes mostly failed. The highest difference in terms of median number of generations is 150 for target 
lengths in the range [124–144] (respectively 123, 49, 46, 16, 7, 0, 0 for the length ranges [84–104], [64–84], 
[104–124], [44–64], [24–44], [144–164], [164–184]). Averaging over all length groups, the median number of 
generations difference between the Levy mutation and the one point mutation is 48 generations
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structures (with a t value ≈ −3.6 and p value ≈ 0.0004 ). This result demonstrates a 
substantial gain in computational time when using a Lévy mutation scheme instead of 
a purely local mutation.

Performance on PseudoBase++: aRNAque vs. antaRNA

General performance analysis using both Hotknots and IPknot

We also compared the sequences designed using aRNAque (with the Lévy mutation 
scheme) to those produced by antaRNA. Figure 5a, c show the base pair distance dis-
tribution for each category of the pseudoknotted target structure and the mean of the 
base pair distance plotted against the length of the target secondary structures. For 
antaRNA, and when using IPknot as a folding tool, finding sequences that fold into 
the target becomes increasingly tricky with pseudoknot complexity (median base-pair 
distance distribution increases). On the other hand, aRNAque’s performance improves 
as pseudoknot complexity increases (e.g. the mean base-distance decreases with the 
pseudoknot complexity).

We performed a second benchmark on the same dataset using HotKnots as a folding 
tool. For both aRNAque and antaRNA, the more complex the pseudoknot motifs, the 
worse is the tool performance (median of the base-pair distance distribution increases). 
Figure 5b, d show respectively the base pair distance distributions with respect to the 
pseudoknot motifs, and the mean of the base pair distance respect to the length of the 
target structures for both aRNAque and antaRNA. Even though both performances 
degrade as target length increases, aRNAque (Lévy flight evolutionary search) perfor-
mance remains almost constant for all the target lengths greater than 60.

GC–content analysis of the designed sequences using IPknot

The GC–content of an RNA sequence S measures the concentration of G-C nucleotide 
in S and influences its stability and biological function [45–47]. Therefore, the ability of 
an inverse folding tool to control the GC–content is of vital importance for designing 

Fig. 5  aRNAque vs antaRNA on PseudoBase++ dataset using both IPknot and 
HotKnots. Lower values imply better performance. a, b Base pair distance distributions of the designed 
sequences to the target structure for different pseudoknot types. c, d Mean base pair distance against target 
lengths
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functional RNA sequences. Both antaRNA and aRNAque allow to control the GC–
content at different levels of the optimization process: aRNAque through the mutation 
parameters PC and PN ; antaRNA with the parameter tGC ∈ [0, 1] . In this section, we 
compare the performance of each tool for fixed GC–content values and analyse each 
tool’s ability to control the GC–content. For each pseudoknotted target structure in the 
PseudoBase++ dataset, four different GC-content values {0.25, 0.5, 0.75, 1} , a pool of 
20 sequences is designed using IPknot as folding tool. That results in 5320 designed 
sequences for each GC–content value and tool. The number of successes is the total 
number of sequences that fold exactly into the given target structure (i.e. the designed 
sequence folds into a structure at base-pair distance 0 from the target structure). Fig-
ure 6 shows respectively the base pair distance distributions, the GC distance distribu-
tions and the number of successes for both aRNAque and antaRNA. The results show 
that the performance (in terms of success number) varies considerably with the GC–
content values for both tools, and the best performance is obtained for both tools with a 
GC–content value of 0.5. When comparing the GC-content distance (i.e absolute value 
of the difference between the targeted GC–content and the actual GC–content values 
of the designed sequences) distributions, both GC–content distance median distribu-
tions increase, whereas antaRNA controls significantly better the GC-content (See 
Fig.  6b). On average, for the respective GC-content values {0.25, 0.5, 0.75, 1} , antaR-
NA’s sequences have respectively 0.2569, 0.4952, 0.7314, 0.8684 whereas aRNAque’s 
sequences have respectively 0.3649, 0.4910, 0.6231, 0.811; the main difference is at fixed 
GC-content values 0.25 and 0.75. Even though antaRNA designs sequences with better 
control of the GC-content, the gap in success rate still remains remarkable compared to 
aRNAque(See Fig. 6a, c).

Diversity of the designed sequences

Another advantage of using a Levy mutation when designing RNA sequences is to 
increase the chance of designing sequences with high diversity. Here, we use the posi-
tional entropy of each pool of 20 sequences previously designed for each pseudoknotted 
target structure to compare the diversity of RNA of both tools antaRNA and aRNAque 
(Lévy search). We also compare it to the diversity of the designed sequences using the 

Fig. 6  aRNAque vs antaRNA on PseudoBase++ dataset using IPknot: GC–content 
analysis. a Base-pair distance ditributions. b GC–content distance distributions. The difference betwen 
the targeted GC-content and the actual GC-content values. In (a, b), lower values imply better performance. c 
Number of successes realised by both inverse folding tools. Two values are considered: the up value represent 
the number targets successfully solved for each GC-content value out of the 266 targets benchmarked; the 
down values represent the number sequences folding into the targeted secondary structure
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old version of aRNAque (Local search). The results show that the sequence diversity 
of both antaRNA and aRNAque (Lévy search) varies with the GC–content values, 
where the more diversified pool of sequences is achieved with a GC–content value of 
0.5. When comparing the pool of designed sequences with highest entropy (i.e. with a 
fixed GC-content of 0.5) to the one of the old version of aRNAque (Local search), the 
aRNAque (Lévy search) and antaRNA produce sequences with similar entropy (i.e. with 
a median entropy of 61.01 for Lévy search respectively 59.65 for antaRNA (see Fig. 7), 
whereas the entropy of the sequences designed using the Local search is lower. For the 
three others fixed GC-content values (i.e. {0.25, 0.75, 1} , aRNAque (Lévy search) pro-
duces sequences with the highest entropy (respectively a median entropy of 58.9, 60.08, 
51.52 against 53.42, 54.63, 48.38 for antaRNA).

CPU time versus success rate analysis using Hotknots

We also compare aRNAque’s computational time to the one of antaRNA. For both 
tools, 20 sequences were designed for each target structure of the PseudoBase++ 
dataset. The GC–content value used for both tools is 0.5, and the maximum number 
of interactions for antaRNA is 5000. Figure  8 shows the median CPU time of the 20 
runs in seconds for both tools plotted against each other. We analysed the CPU time 
by partitioning the data into three groups: 1) a set for which both tools have a median 
base-pair distance of 0 (158 entries marked with o); 2) another set for which aRNAque 
has a median base-pair distance of 0 and antaRNA (41 entries marked with +); 3) the 
last set for which antaRNA designs are of better quality (9 entries mark as -). For the 
first group, we can notice that for most targets of short length antaRNA is faster than 
aRNAque. For the second group, although antaRNA average CPU time remains smaller, 
aRNAque’s success rate outperformed antaRNA.On the one hand, aRNAque aver-
age CPU time is higher than the one of antaRNA, but this could be due to its popula-
tion-based algorithm, which often allows for designing more successful sequences. On 
the other hand, antaRNA is faster but less successful. Increasing antaRNA’s number 
of iterations will indeed increase the CPU time, but it may improve the quality of the 
designed sequences.

Fig. 7  aRNAque vs antaRNA on PseudoBase++ dataset using IPknot: Diversity 
analysis. The positional entropy distributions plotted agains the targeted GC–content values. Higher 
values imply better performance
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Performance on Eterna100 dataset

We performed a third benchmark on the Eterna100 datasets. First, on the 
Eterna100-V1 dataset, the Lévy flight version of aRNAque successfully designed 
89% of the targets, and the one-point mutation (local mutation) version achieved 91% 
of success, suggesting that for some target structures, local mutation can outperform 
the Lévy mutation scheme. Combining the two solutions, aRNAque solved in total 
92% of the targets of Eterna100-V1 (see also [31]).

When analysing the performance of Lévy flight for low and high base pair densities 
separately, the median number of generations of high base pair density targets was 
lower than the one with low base-pair density (8 generations for high density and 18 
for the low base pairs density targets). The same observation was drawn for the suc-
cess rate. For the low base-pair density targets, the Lévy flight achieved 87% (49/56) 
success, whereas, for the high base-pair density, it achieved 91% (40/44). The same 
analysis can be done when comparing the one-point mutation results for the high-
density targets to the Lévy flight mutation. The median number of generations for the 
low-density targets when using a one-point mutation operator was 34 (respectively 24 
for the high base pair density targets) (see Fig. 9a).

A new benchmark was performed on Eterna100-V2 with aRNAque achieving a 
93% success rate when combining the designed solutions for both mutation schemes. 
Compared to recently reported benchmark results [42], aRNAque achieved similar 
performance to NEMO on Eterna-V2: one target was unsolved by all existing tools 
and one target solved only by NEMO remained unsolved by aRNAque.

Fig. 8  CPU time analysis using Hotknots: antaRNA vs. aRNAque. Each bubble 
corresponds to a target structure in PseudoBase++ dataset and, their colours are proportional to the 
length of the targets. In the legend, BP stands for Median base pair distance, and the different markers 
represent—(’o’) 100% success for both tools—(’+’) 100% success for aRNAque and not for antaRNA—(’–’) 
for the case aRNAque’s desinged sequences are of median base pair distances greater than the one of 
antaRNA. Underlying the CPU time difference is the inside plot that shows the CPU time (in s) with respect 
to the target length
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aRNAque performance on a tripod secondary structure

Finally, we performed a benchmark on a tripod target secondary structure. The tripod sec-
ondary structure was used as a third test case in the work of Ivry et al. [48], and it does 
not contain any pseudoknot interactions. It comprises four stems, three of which with ter-
minal hairpins, surrounding a multibranch loop (See Fig. 10a). The tripod target structure 
proved very challenging, especially because of its multiloop component, which is also found 
in some of the unsolved Eterna100 target structures. We perform here, for both energy 
parameters Turner1999 and Turner2004, 100 independent designs, using a population 
size of 100 RNA sequences and a maximum of 5000 generations. The mutation parameters 
used are: PC = {0.4, 0.5, 0.1, 0, 0, 0} , PN = {0.7, 0.1, 0.1, 0.1} and c = 1.5. When using the 
Turner2004 energy parameter set, none of the 100 designed RNA sequences was suc-
cessful (i.e., no sequence folds exactly into the target structure after 5000 generations). Fig-
ure 10b shows one of the best solutions obtained out of 100 designed sequences when using 
the Turner2004, the designed sequence folds into a structure at one error base-pair dis-
tance from the target structure. In contrast, when using the Turner1999 energy parame-
ters, aRNAque successfully designed the tripod secondary structure (See Fig. 10c). The 100 
sequences designed folded exactly into the target structure with an average median number 
of generations of 20. When comparing both solutions to the one obtained in [48], aRNAque 

Fig. 9  Lévy mutation vs. Local mutation: performance analysis with respect 
to the base-pair density. The higher the base-pair density is, the more useful the Lévy mutation 
scheme to speed up the optimization EA. a Distributions of number of generations for the low and high 
base-pair density targets of the Eterna100 dataset. b Percentages of targets with low and high base-pair 
density for the Eterna100 and PseudBase++. c The length distributions of the low and high base-pair 
density pseudoknot-free and pseudoknotted targets

Fig. 10  aRNAque’s performance on a TRIPOD secondary structure. a The tripod target 
structure. b aRNAque’s solution using the Turner1999 energy parameter sets. c aRNAque’s solution using 
the Turner2004 energy parameter sets
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(with no need to change the RNA structure distance) can successfully design the multi-
branch loop component with one base pair error using the Turner2004 energy parameter 
whereas RNAinverse (with the DoPloCompare distance) failed to design the multibranch 
loop, and the solution is at 2 base-pair distance error.

Discussion
In this work, we have provided an updated version of aRNAque implementing a Lévy 
flight mutation scheme that supports pseudoknottted RNA secondary structures. A 
Lévy mutation scheme offers exploration at different scales (mostly local search com-
bined with rare big jumps). Such a scheme significantly improves the number of evalu-
ations needed to hit the target structure while better avoiding getting trapped in local 
optima. The benefit of a Lévy flight over a purely local mutation search allowed us to 
explore RNA sequence space at all scales. Such a heavy-tailed distribution in the num-
ber of point mutations permitted the design of more diversified sequences. It reduced 
the number of evaluations of the evolutionary algorithm implemented in aRNAque. The 
main advantage of using a Lévy flight over local search is a reduction in the number 
of generations required to reach a target. This is because the infrequent occurrence of 
a high number of mutations allows a diverse set of sequences among early generations 
without the loss of robust local search. One consequence is a rapid increase in the pop-
ulation mean fitness over time and fast convergence to the target of the maximally fit 
sequence. To illustrate that advantage, we ran aRNAque starting from an initial popula-
tion of unfolded sequences, both for a ”one point mutation” and ”Lévy mutation”.

Figure 11a, b show respectively the max/mean fitness over time and the number of dis-
tinct structures discovered over time plotted against the number of distinct sequences. 
When using a Lévy mutation scheme, the mean fitness increases faster in the beginning 
but stays lower than that using local mutations. Later in the optimisation, a big jump or 
high mutation on the RNA sequences produces structures with fewer similarities and, 
as a consequence, worse fitness. In the (5–10)th generation, sequences folding into the 
target are already present in the Lévy flight population, but only at the 30th generation 
are similar sequences present in the local search population. The Lévy flight also allows 
exploration of both the structure and sequence spaces, providing a higher diversity of 
structures for any given set of sequences (Fig. 11b). Using the mean entropy of struc-
tures as an alternate measure of diversity, we see in Fig. 11c, d how a Lévy flight achieves 
high diversity early in implementation and maintains a higher diversity over all genera-
tions than a local search algorithm. Although the mutation parameters PC and PN influ-
ence the designed sequences’ absolute diversity, the Lévy flight always tends to achieve a 
higher relative diversity than the local search, all else being equal.

We argue that the improved performance of the Lévy mutation over local search 
in target RNA structures is due to the high base pair density of pseudoknotted struc-
tures. Given that pseudoknots present a high density of interactions, there are dramatic 
increases in possible incorrect folds and thus increasing the risk of becoming trapped 
near local optima [49]. As implied by a heavy-tailed distribution, large numbers of muta-
tions in paired positions are necessary to explore radically different solutions.
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To illustrate that Lévy Flight performance was due to base pair density, we clustered 
the benchmark datasets into two classes: one cluster for target structures with low 
base pair density (density ≤ 0.5 ) and a second cluster for structures with high base pair 
density (density > 0.5 ). Figure  10b shows the number of target sequences available in 
each low and high-density category. The number of targets available in each category 
are colored according to the percentage of pseudoknot-free targets (Eterna100-V1) 
vs targets with pseudoknots (Pseudobase++), showing that pseudoknots are strongly 
associated with high base pair densities: 71% of the pseudoknotted target structures 
have a high base pair density. In contrast, the Eterna100 dataset without pseudoknots 
has a somewhat higher representation at low base pair density. Supposing it is true that 
improved Lévy Flight performance is indeed tied to base pair density. In that case, it is 
possible that similar heavy-tailed mutation schemes could offer a scalable solution to 
even more complex inverse folding problems. Another measure of difficulty is the length 
of the target RNA secondary structure. When analysing the mean length of the pseu-
doknot-free targets, the high base-pair density targets are, on average, 181 nucleotides 
longer, and the low-density base-pair targets are 139 nucleotides (See Fig. 10c). We have 
49 nucleotides for low-density targets for the pseudoknotted targets and 52 for the high-
density targets. That suggests that the Lévy mutation may be a good standard for design-
ing more challenging target structures.

Although we believe that Lévy flight-type search algorithms offer a valuable alterna-
tive to local search, we emphasise that its enhanced performance over say antaRNA is 
partially influenced by the specific capabilities of existing folding tools. Their limitations 
may account for the degradation of these tools as the pseudoknot motifs get increas-
ingly complex (i.e. the incapacity of existing folding tools to predict some pseudoknot 

Fig. 11  Lévy mutation vs one-point mutation. For the Eterna100 target structure 
[CloudBeta] 5 Adjacent Stack Multi-Branch Loop, ten independent runs were performed in which a minimum of 
10 sequences were designed per run. a Max fitness and mean fitness (inset) over time. b Distinct sequences 
vs. Distinct structures over time. c Mean Shannon entropy of the population sequences over time for both 
binomial and Lévy mutation. d The max fitness plotted against the entropy over time
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motifs influences the performance of both aRNAque and antaRNA). The Lévy mutation 
has also shown less potential in controlling the GC–content of the designed sequence 
when compared to antaRNA on pseudoknotted target structures. antaRNA’s param-
eters used in this work were tuned using pKiss; therefore, it could be possible room 
for improving the benchmark presented here by retuning them using IPKnot or Hot-
Knots. Another possible limitation is the fact that most target structures were relatively 
easy to solve (in less than 100 generations), which possibly allowed the local search to 
perform better than the Lévy search in some cases. Further research on challenging tar-
get structures will improve our understanding of which conditions favour local vs. Lévy 
search.

Conclusion
Our results show general and significant improvements in the design of RNA secondary 
structures (especially on the pseudoknotted targets) compared to the standard evolu-
tionary algorithm mutation scheme with a mutation parameter ≈ 1/L , where L is the 
sequence solution length. Not only does Lévy flight mutation lead to a greater diver-
sity of RNA sequence solutions, but it also reduces the evolutionary algorithm’s number 
of evaluations, thus improving computing time compared to the local search. Although 
antaRNA average CPU time remains smaller, aRNAque’s success rate outperformed 
antaRNA. To further improve our program, we suggest using a more powerful compu-
tational architecture such as Massively Parallel Genetic Algorithm (MPGA). This type of 
architecture may allow solving more challenging target secondary structures.

Availability and requirements

Project name: aRNAque
Project home page: https://​github.​com/​strev​ol-​mpi-​mis/​aRNAq​ue
Operating system (s): MacOS Mojave and Debian Xfce 4.12
Programming Language: Python 3.7
Other requirements: For pseudoknot-free target structure, please install ViennaRNA 
package. IPknots and Hotknots for the pseudoknotted RNA target structures.
License: GNU GPL
Any restrictions to use by non-academics: please contact the author at cyrillecardi-
nale@gmail.com or csaha@aims.edu.gh.
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ncRNA	� Non-coding RNA
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rRNA	� Ribosomal RNA
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