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ABSTRACT
The non- coding genome, constituting 98% of human DNA, remains largely unexplored, yet holds potential for identifying 
new biomarkers and therapeutic targets in acute lymphoblastic leukemia (ALL). In this study, we conducted a systematic 
analysis of recurrent somatic non- coding single nucleotide variants (SNVs) in pediatric B- cell precursor (BCP) ALL. We lev-
eraged whole genome sequencing (WGS) data from 345 pediatric BCP ALL cases, representing all major genetic subtypes and 
identified 346 mutational hotspots that harbored somatic SNVs in at least three cases. Through the integration of paired RNA 
sequencing along with published ChIP- seq and ATAC- seq data, we found 128 non- coding hotspots associated with differ-
entially expressed genes nearby, which were enriched for cis- regulatory elements, demonstrating the effectiveness of multi- 
omics integration in distinguishing pathogenic mutations from passengers. We identified one mutational hotspot that was 
associated with increased expression of the leukemia- associated gene NRAS in three primary ALLs. Micro- C analysis in the 
leukemia cell line demonstrated interactions between the hotspot region and NRAS regulatory elements. Dual luciferase as-
says indicated that the mutations disrupted regulatory interactions and CRISPR- mediated deletion of the region significantly 
upregulated NRAS, confirming the hypothesized regulatory link. Altogether, we provide new insights into the functional 
roles of non- coding mutations in leukemia.

1   |   Introduction

B- cell precursor acute lymphoblastic leukemia (BCP ALL) is 
the most common pediatric cancer [1]. Although overall sur-
vival (OS) rates now exceed 90% for several BCP ALL genetic 
subtypes in contemporary treatment protocols [2], conven-
tional treatment is toxic and accumulating evidence shows 

long- term health effects in survivors [3]. Furthermore, the 
prognosis after relapse is still dismal, with survival rates drop-
ping to 50%–60% after the first relapse [4, 5]. Further intensi-
fication of chemotherapy is not likely to improve the outcome 
since it will result in increased frequencies of adverse events 
[6, 7]. Thus, new drugs that target specific genetic changes 
need to be developed.
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For years, the coding genome has been extensively analyzed, 
leading to the discovery of novel subtypes and new putative 
targets for the treatment of BCP ALL [8]. However, research 
on the non- coding genome has been limited, and little is 
known about its role in leukemogenesis. Non- coding regions 
account for approximately 98% of the human genome and har-
bor the majority of constitutional and somatic variants [9, 10]. 
Compared to the protein- coding genome, the functionality of 
the non- coding regions is driven by more complex and indirect 
mechanisms, making it harder to differentiate between driver 
and passenger events. Both somatic and germline variants 
in non- coding genomic regions can influence gene expres-
sion through various mechanisms. These include altering the 
activities of promoters and enhancers, modifying how tran-
scription factors (TFs) bind within cis- regulatory elements 
(CREs), and changing the local chromatin structure  [10]. 
For instance, somatic mutations in the GFI1B enhancer im-
pair GATA2 binding and lead to reduced GFI1B expression 
in acute myeloid leukemia (AML) [11]. Similarly, risk alleles 
in ARID5B intron 3 reduce ARID5B expression in patients 
with high- hyperdiploid acute lymphoblastic leukemia (ALL) 
by disrupting RUNX3 binding and consequently diminish-
ing RUNX3- dependent ARID5B expression [12]. Additionally, 
non- coding variants within genomic silencers can disrupt nor-
mal gene repression by altering chromatin interactions. These 
disruptions may result in the loss of regulatory elements that 
typically suppress gene activity, potentially changing the ex-
pression of the target gene and playing a pivotal role in the 
pathogenesis of cancer [13].

In this study, we systematically analyzed recurrent non- 
coding somatic variants to explore the cis- regulatory architec-
ture in pediatric BCP ALL. By integrating multi- omics data, 
we dissected the landscape of non- coding mutations in BCP 
ALL and demonstrated that non- coding mutation clusters that 
are found near differentially expressed genes are enriched for 
CREs, highlighting the regulatory potential of non- coding 
events. In addition, through these events, we identified a 
novel non- coding region associated with NRAS expression. In 
summary, we report novel recurrent events in pediatric BCP 
ALL and provide new insights into the regulation of leukemia- 
associated genes.

2   |   Methods

2.1   |   Patient Data

A total of 345 BCP ALL cases from two different cohorts were 
included (SI Table S1). The Lund cohort consisted of 98 cases, 
of which 34 have been previously published [14, 15], whereas 
the Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET) initiative cohort consisted of 247 cases 
(https:// portal. gdc. cancer. gov/ projects; dbGAP accession num-
ber phs000464, ALL phase 2 discovery, and expansion cohort). 
Notably, whereas the former cohort was based on material being 
available for analysis and thus close to population- based, the 
TARGET cohort was enriched for high- risk patients (https:// gdc. 
cancer. gov/ conte nt/ targe t-  all-  publi catio ns-  summary). In total, 
cases belonged to the following genetic subtypes based on the 
International Consensus and 5th WHO edition classifications 

[16]: high hyperdiploidy (HeH, n = 75; 21.7%), ETV6::RUNX1 
(n = 37; 10.7%), BCR::ABL1- like (n = 31; 9%), TCF3::PBX1 (n = 28; 
8.1%), PAX5 alteration (n = 17; 4.9%), BCR::ABL1 (n = 10; 2.9%), 
ETV6::RUNX1- like (n = 8; 2.3%), hypodiploidy (< 46 chromo-
somes) (n = 8; 2.3%), ZNF384 rearrangement (n = 7; 2%), KMT2A 
rearrangement (n = 4; 1.2%), MEF2D rearrangement (n = 4; 
1.2%), DUX4 rearrangement (n = 3; 0.9%), HLF rearrangement 
(n = 2; 0.6%), ZNF384 rearrangement- like (n = 2; 0.6%), intrach-
romosomal amplification of chromosome 21 (iAMP21) (n = 2; 
0.6%), and PAX5 P80R mutation (n = 1; 0.3%). The remaining 
106 cases (30.7%) did not harbor any subtype- defining genetic 
changes and were hence classified as B- other. Of the 345 BCP 
ALLs, 174 (50.4%) were males and 171 (49.6%) females. The me-
dian age at diagnosis was 5 years (range 0–17 years). Informed 
consent was obtained according to the Declaration of Helsinki 
and the study was approved by the Swedish Ethical Review 
Authority (application no. 2023- 01550- 01).

2.2   |   Whole Genome Sequencing Data Analysis

For the complete genomics data generated by the TARGET pro-
gram, somatic variants were identified by the TARGET WGS 
analysis pipeline (https:// www. cancer. gov/ ccg/ resea rch/ genom 
e-  seque ncing/  target). The data was further filtered for Somatic 
Score ≥ 0 and number of unique reads of the mutated allele > 10 
[14]. Illumina WGS sequencing libraries for matched diagnostic 
and remission samples from BCP ALL patients diagnosed and 
treated at Skåne University Hospital, Sweden, were constructed 
using the TruSeq Nano DNA sample preparation kit (Illumina, 
San Diego, CA, USA). Paired- end sequencing (2 × 150 bp) was 
performed at ~60× coverage for diagnostic and ~30× for re-
mission samples. The paired- end fastq files were aligned to the 
human genome build hg19 (https:// hgdow nload. soe. ucsc. edu/ 
golde nPath/  hg19/ bigZi ps/ ) using BWA [17]. Somatic variants 
were detected by Mutect, Mutect2, and MuSE [18, 19]. Variants 
that were present in the outputs of at least two of the programs 
were kept for further analysis. Single nucleotide variants (SNVs) 
with variant allele frequencies (VAF) < 0.2 were removed to 
keep only the major clone mutations. VCF files for each indi-
vidual sample were converted to a combined MAF format file 
for further analysis. To reduce false- positive findings, hyper-
mutated samples (n = 10) were removed from the MAF file [20]. 
Three standard deviations from the median were used as a 
cut- off. Single base substitution (SBS, https:// cancer. sanger. ac. 
uk/ signa tures/  sbs/ ) signature analyses were performed using 
MutationalPatterns [21] and the proportions of COSMIC SBS 
signatures that have previously been associated with sequenc-
ing artifacts or ultraviolet light exposure (SBS7a,b,c,d and 
SBS43–SBS60) were calculated for each sample [22]. Samples 
carrying a fraction of these signatures higher than 35% were 
intended to be discarded, but no such proportion was found 
for any of the non- hypermutated cases. Variants within coding 
regions were filtered out. The remaining variants were exam-
ined on gnomAD version 3.1.2 for their presence in the refer-
ence population and variants with VAF higher than 0.0001 in 
gnomAD were removed from the analysis [23]. For one cluster, 
additional filtering was applied since this SNV showed a high 
frequency in other databases in dbSNP [24] but not in gno-
mAD. Recurrency was determined using the BEDtools cluster 
algorithm with the distance argument set to 200 base pairs [25]. 

https://portal.gdc.cancer.gov/projects
https://gdc.cancer.gov/content/target-all-publications-summary
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https://cancer.sanger.ac.uk/signatures/sbs/
https://cancer.sanger.ac.uk/signatures/sbs/
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Mutational hotspots identified in at least three different samples 
were defined as recurrent and selected for downstream analysis. 
These hotspots are represented within their hg38 locations in 
the study. Transformation of the assembly was carried out using 
the liftOver function from the rtracklayer package [26].

2.3   |   Integration of Multi- Omics Data

The paired- end RNA sequencing (RNA- seq) fastq files from 
both cohorts were aligned to the human genome build hg19 
using the STAR 2- pass mapping pipeline and the reads count of 
genes was quantified by RSEM [27]. RNA- seq data from the two 
cohorts was corrected for batch effects using ComBat- seq [28]. 
A two- sided Mann–Whitney U test with a p < 0.1 threshold was 
applied on the RSEM values to identify differentially expressed 
genes within a 1 Mb distance of each mutational cluster.

ChIP- Seq and ATAC- seq data obtained from primary BCP 
ALL samples were downloaded from the Blueprint Epigenome 
Project [29] using the European Nucleotide Archives reposi-
tory (http:// ftp. ebi. ac. uk/ pub/ datab ases/ bluep rint/ data/ homo_ 
sapie ns/ GRCh38/ bone_ marrow/ ). Additionally, the ATAC- seq 
data generated by Barnett et al. were also used [30]. H3K4me1 
(n = 8), H3K4me3 (n = 10), H3K27me3 (n = 4), H3K27ac (n = 10), 
and ATAC- seq (n = 156) were selected as marks of interest. 
Histone mark peaks were merged and compared against the 
mutational cluster regions. A similar approach was followed for 
the ATAC- seq data. Start and end positions of the histone peaks 
were extended by 100 bases and compared against the clusters. 
To investigate if these marks were enriched within hotspots 
with differentially expressed genes nearby, Fisher's exact test 
was performed. A similar procedure was carried out to check 
for enrichment on specific TFs, using clustered ENCODE data 
from lymphoblast cell lines [9]. Enhancer information for re-
gions of interest was extracted from EnhancerAtlas 2.0 [31]. 
NIH Roadmap Epigenomics Program's 15- state chromatin mod-
eling data for the GM12878 lymphoblast cell line was also used 
to annotate the chromatin state of the clusters [32]. Mutational 
clusters with differentially expressed genes in the vicinity were 
manually examined using the additional information generated 
from integrated multi- omics. PERFECTOS- APE was used to 
predict differential TF binding scores due to hotspot mutations 
(https:// opera. autos ome. org/ perfe ctosape).

2.4   |   Micro- C Assay and Chromatin Structure 
Data Mining

Micro- C was done on the BCP ALL cell line REH (positive 
for the ETV6::RUNX1 fusion). Sequencing libraries were con-
structed using the Dovetail Micro- C kit following the manufac-
turer's protocol (Cantata Bio, Scotts Valley, CA, USA). A total 
of three million cells and 0.25 μL of MNase Enzyme Mix were 
used. Briefly, in- nucleus fixation with disuccinimidyl glutarate 
(DSG) and formaldehyde was performed, followed by diges-
tion with micrococcal nuclease. Cells were lysed using sodium 
dodecyl sulfate (SDS). Chromatin capture beads were used to 
rescue the cross- linked chromatin fragments. Following prox-
imity ligation and crosslink reversal, the DNA was purified and 
libraries were constructed with Illumina- compatible adaptors. 

High- throughput paired- end sequencing was performed at the 
Center for Translational Genomics, Lund University, using 
the Illumina NovaSeq 6000 platform, generating 3.2 billion 
2 × 150 bp read pairs. Micro- C sequencing data was processed 
using the 4DN Hi- C data processing pipeline (https:// data. 4dnuc 
leome. org/ resou rces/ data-  analy sis/ hi_ c-  proce ssing -  pipeline). 
The FAN- C toolkit was used for data analysis and visualization 
of .cool files [33]. Plots were generated at 5 kb resolution, using 
ICE- normalized contact matrix as input [34]. In addition, pre-
viously published promoter capture Hi- C data for the GM12878 
cell line [35] were used to investigate the chromatin interactions 
between the gene promoters and mutational hotspots.

2.5   |   Luciferase Assays

We integrated three mutations from the selected hotspot region into 
a single luciferase vector with Hotspot- miniCMV- fireflyLuciferase 
sequence along with its wild type counterpart (SI Table  S2). An 
internal control vector with CMV promoter and renilla luciferase 
was used for normalization (VectorBuilder, Chicago, IL, USA). 
Two plasmid vector mixes were made. These included the fire-
fly luciferase vectors combined with renilla luciferase vector at a 
20:1 M ratio. Plasmids were mixed with 1 × 106 REH cells resus-
pended in BTXpress electroporation solution (BTX, Holliston, MA, 
USA). Transfection was carried out by electroporation using a BTX 
ECM 830 (BTX, Holliston, MA, USA) at 125 V and a 5 ms pulse 
length. Electroporated cells were incubated in RPMI media with 
20% FBS for 24 h. Luciferase signals were measured, as described 
by the manufacturer, using the Dual- Glo Luciferase Assay System 
(Promega, Madison, WI, USA) on a GloMax 96 microplate lumi-
nometer (Promega, Madison, WI, USA).

For data analysis, the ratio of firefly/renilla luciferase was re-
corded for each sample and the Shapiro–Wilk test was performed 
to assess normality. Each sample was checked for equality of 
variances. The two- sided Mann–Whitney U test was used to as-
sess the difference between wild type and mutated inputs.

2.6   |   CRISPR/Cas9 Induced Deletions

Two guide RNAs (#1; TTAAAGCAAGCTGCCAGAGG, #2; 
TCTGCCTTCACTGTAACTGA) were mixed with cas9 using 
GFP and RFP tags, respectively, and a 1:1 M ratio to create a 
Ribonucleoprotein complex (RNP). Electroporation was carried 
out using the same protocol as Luciferase assays with the ad-
dition of an electroporation enhancer. Cells were incubated in 
20% FBS RPMI media for 24 h. Guide RNAs, cas9, and enhancer 
were obtained from IDT (IDT, Coralville, IA, USA).

REH transfected cell replicates were pooled in 1.5 mL Eppendorf, 
washed with sort media (PBS Ca2+ Mg2+ 2 mM EDTA 5% FBS) 
and centrifuged for 5 min at 300 × g 4°C. The cell pellet was 
resuspended in 300 μL, passed through a 30 μm nylon filter 
(400 μL additional to wash the filter). DAPI solution was added 
before acquisition to exclude dead cells. Single positive GFP 
REH cells and single positive RFP REH cells were used for com-
pensation and to define positive gates. REH transfected live cells 
(DAPI negative) were sorted using Aria llu (BD, Franklin Lakes, 
NJ, USA) with purity sort mode; RFP positive cells were sorted 

http://ftp.ebi.ac.uk/pub/databases/blueprint/data/homo_sapiens/GRCh38/bone_marrow/
http://ftp.ebi.ac.uk/pub/databases/blueprint/data/homo_sapiens/GRCh38/bone_marrow/
https://opera.autosome.org/perfectosape
https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline
https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline
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from GFP positive gate selection. GFP+/RFP+ sorted cells were 
washed and resuspended in REH culture media (RPMI 10% 
FBS) for further amplification.

Sorted cells were collected after 48 h and qPCR was run directly 
on cell lysate using Cells- to- CT 1- step TaqMan Kit (Thermo 
Fisher, Waltham, MA, USA) and ABI 7500 Real- Time PCR 
System (Thermo Fisher, Waltham, MA, USA). Primer- probe as-
says are obtained from IDT (Coralville, IA, USA) with the follow-
ing assay IDs: Hs.PT.58.1271059 (NRAS), Hs.PT.58v.27737538 
(GUSB). Results were obtained using the relative quantification 
method with GUSB as a reference gene.

To check for the accuracy of deletion, we used full- in prim-
ers targeting the putative deletion (Forward: TATGCT TACT 
TCTGGCGAGGTT, Reverse: TAGAAGGCC AGACTTTAGCT 
GTG) and a control primer set targeting the GPR15 region from 
another study to check for a reference copy number [36]. DNA 
was extracted using the DNeasy Blood & Tissue Kit (Qiagen, 
Hilden, Germany).

3   |   Results

3.1   |   Computational Pipeline Identifies 346 
Mutational Hotspots in Non- Coding Regions

After filtering for hypermutation on the WGS data of 345 BCP 
ALL cases, 335 cases were retained (Figure 1A). As a follow- up, 
the burden of noise associated with COSMIC SBS signatures 

was controlled for, and none of the remaining cases were found 
to possess a proportion of those signatures higher than the ex-
pected threshold. A total of 258,371 somatic SNVs (median 
675, range 15–3,103, SI Table  S3) were identified. Intergenic 
and intronic regions harbored the vast majority, accounting for 
44.5% and 43.2% of the SNVs, respectively, while SNVs in the 
protein- coding parts constituted less than 2% of the total num-
ber of SNVs. We identified 346 mutational hotspots involving 
non- coding SNVs in at least three samples (median 3 cases, 
range 3–14 cases; SI Table  S4). Of these, 151 were found in 
cases from both the Lund and the TARGET cohorts (Figure 1B, 
Supplementary Table S4). An analysis of whether hotspots were 
more common in certain chromosomes showed a median of 
11.11 (range 6–19) hotspots per 100 Mb across each chromosome 
(Figure 1C,D). Using two standard deviation distance from the 
median as the significance cut- off, we found enrichment of 
hotspot presence in chromosome 4. On average, five protein- 
coding genes were found within 1 Mb distance of a mutational 
hotspot (range 0–86). When examining the presence of these 
genes in the COSMIC cancer gene census [22], no significant 
enrichment was found.

We also assessed whether the identified hotspots exhibited 
subtype specificity using Fisher's exact test (p < 0.05). To en-
hance statistical power, we included only subtypes represented 
by more than five samples (HeH, BCR::ABL1, BCR::ABL1- 
like, ETV6::RUNX1, ETV6::RUNX1- like, PAX5 alteration, 
TCF3::PBX1, hypodiploidy, ZNF384 rearrangement). Of the 346 
hotspots analyzed, 68 showed significant enrichment for at least 
one subtype. Next, we examined the presence of COSMIC genes 

FIGURE 1    |    Overview of non- coding somatic single nucleotide variants (SNVs) in 345 cases of pediatric B- cell precursor acute lymphoblastic leu-
kemia (BCP ALL). (A) Variants per sample displayed for the 345 BCP ALL cases included in this study. Gray dashed line represents median number 
of mutations per sample for the retained cases (n = 741). Samples with variant counts higher than three standard deviations from the median were 
considered hypermutated and removed from further analysis (n = 10). These are color- coded in red. (B) Bar plots showing the distribution of detected 
hotspots based on their variant classifications. As expected, most of the non- coding hotspots are located in intergenic regions (IGR) and introns. (C) 
Number of hotspots in each chromosome normalized by their lengths in base pairs. Gray dashed line represents the median and red shows the +2 
standard deviation threshold. Chromosome 4 was enriched for hotspots. (D) Circos plot displaying the presence of hotspots on each chromosome. 
Outer to inner circle: Chromosome numbers, chromosome ideograms, scatter plot for non- coding hotspots located within intergenic region, intronic 
region, 3'Flank, 5'Flank, RNA gene, and 3'UTR. Abbreviation: UTR: untranslated regions.
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near these hotspots and found that subtype- specific hotspots 
were more likely to be associated with COSMIC genes nearby 
(odds ratio = 1.81, p = 0.038, Fisher's exact test).

3.2   |   RNA- Seq Integration With Multi- Layered 
Epigenetic Data Reveals Functional Roles 
for Non- Coding Hotspots

Matched RNA- seq data were available in 263 cases. After the 
exclusion of clusters that had none or only one case with RNA- 
seq data, 301 hotspots remained. Of these, 277 included at least 
one gene within 1 million base pair distance. Further analysis of 
the mRNA levels of nearby genes showed differential expression 
patterns for at least one gene in 128 (46%) hotspots.

To validate the robustness of these findings, we compared the 
presence of epigenetic marks in hotspots with and without 
differentially expressing genes nearby, using ChIP- Seq and 
ATAC- seq data from the primary ALL samples of the BluePrint 
Epigenome project [29] and in Barnett et al. [30]. Significant en-
richments were found for H3K4me1, H3K27ac, and ATAC- seq 
peaks, indicating cis- regulatory roles for some of these hotspots 
(Figure 2A). Due to the enrichment of these enhancer- associated 

marks, we hypothesized that if these regions were indeed en-
hancers, they should also be enriched for annotated enhancers 
on the GM12878 cell line, since it represents a lymphoblast, and 
variability between cell lineage is stronger in the target gene 
pairing of enhancers but not in enhancers themselves [34]. 
Therefore, we repeated the previous analysis with the inclusion 
of annotated GM12878 enhancers from EnhancerAtlas 2.0 [31]. 
As expected, a strong enrichment (p = 0.013) was found. We fur-
ther evaluated these 128 hotspots to check if they carried spe-
cific TF motifs by incorporating available ENCODE  [31] data 
from all available lymphoblast cell lines, but no TFs were found 
to be enriched (Figure 2A).

3.3   |   Non- Coding Hotspot on Chromosome 1 is 
Associated With Upregulation of NRAS

We manually curated the filtered data to prioritize candidates 
with possible cis- regulatory roles in leukemogenesis for further 
analysis. First, we selected hotspots near at least one differen-
tially expressed COSMIC gene and excluded those with fewer 
than three RNA- seq samples to enhance accuracy. Next, we 
removed single- base- pair hotspots to reduce potential noise or 
undetected germline variants. Finally, we focused on hotspots 

FIGURE 2    |    Results of multi- omics integration on hotspots. (A) Enrichment analysis of epigenetic marks. X axis −log10(p values), and the Y- axis 
lists the names of the epigenetic marks. ATAC- seq and Histone marks represent primary sample data while the rest belongs to GM12878 studies. p 
value threshold of 0.05 were used to determine enrichment. (B) tSNE plot generated by using the top 5000 varying genes in RNA- seq data. Samples 
with hotspot 8447 mutations show similar expression patterns to the CRLF2 rearranged subtype. For ease of visualization, only subtypes with sam-
ple size greater than three were included. (C) Bar graph showing the expression levels of NRAS of samples carrying hotsot 8447 mutations compared 
against wild type samples from BCR::ABL1- like subtype. The X- axis represents normalized expression values calculated by the RSEM program. Error 
bars indicate standard errors of the mean. p values are derived from unpaired, two- tailed Mann–Whitney U tests.
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with subtype- specific enrichment, resulting in the prioritization 
of four hotspots (ClustIDs: 8447, 66401, 199001, and 223524; 
Supplementary Table  S4). Among them, we further focused 
on hotspot 8447 due to its close proximity to NRAS, a well- 
established oncogene in ALL.

The hotspot 8447 included three different somatic SNVs occur-
ring in an intronic region of TSPAN2 and spanning 143 base 
pairs (G>A chr1:115085508, T>G chr1:115085583, and C>T 
chr1:115085651, respectively). Two of these samples were clas-
sified as BCR::ABL1- like and carried CRLF2 aberrations, while 
the third case belonged to the B- other group. However, the tran-
scriptional profile of the B- other sample was also similar to the 
BCR::ABL1- like subgroup (Figure 2B). All affected patients were 
female, aged 7, 11, and 14 at diagnosis. One patient relapsed after 
678 days. WGS of the relapse sample confirmed the persistence 
of the non- coding hotspot mutation, with VAF of 0.46 at diagno-
sis and 0.36 at relapse, respectively.

To evaluate the expression of genes in the vicinity of this hotspot, 
differential gene expression analysis was performed and genes 

within 1 Mb distance of the hotspot were investigated (n = 16). 
This analysis revealed a significant upregulation of NRAS 
(p = 0.017, two- sided Mann–Whitney U test; Figure 2C), AMPD1 
(p = 0.041), and CSDE1 (p = 0.032) in samples carrying these 
hotspot mutations, compared to BCR::ABL1 and BCR::ABL1- like 
cases. Considering that NRAS is one of the most common driver 
genes in cancer, we focused our further investigations on this 
gene. None of the hotspot samples carried coding mutations on 
the NRAS gene.

3.4   |   Silencer Role of Hotspot 8447 on NRAS 
Expression

To investigate the presence of regulatory elements within 
hotspot 8447, dual- luciferase reporter assays were performed 
with the inclusion of wild type, mutant, and empty vectors. Wild 
type vector generated a significantly higher reporter expression 
compared to empty vector (p = 0.000037, two- sided Mann–
Whitney U test, Figure 3A), indicating the presence of regula-
tory elements within the target sequence. However, the strength 

FIGURE 3    |    Non- coding mutations affect NRAS expression by disrupting normal gene repression. (A) Dual luciferase reporter assays were con-
ducted to assess functionality. Plasmid vectors carried single nucleotide variants seen in the hotspot. The displayed data represents the average of 
five replicates. p values were generated via two- sided Mann–Whitney U test. (B, C) Comparison of (B) percentage of remaining wild- type alleles on 
reference and targeted sites after CRISPR experiment and (C) normalized NRAS expression between the wild type Reh cell line and the Reh cell 
line with deletions of the hotspot 8447 mutation introduced by CRISPR- Cas9 knockout. The displayed data represents the average of four replicates. 
p values were derived from unpaired, two- tailed Mann–Whitney U tests performed on relative quantification results. (D) Integration of epigenetic 
marks and chromatin data at the hotspot 8447 mutation region. The top panel shows the chromatin interactions observed from Micro- C data of the 
REH cell line and promoter capture Hi- C data of the GM12878 cell line [35], along with the epigenetic marks H3K4Me1, H3K4Me3, H2K427Ac, and 
ATAC- seq signal from the GM12878 cell line and epigenetic marks H3K4Me1, H2K427Ac, and ATAC- seq signal from ALL patients that are derived 
from the Blueprint project [29]. Purple curves illustrate the chromatin loops identified using Micro- C data from the REH cell line and the green curve 
represents the chromatin loop identified through promoter capture Hi- C data from the GM12878 cell line [35]. Regions marked in dark yellow repre-
sent hotspots, gray represents the target gene and green represents regions that are both interacting with the hotspot and reported as an enhancer of 
target gene for GM12878. Error bars indicate standard errors of the mean. Abbreviations: Fluc: firefly luciferase; Rluc: renilla luciferase.
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of the regulatory function seemed to be significantly reduced 
when mutations were introduced (p = 0.0061, two- sided Mann–
Whitney U test, Figure 3A). These findings suggest a disruptive 
function of the hotspot mutations on regulatory interactions that 
could be explained by either a weak enhancer or silencer func-
tion of the original three- dimensional (3D) chromatin, since loss 
of function in both cases would lead to an increased expression 
of the putative target. To further address this, we checked the 
chromatin state annotation of this region for GM12878, using 
NIH Roadmap Epigenomics Program's 15 state chromatin model 
[32]. This region was reported as a weakly repressed polycomb 
state, indeed suggesting a repressor role for the region.

None of the TF marks integrated in this study were present in 
the hotspot region. However, due to the limited nature of these 
experiments—such as the representativeness of lymphoblast 
cell lines, the number of TFs studied, and potential sensitivity 
issues of ChIP- seq—we also conducted a computational predic-
tion for differential TF binding using PERFECTOS- APE https:// 
opera. autos ome. org/ perfe ctosape for hotspot 8447. This analysis 
identified 66 motifs with differential binding predictions due to 
hotspot mutations. Notably, 54 of these (82%) suggested a loss of 
binding (Supplementary Table S5), indicating a potential disrup-
tion of the region's inherent functionality.

To further examine the effect of the hotspot region on the ex-
pression of NRAS, located approximately 368 kb upstream of 
the mutational cluster, we created ~300 base pair deletions by 
targeting both ends of the hotspot region in the REH cell line 
using the CRISPR/Cas9 assay. After sorting the transfected 
cells (GFP+/RFP+) and confirming the sgRNA accuracy via 
qPCR amplification of the targeted region (p = 0.0294, two- sided 
Mann–Whitney U test; Figure 3B), we measured NRAS expres-
sion. The deleted samples showed increased NRAS expression 
(p = 0.0286, two- sided Mann–Whitney U test; Figure 3C), con-
sistent with a repressor function of the hotspot region.

To evaluate a possible connection between the hotspot 8447 and 
NRAS through a cis- regulatory network, we performed Micro- C 
in the ETV6::RUNX1- positive REH cell line and examined the 
promoter capture Hi- C data from the GM12878 cell line [35]. 
We observed chromatin interactions between the hotspot region 
and both the NRAS promoter and an NRAS enhancer reported 
in GM12878 [35], as evidenced by the Micro- C data (Figure 3D, 
Supplementary Figure S1). In line with this, the promoter cap-
ture Hi- C data confirmed chromatin interactions between the 
NRAS promoter and the hotspot 8447 region in the GM12878 
cell line, indicating a cis- regulatory role of the hotspot region 
on NRAS expression in healthy lymphoblasts. Taken together, 
these data indicate that disrupting the hotspot region would lead 
to a loss of NRAS repression, suggesting that the mutated region 
acts as a silencer of NRAS expression.

4   |   Discussion

Genomic variants in non- coding regions can affect the expres-
sion of tumor- related genes by altering promoter and enhancer 
activities, modifying TF binding, and changing chromatin in-
teractions. In this study, we explored the non- coding genome 
of BCP ALL through a systematic examination of recurring 

non- coding SNVs. We utilized multi- omics data from different 
studies to distinguish pathogenic mutations from passenger mu-
tations and identified 346 non- coding mutational hotspots, in-
cluding 128 associated with changes in the expression of nearby 
genes. The pipeline applied in this study generated a significant 
enrichment of histone modifications H3K4me1 and H3K27ac at 
hotspots affecting gene expression, suggesting the presence of 
cis- regulatory mechanisms involved in non- coding mutational 
hotspots in BCP ALL.

Our examination of genes close to identified hotpots showed 
no enrichment of known COSMIC genes around hotspots, in-
dicating most of these variants were passenger mutations. The 
scarcity of non- coding drivers compared to their protein coding 
counterparts is in line with the results from a pan- cancer WGS 
analysis [37]. An explanation for this could be related to the po-
tentially fine- tuning impact on gene expression for non- coding 
variants compared with coding variants, which may change pro-
tein structure or affect mRNA levels. Another potential expla-
nation could be the diverse ways in which a mutational hotspot 
is defined, influenced by various factors such as the appropriate 
distance of adjacent genes, the size of the base pair window used 
to identify recurrent mutations [38], and the frequency thresh-
old for a mutation to be considered part of a hotspot.

Yet, despite adjusting for these parameters, the core one- 
dimensional approach remains unchanged, since a hotspot is 
traditionally defined by mutations occurring on a selected win-
dow of a DNA sequence. We believe this approach may be inade-
quate for capturing the complexity of 3D chromatin interactions, 
which involve multiple TFs and chromatin remodeling elements 
interacting with cis- regulatory sequences. For instance, muta-
tions occurring at distant locations in the DNA sequence may 
appear unrelated from a one- dimensional perspective, but if 
they participate in a regulatory loop, they could be integral to 
the same functional network. Thus, these hypothetical mu-
tations could arguably be considered as members of the same 
hotspot from a 3D perspective. This introduces the potential for 
incorporating 3D- based mechanisms in gene dysregulation, de-
viating from the conventional model. We believe further studies 
leveraging the high- resolution chromatin capture technologies 
will prove important to address this issue.

The RAS family genes are among the most frequently mu-
tated in human cancers. In pediatric BCP ALL, approximately 
45% of cases exhibit coding mutations in RAS pathway genes, 
and these mutations are linked to relapse and drug resistance 
[39, 40]. Furthermore, recent studies also indicate that the asso-
ciation between RAS genes and leukemia may not be limited to 
mutation status. Koschut et al. demonstrated that inhibition of 
wild type RAS expression was sufficient to reduce cell growth of 
BCR::ABL1- like ALL and that alternative mechanisms in the ab-
sence of established mutations can induce RAS activation [41]. 
Similarly, RAS overexpression has also been found to be associ-
ated with adverse prognosis in AML, independent of mutation 
status [42].

Here, we identified a non- coding mutational hotspot associated 
with increased NRAS expression in BCP ALL cases without cod-
ing NRAS mutations. By Micro- C, we found that this hotspot 
region could interact with a known NRAS enhancer and the 

https://opera.autosome.org/perfectosape
https://opera.autosome.org/perfectosape
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NRAS promoter, and that CRISPR- induced deletions of it led 
to upregulation of the gene. Our data thus demonstrate a novel 
CRE, acting as a silencer, located 305 kb from the NRAS gene, 
that regulates NRAS expression in BCP ALL. Notably, this CRE 
could not be identified by integrated epigenetic markers from 
healthy lymphoblasts or unmatched primary samples. This 
demonstrates the limitations of common annotation approaches 
and highlights the leukemogenic potential of undiscovered non- 
coding regions.

Unraveling the regulatory roles of non- coding mutations may 
have significant potential for clinical use in the near future. 
As new targeted therapies emerge, understanding how CRE 
alterations affect gene expression could help predict patient re-
sponses to inhibitors. These alterations may reveal alternative 
therapeutic targets for otherwise undruggable oncogenic driv-
ers. Incorporating non- coding mutations into risk stratification 
models could improve prognostic accuracy and guide personal-
ized treatment decisions.

In conclusion, this study sheds light on the regulatory func-
tions of the non- coding genome in BCP ALL and provides new 
insights into NRAS regulation. Our findings underline the im-
portance of multi- omics integration in the evaluation of patho-
genic non- coding variants. We demonstrate that previously 
unknown regulatory regions within the transcriptional network 
of leukemia- associated genes can be identified through recur-
rent non- coding variation patterns and emphasize the necessity 
of including non- coding somatic variants in genomic studies.
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