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Analysis of Pan-omics Data in Human Interactome Network (APODHIN) is a platform
for integrative analysis of transcriptomics, proteomics, genomics, and metabolomics
data for identification of key molecular players and their interconnections exemplified in
cancer scenario. APODHIN works on a meta-interactome network consisting of human
protein–protein interactions (PPIs), miRNA-target gene regulatory interactions, and
transcription factor-target gene regulatory relationships. In its first module, APODHIN
maps proteins/genes/miRNAs from different omics data in its meta-interactome network
and extracts the network of biomolecules that are differentially altered in the given
scenario. Using this context specific, filtered interaction network, APODHIN identifies
topologically important nodes (TINs) implementing graph theory based network topology
analysis and further justifies their role via pathway and disease marker mapping. These
TINs could be used as prospective diagnostic and/or prognostic biomarkers and/or
potential therapeutic targets. In its second module, APODHIN attempts to identify cross
pathway regulatory and PPI links connecting signaling proteins, transcription factors
(TFs), and miRNAs to metabolic enzymes via utilization of single-omics and/or pan-
omics data and implementation of mathematical modeling. Interconnections between
regulatory components such as signaling proteins/TFs/miRNAs and metabolic pathways
need to be elucidated more elaborately in order to understand the role of oncogene and
tumor suppressors in regulation of metabolic reprogramming during cancer. APODHIN
platform contains a web server component where users can upload single/multi omics
data to identify TINs and cross-pathway links. Tabular, graphical and 3D network
representations of the identified TINs and cross-pathway links are provided for better
appreciation. Additionally, this platform also provides few example data analysis of
cancer specific, single and/or multi omics dataset for cervical, ovarian, and breast
cancers where meta-interactome networks, TINs, and cross-pathway links are provided.
APODHIN platform is freely available at http://www.hpppi.iicb.res.in/APODHIN/home.
html.
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INTRODUCTION

Technological advances have made different types of omics
data accessible in large scale. Different types of omics data
are outcomes of profiling of different bio-entities, namely
RNA (RNA transcriptomics), miRNA (miRNA transcriptomics),
proteins (proteomics, phosphoproteomics), genes (genomics,
epigenomics), metabolites (metabolomics), lipids (lipidomics),
and pharmacogenomics. These bio-entities are functionally
inter-related in a complex fashion. Extrapolation from single
omics data of one type of bio-entity fails to provide the
true biological status of various linked bio-entities (e.g., RNA,
protein, metabolites). Hence, to inquire the causative phenomena
underlying the genesis and progression of systemic/genetic
diseases, an integrative analysis considering the profiles of above
mentioned bio-entities appears as a requisite. Moreover, because
of the heterogeneous nature of the diseases, even if patients
having similar pathological features are treated similarly, the
disease prognosis differs a lot. It shows the inadequacy of
symptom-based diagnosis and demands patient-specific analysis
of omics data. Collective analysis of these multi-dimensional
omics data is referred to as “pan-omics” (Sandhu et al., 2018)
which are also considered as “big” data in the context of
biological data analysis. Pan-omics data enable us to predict
novel functional interactions between molecular mediators at
multiple levels. Also, these data have the potential to uncover
crucial biological observations into hallmarks and pathways that
would otherwise not be obvious through single-omics studies.
Patient-specific pan-omics data analysis is going to disclose the
genetic, epigenetic, and other functional profiles responsible for
the disease of an individual which might eventually lead to
the development of individualistic “precision medicine” and will
provide right treatment to right patient at right time.

Cancer is a leading cause of death worldwide, being
responsible for 9.6 million deaths in 2018 (Bray et al., 2018).
Cancer is a heterogeneous disease caused by aberrations of
genes and proteins. “Precision oncology” promises identification
of disease subtypes, specific biomarkers and subsequently
prediction and translation toward the development of treatment
procedures. Pan-omics or multi-omics analysis in breast cancer
has revealed significant differences in molecular subtype
distribution (Kan et al., 2018). Genomics and transcriptomics
analysis of breast cancer data of Korean and Caucasian cohorts
showed underlying molecular differences, which are responsible
for the occurrence of breast cancer at the younger age in the
Asian population compared to the western population (Kan
et al., 2018). Multi-omics analysis extended to different types of
cancers confirms the existence of broadly two types of cancers,
cancers caused by recurrent mutations and cancers caused by
copy-number variations (Mcgrail et al., 2018). Computational
methodologies like, artificial intelligence are being used widely
to extract patient-specific information from these big data,
discussed in a recent review (Biswas and Chakrabarti, 2020).
Machine learning based pan-omics analysis of pan-cancer data
shows the existence of clusters within different types of cancers
(Ramazzotti et al., 2018), identifies cell-model selective anti-
cancer drug targets for breast cancer (Gautam et al., 2019).

Multiple data portals like TCGA (TCGA, 2020) and ICGA
(Zhang et al., 2011) have been developed to make multi-
omics data conveniently accessible. LinkedOmics contains pan-
omics data of several types of cancers (Vasaikar et al., 2018).
Databases like, GliomaDB (Yang et al., 2019) and MOBCdb (Xie
et al., 2018) are dedicated to integrate multi-omics data for
specific type of cancers. Standalone software packages and web-
servers are also being developed for the analysis pan-omics data.
Table 1 compares the analytical tools which are being used by
researchers. R package mixOmics (Rohart et al., 2017), based on
multi-variate analysis is available for the integration of multi-
omics data. It finds subsets of important features but excludes
network analysis. OmicsNet provides a web-based platform
to create different types of interactive molecular interaction
networks for single or multiple types of omics data (Zhou
and Xia, 2018). Network-based integration of multi-omics data
using iOmicsPASS, allows to predict subnetworks of molecular
interactions within a single type or multiple types of omics data
(Koh et al., 2019). R package Miodin (Ulfenborg, 2019) provides
a software infrastructure for vertical and horizontal integration
of multi-omics data but lacks a comprehensive network analysis
and visualization. PaintOmics allows integrated visualization of
multiple types of omics data in KEGG pathway diagrams (Hern
et al., 2018). Software package, Multi-Omics Factor Analysis
(MOFA) (Argelaguet et al., 2018) integrates omics data in
an unsupervised approach implementing generalized principal
component analysis (PCA). pathfindR (Ulgen et al., 2019) finds
active sub networks for genes in omics data and perform pathway
enrichment analysis. R package Mergeomics (Shu et al., 2016)
provides a pipeline to identify important pathways and key
drivers in biological systems. However, platforms required for
systematic analysis of the landscape of genetic, epigenetic, and
metabolomics alterations and biological and clinical relevance of
multi-layer signature in cancers are still limited.

Different types of omics data carry information on different
types of bio-entities, e.g., genes, proteins, miRNAs, metabolites,
etc. Hence, integrative analysis of pan-omics data needs a
meta-interactome consisting of a protein–protein interaction
network (PPIN) as well as different regulatory networks. The
web server for the Analysis of Pan-omics Data in Human
Interactome Network (APODHIN) provides a unique platform
where users can analyze different types of omics data using a
human cellular meta-interactome network. Graph theory based
network analysis has become an essential tool for analysis of
PPIN for extracting proteins important in the construction and
information flow of the network (Jeong et al., 2001; Barabási
and Oltvai, 2004; Mistry et al., 2017; Ashtiani et al., 2018),
APODHIN provides options to identify topologically important
nodes (TINs) such as hubs, bottlenecks, and central nodes (CNs)
and their subsequent modules via protein–protein interaction
(PPI) and regulatory relationship network analyses and pathway
enrichment analysis. TINs are also correlated as prospective
diagnostic and/or prognostic biomarkers. APODHIN can also
analyze and compare multiple omics data set for a single omics
layer, such as transcriptomics, proteomics data collected from
different patient cohorts and/or different stage/grade of the
same cohort.
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TABLE 1 | Comparison of APODHIN with other existing pan-omics data analysis tools.

Feature APODHIN OmicsNet [14] mixOmics [13] iOmicsPASS [15] Miodin [16]

Platform Web Web Standalone Standalone Standalone

Programming language Python, R, perl R R C++ R

Types of omics data as input

mRNA transcriptomics Yes Yes Yes Yes Yes

miRNA transcriptomics Yes Yes Yes No Yes

Proteomics Yes Yes Yes Yes Yes

Phospho-proteomics Yes No Yes No No

Genomics Yes Yes Yes Yes Yes

Epi-genomics Yes No No No Yes

Metabolomics Yes Yes Yes No No

Multiple lists of same type of omics data Yes No Yes Yes Yes

Finding deregulated proteins/genes/miRNAs Yes No No No No

Map in meta-interactome Yes No No No No

3D interactive network Yes Yes No No No

Network topology analysis Yes No No No No

Prognostic status of proteins/genes (in cancer) Yes No No No No

Pathway enrichment analysis Yes Yes Yes Yes No

Analysis for regulatory network protein links Yes No No No No

Additionally, utilizing multi-omics data APODHIN calculates
cross-pathway regulatory and PPI links connecting signaling
proteins or transcription factors (TFs) or miRNAs to metabolic
enzymes and their metabolites using network analysis and
mathematical modeling. These cross-pathway links were shown
to play important roles in metabolic reprogramming in cancer
scenarios such as glioblastoma multiforme in a previous work
(Bag et al., 2019).

In addition to the server part, APODHIN shares analysis
of multi-omics data from various cancer cell lines where TINs
and cross-pathway links were identified using publicly available
omics datasets collected for various gynecological cancers.
APODHIN platform is freely available at http://www.hpppi.iicb.
res.in/APODHIN/home.html.

MATERIALS AND METHODS

Server Description
Analysis of Pan-omics Data in Human Interactome Network web
server is dedicated for the integration and subsequent analysis
using single or multiple types of omics data. For single type of
omics data, APODHIN can analyze multiple datasets (up to 3)
which may correspond to either different stages of a disease from
a single cohort or from dataset collected from multiple patient
cohorts and/or cell lines.

For multiple types of omics data, APODHIN allows single
input data file for each type of omics data. Following sections
briefly describe the various analytical part of the APODHIN
server.

Data Collection
Analysis of Pan-omics Data in Human Interactome Network
web server is preloaded with a human cellular meta-interactome

network. This meta-interactome consists of human protein–
protein interaction network (HPPIN), network of human
miRNAs and their target genes and network of human TFs and
their target genes. The PPI data was collected from STRING
(Szklarczyk et al., 2019) database (version 11). Interactions
having a medium threshold of experimental score ≥700 were
considered (Ferretti and Cortelezzi, 2011) for construction of
the PPIN. Target gene information of miRNAs was collected
from the TarBase (Vergoulis et al., 2012) and miRTarBase (Chou
et al., 2016) databases. From the TarBase database (version
6) we have taken reliable interactions supported only by low-
throughput experiments (e.g., reporter gene assay, western
blot, qPCR, etc.) whereas miRNA target interactions with
strong confidence (i.e., validated by either of report assay,
western blot, qPCR experiments) from miRTarBase (version
6) were considered for APODHIN meta-interactome network.
We trusted on the more reliable low-throughput experimental
data to build the parent miRNA-target mRNA interactome
network. We found 2492 target genes for 544 miRNAs creating
6917 interactions. TFs and their target genes were downloaded
from Human Transcriptional Regulation Interactions database
(HTRIdb) (Bovolenta et al., 2012). We found 11887 target
genes for 284 TFs creating 18153 interactions. These three
networks were merged together to form the APODHIN meta-
interactome consisting of two types of biomolecular nodes
i.e., proteins/genes and miRNAs along with three types of
interactions, i.e., protein–protein, miRNA-target gene, and TF-
target gene, respectively.

Additionally, we have also included a network of metabolites
as substrate and product with their corresponding metabolic
enzymes in the APODHIN server. For constructing this network,
we downloaded metabolic reactions from MetaNetX database
(Moretti et al., 2016) and extracted the metabolites along with
the corresponding metabolic enzymes and further filtered those
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enzymes and metabolites which have been listed in the Human
Metabolome Database (HMDB) database (Wishart et al., 2018).

Pan-omics Data Integration and
Meta-Interaction Network Extraction
In APODHIN web server, user can upload single or multiple
types of omics data. The server accepts RNA transcriptomics,
miRNA transcriptomics, proteomics, phosphoproteomics,
genomics, epigenomics, and metabolomics data. The current
version of the server accept only processed format of the omics
data where differential expression/abundance of corresponding
biomolecules are provided with logFC for defining up and
down regulation of genes/miRNAs/proteins and threshold
probability or p-value. For RNA transcriptomics, miRNA
transcriptomics and proteomics data user should select threshold
values of logFC for defining up and down regulation of
genes/miRNAs/proteins and corresponding adjusted p-value.
Uploaded files should contain list of genes/miRNAs/proteins
along with logFC and p-values. Sample file formats for different
omics data are provided in the APODHIN help page. For
genomics, epigenomics, and phosphoproteomics data, genes
that are mutated and/or methylated and proteins, which
are phosphorylated are considered, respectively. APODHIN
help page also provides guidelines to process GEO (Barrett
et al., 2013) transcriptomics data for using in APODHIN.
Packages and tools for GEO series data are also enlisted in
the APODHIN “Help” page. For other types, of omics data
like, proteomics, genomics, metabolomics, useful links for
data processing is provided in the APODHIN help page and
it will be made more enriched gradually depending on the
requirements from users.

Analysis of Pan-omics Data in Human Interactome Network
web server extracts the interactome networks from the parent
meta-interactome for the genes, mRNAs, miRNAs, proteins, and
metabolites that are either deregulated or altered according to the
user supplied single or multiple omics data. It creates a filtered
meta-interactome network comprising of deregulated or altered
nodes and their 1st or 2nd level (as chosen by user) interactors
and/or regulators. For metabolomics data, the web server finds
out the proteins linked with metabolites and constructs network.
These single or multi omics data specific meta-interactome
networks are subsequently displayed in an interactive three-
dimensional (3D) network viewer within the APODHIN server.
For creating omics data mapped network, and subsequently
network analysis, APODHIN does not provide any special weight
or scores to any type of omics data.

For the module “pathway connectivity analysis,” RNA
transcriptomics, miRNA transcriptomics, and proteomics data
were considered as primary data and submission of at least one
of them is mandatory to define deregulated miRNAs and/or
genes/proteins. In case of “pathway connectivity analysis,” the
logFC values for each of the uploaded omics data is normalized
in the scale of−1 to+1 following Eq. 1,

log FCnormalized =
log FC∣∣log FC

∣∣
max

(1)

where positive and negative values indicate up and down
regulated entities, respectively. If more than one primary
omics data, for example, transcriptomics and proteomics are
provided, APODHIN web server sums up the normalized
logFC values from the different omics data for the same node
(RNA/protein) and if the sum is non-zero, gene/protein is
considered deregulated. Primary omics data determines whether
the gene is deregulated or not. Also, if a gene is found not
altered in supplied primary omics data, APODHIN does not
consider this gene for further analysis, irrespective of its status
in the supplied secondary omics data. Details of the utilization
of the normalized omics values in mathematical modeling based
pathway connectivity link identification are provided later. In this
module, the information on metabolites for any enzyme can be
obtained in the associated table on selection of enzyme.

Network Analysis and Identification of
TINs
Once the context specific meta-interactome network is formed
via utilization of user supplied single or multiple omics data,
APODHIN web server primarily finds three types of TINs,
namely, hubs, CNs (Bhattacharyya and Chakrabarti, 2015) and
bottlenecks (BNs) (Yu et al., 2007). To find the important nodes,
network and node indices like degree, betweenness, closeness and
clustering coefficients are calculated from the extracted meta-
interactome network. These node parameters were calculated
using previously reported methods and protocols (Bhattacharyya
and Chakrabarti, 2015). For transcriptomics and proteomics
data, TINs are identified from the expressed nodes only. For
phosphoproteomics, genomics, epigenomics and metabolomics
data, TINs are identified from phosphorylated, mutated,
methylated proteins/genes and metabolic enzymes, respectively.

Hubs are nodes that have high degrees. Degree distribution is
normalized following Eq. 2,

xi,normalized =
xi

xmaximumn
(2)

where xi is degree value of a node i and xmaximum is the
maximum degree of the network. APODHIN web server
converts normalized degree distribution to corresponding
z-score distribution. The plot of probability distribution function
(PDF) of z-scores for all nodes in network is sent to the user
by email. This email shares intermediate results only. From
the plot of PDF, users are asked to provide the threshold
value for hub identification. After receiving the threshold value,
APODHIN initiates hub identification program. Nodes having
degree greater than the threshold value are considered as hub. It
is also mentioned in the help page. Scores concerning individual
centrality parameters like, betweenness, closeness and clustering
coefficients are calculated and the cumulative centrality scores
(CCS) are estimated by summing over the combined scores for
first layer interactors (Bhattacharyya and Chakrabarti, 2015).
CCSs are normalized following Eq. 2 where x is equal to CCS.
Normalized CCS are converted into z-scores. The PDF of z-scores
for all nodes of network are sent to the user by email and CNs
are chosen based on the user provided threshold value of z-score
following similar procedure as mentioned while identifying hubs.
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Bottleneck nodes are characterized based on their betweenness
values. Normalized betweenness values were obtained from
Eq. 2 where x is betweenness and subsequently, converted into
z-scores. Similar to hubs, bottleneck nodes are also chosen based
on the user provided threshold z-score, chosen from the PDF plot
of z-score for all nodes.

Further, sub-network consisting of TINs and their first or
second layer interactors are constructed and displayed in an
interactive three-dimensional (3D) network viewer.

The overlap of TINs, as well as all nodes of the network,
as prognostic cancer marker is checked after extraction of
prognostic marker information from the Human Protein Atlas
database (version 19) (Uhlen et al., 2017). The prognostic
data was obtained from Kaplan-Meier survival analysis. The
cancer type, for which prognostic status have minimum p-value,
is shown in the “Node information” table in the page of
“network view of identified important nodes.” On mouse hover
on the cancer type, more detail information for other cancer
types, is available.

Pathway Mapping and Network of
Mapped Pathways
For each identified TIN, particularly for genes and proteins,
APODHIN maps the corresponding pathways listed in the
KEGG database (Kanehisa et al., 2017). APODHIN performs a
hypergeometric Fishers Exact test and selects enriched pathways
satisfying p-value (pHGD) ≤0.05 using the following contingency
table and formula. [

a b− a
c d− c

]
Where,

a = Number of genes in the pathway.
b = Number of genes in the gene list.
c = Total number of genes in the pathway.
d = Total number of genes in all pathways in KEGG.

pHGD =

(
b
a

) (
d
c

)
(

b + d
a + c

) (3)

Further, a network representation of important nodes along with
their enriched mapped pathways is displayed in an interactive
three-dimensional (3D) network viewer. Figure 1A shows the
flow chart of “pan-omics data mapping and network analysis”
module of APODHIN.

Pathway Connectivity Analysis and
Cross-Pathway Links
This module of the APODHIN web server aims to construct
regulatory interaction networks and subsequently identifies
cross-pathway interaction links connecting different cellular
pathway proteins [e.g., signaling proteins (S)], regulatory proteins
[e.g., transcription factor (TF)] or miRNAs with metabolic
pathway proteins (M).

For this purpose, APODHIN web server was preloaded with
cross-pathway links or paths where protein–protein interactors
(P) connect X nodes (X can be S or target gene of TF or target
genes of miRNAs) with M (metabolic) proteins. We have limited
the number (n) of protein–protein interactors (P) to a maximum
value of three between X and M proteins. This limit provides
four types of paths, XM (n = 0), XPM (n = 1), XPPM (n = 2),
XPPPM (n = 3). These cross-pathway linking paths are filtered
and selected based on expression and/or abundance status of the
biomolecules supplied by user uploaded pan-omics data for a
given disease or context. The filtering criteria for any given path is
set when the terminal nodes are found to be deregulated and the
remaining nodes are at least expressed within the user provided
single or multi-omics datasets.

We implemented an established probabilistic approach
based on the Hidden Markov Model (HMM) (Tuncbag
et al., 2013; Vinayagam et al., 2014; Bag et al., 2019)
utilizing the information of experimentally established PPIs
and gene regulatory information to extract novel paths and
interconnections between regulatory nodes such as signaling
proteins, TFs and miRNAs and metabolic pathway proteins (M).
Within these important X-M pairs, important cross-pathway
connecting paths are again scored by considering all filtered
paths between X-M pairs. To find important X-M pairs, weights
are assigned on nodes and edges depending on network and
biological properties. Edge weight is assigned in terms of
normalized interaction probability which is proportional to the
product of their expression scores.

Two types of node weights, network entropy, and effect-on-
nodes are considered. Network entropy includes local entropy
of the node. Another node weight parameter, “effect-on-node”
considers the impact of interactors of a particular gene in
the cross-connected network. The “effect-on-node” considers
both biological and network properties of the node. Biological
properties include deregulated gene, signaling crosstalk gene and
rate limiting enzyme. Network properties include hubs, CNs,
and bottlenecks.

Analysis of Pan-omics Data in Human Interactome Network
web server allows the user to choose maximum four weight
options out of the six weights. If a node satisfies any of the
selected weight options, weight value 1 is assigned for each
satisfied option. To identify important cross-connecting X-M
pairs we have evaluated “path score” (PS) based on a HMM
implemented within the core mathematical model that calculated
the significant cross-pathway linking paths. “Path scores” are
converted to z-scores and paths having z-score≥1 are considered
as important cross-connecting paths. A detailed description of
the mathematical models and path calculation is available in our
previous publication (Bag et al., 2019). Figure 1B shows the flow
chart of “pathway connectivity analysis” module of APODHIN.

APODHIN Architecture
Analysis of Pan-omics Data in Human Interactome Network web
server is created using HTML, PHP, PYTHON, and JAVA scripts.
Client/user side scripts are written in HTML, PHP and JAVA
scripts. User uploaded data is analyzed using PYTHON scripts.
For network analysis, PYTHON package networkX (version
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FIGURE 1 | Flow charts showing work flow in APODHIN web-server for module (A) data mapping and network analysis and (B) pathway connectivity analysis.

1.8.1) is used. For visualization of 3D presentation of networks
JAVA scripts based open source technologies (three.js and 3d-
force-graph.js) were utilized.

Analysis of Pan-omics Data in Human Interactome Network
has two separate parts A. APODHIN server and B. APODHIN
example data analysis.

APODHIN Server
Analysis of Pan-omics Data in Human Interactome Network
web server is preloaded with human interactome network
containing PPIN, target gene network of miRNAs and target gene
network of TFs. Proteins participating in signaling and metabolic
pathways are also marked separately. Metabolites along with their
target enzymes are also included within APODHIN. This meta-
interactome network is used as framework of cellular interactions
and is further used to map user supplied single or multiple types
of “omics” data to perform the following analyses.

• Omics data mapping and network analysis: This module
has two sub-modules. On clicking first submit button,
this web server provides meta-interactome network filtered

by uploaded omics data where deregulated and/or altered
nodes along with their interactors are included. Users can
further proceed for finding important interacting nodes
from the “pan-omics” data mapped interaction network by
clicking second submit button. Tabular, graphical and 3D
network representations of the identified TINs are provided
for better appreciation. Overlap of the TINs is shown
both in tabular and interactive 3D network visualization.
Additionally, TINs and their enriched pathways are also
shown in tabular and interactive 3D network visualization
manner.

Sample input files for each omics data type and
example analysis output are provided for the ease of use
and apprehension.
• Pathway connectivity analysis: As mentioned before, this

sub-module highlights significant PPI and regulatory paths
connecting signaling proteins/TF/miRNAs to metabolic
proteins. These cross-pathway links are thought to
be supra-molecular regulatory links/signatures connected
with metabolic rearrangement or reprogramming events
that are observed during cancer. In APODHIN, these

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 589231

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-589231 December 2, 2020 Time: 19:45 # 7

Biswas et al. Analysis of Pan-omics Data

cross-pathway regulatory links can be constructed from
three types of interaction networks.

1. Integrated network where signaling (S) and metabolic (M)
pathway proteins are connected through protein–protein
interactors (P).

2. Integrated network where target genes of TFs and
metabolic (M) pathway proteins are connected through
protein–protein interactors (P).

3. Integrated network where miRNA target genes and
metabolic (M) pathway proteins are connected through
protein–protein interactors (P).

Cross-pathway linking paths are filtered and selected based on
expression and/or abundance status of the biomolecules supplied
by user uploaded single or pan-omics data for a given disease or
context. These paths are shown both in tabular and interactive 3D
network visualization.

APODHIN Example Data Analysis
Analysis of Pan-omics Data in Human Interactome Network
example data analysis page showcase few example analysis of
multi-omics data for different cancer cell lines. We have used
the APODHIN web server to construct individual cancer and
dataset centric meta-interactome network using cell line specific
single and/or multi-omics data collected from various resources
such as GEO (Barrett et al., 2013), PRIDE (Perez-Riverol et al.,
2019), publication reports and data sources for cervical, ovarian,
and breast cancers, respectively. Further, these cancer and dataset
specific meta-interactome networks were analyzed and important
interacting nodes and cross-pathway links were identified and
provided within the APODHIN example data analysis module.
We have used cancer cell line derived omics data freely available
from different public resources. Options are provided for the
users to select single and/or multi-omics data to construct the
meta-interactome networks and further analyze them to identify
and important interacting nodes and cross-pathway links specific
for the selected dataset.

RESULTS

Input Options
Analysis of Pan-omics Data in Human Interactome Network
server provides two different but linked analysis options for
the users who would like to utilize single or multiple types of
omics data for a given context. APODHIN web server provides
options to upload seven types of “omics” data comprising of
mRNA transcriptomics, miRNA transcriptomics, proteomics,
phosphoproteomics, genomics, epigenomics, and metabolomics.
The file formats for each data type is specified in the “Help”
page and sample input files are also available in the server
input page. Information on preparing input files for using in
APODHIN is also shared in the “Help” page. For transcriptomics
and proteomics data, maximum and minimum threshold values
for the differential expression/abundance (logFC) and statistical
significance of that (p-values) need to be provided. As the
calculations are computation intensive, results are sent via email.

Similarly, for cross-pathway connectivity analysis users need
to upload single or multiple types of “omics” data for a given
context. At least one “primary” type (see Methods) of omics
data need to be uploaded. Now, in this case, users also need
to specify the type of connectivity they would like to explore,
for example, signaling to metabolic proteins, TFs to metabolic
proteins, or miRNAs to metabolic proteins. Only one type of
pathway connectivity can be explored at a time for a given set
of “omics” data. Additionally, users also need to select the kind
of weights (see section “Materials and Methods”) that would be
applied while calculating the scores of the selected cross-pathway
regulatory and PPI paths. E-mail address needs to be supplied
for APODHIN server to send the result link of the identified
cross-pathway connections.

Output Options
Output option for the “Data mapping and network analysis”
module has two stages. At first stage (Figure 2A), the context
specific meta-interactome network (“filtered network”) can be
visualized via a user interactive 3D network viewer where
information regarding each node and edge are provided in
graphical as well as tabular view (Figure 2B). Status of the
“omics” data mapping is shown in various color codes for the
nodes whereas different relationship like PPI, miRNA-target
gene interaction, and TF and target in connections are shown
varied color codes. Additional details about the protein nodes
can be obtained via GeneCards (Stelzer et al., 2016) link while
miRNA details can be found via miRTarBase (Chou et al., 2016)
link. List of metabolites mapped onto the protein nodes are
also provided both in the network viewer as well as in the
adjacent tabular format. If network analysis is opted, along with
filtered network, APODHIN provides the PDFs for the opted
TINs (Figure 2C). Filtered nodes (genes/proteins/miRNAs) that
satisfied the selected threshold criteria are characterized as TINs
and further utilized for meta-interactome network construction.
If multiple files of single type of omics data is uploaded, users
can see the number of TINs (as hub, bottlenecks, and CNs)
and their mutual overlap using interactive Venn diagram by
clicking the “link for analysis” option for single or combination
of “omics” data (Figure 2D). Combined analysis of multiple
types of omics data files is shown if multiple types of omics
data files are provided. Here also, the resultant page (Figure 2E)
provides three output options. First, the regulatory and PPI
connectivity specific to the hubs, bottleneck and CNs can be
seen via corresponding link where networks of deregulated
hubs, bottleneck, and CNs can be seen separately and saved
accordingly (Figure 2F). Association to various kinds of cancers
for the identified TINs as favorable/unfavorable prognostic
markers are also provided here after mapping the TINs (see
Methods) to the data provided in Human Protein Atlas (Uhlen
et al., 2017). Another option provides the network of common
TINs (Figure 2G) whereas a separate link provides network
of enriched pathways with the identified TINs (Figure 2H).
Enriched pathway networks of deregulated hubs, bottleneck, and
CNs can be seen separately and saved accordingly. In all these
three network output options, data can be downloaded in text
format for further analysis.
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FIGURE 2 | Snapshots of outputs of module “data mapping and network analysis.” (A) Page showing link for filtered network and probability distribution function.
(B) Filtered network. (C) Probability distribution function for network analysis. (D) Output page of a single omics data. (E) Network analysis page for multi-omics
data. (F) Network of important interacting nodes. (G) Network of important nodes. (H) Network of pathway mapping.

Similar to “Data mapping and network analysis,” “Pathway
connectivity analysis” module also provides a tabular result with
a summary of the user uploaded data (Figure 3A). Users can
see the cross-pathway links for multiple types of omics data
(Figure 3B). For multiple types of files with single type of omics
data (Figure 3C), the comparison (Figure 3D) is shown in
Venn diagram as well as in network visualization. In the 3D
network visualization window, significant PPI and regulatory
paths connecting signaling proteins/TFs/miRNAs to metabolic
proteins are shown in color coded fashion. As described before,

these cross-pathway links or paths connect X nodes (X can
be S or target gene of TF or target genes of miRNAs) with
metabolic (M) proteins. These linking paths are filtered and
selected based on expression and/or abundance status of the
biomolecules supplied by the users where for any given path the
terminal nodes are found to be deregulated and the remaining
nodes are at least expressed. The corresponding pathways
and biological functions of the proteins are also provided in
tabular format adjacent to the network viewer. Additionally,
the metabolites connected to the metabolic proteins that are
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FIGURE 3 | Snapshots of outputs of module “pathway connectivity analysis.” (A) Output page shows user provided data in tabular form along with link for network
view. (B) Output page showing network of signaling to metabolic proteins connecting paths for multiple types of omics data. (C) Output page when multiple files for
single type of omics data is provided. (D) Venn diagram shows overlap of signaling to metabolic proteins connecting paths for different omics data set.

part of the selected cross-pathway links are also provided
in the same page.

Example Data Analysis Option
Analysis of Pan-omics Data in Human Interactome Network
example data analysis page contains important nodes
(genes/proteins/miRNAs), pathways, and their networks with
interacting partners specific for cancers affecting women such as
cervical, ovarian, and breast cancer. This section also contains
important paths linking signaling proteins/TFs/miRNAs to
metabolic enzymes, which could perhaps be responsible for
metabolic reprogramming in cancer. The example content is
produced by APODHIN web server using publicly available
cervical, ovarian, and breast cancer specific cell line based omics
data. Figure 4 briefs the statistics derived from APODHIN
example analyses for mRNA transcriptomics data of different
cell lines of cervical, ovarian, and breast cancer. Figure 4A shows
the overlap of deregulated genes. It reveals lesser overlap among
deregulated genes across cell lines for all cancers. However,
there is almost complete overlap of pathways mapped by
deregulated genes (Figure 4B). Nodes satisfying any two types
of TINs are considered as important interacting nodes (IINs).
Figure 4C shows overlap for common IINs between cell lines
across cancer types are observed. Similarly, Figure 4D shows
much higher overlap of common pathways mapped by IINs.
This demonstrates that IINs and their pathways represent the
common core genes and processes related to a cancer type in a
better way than that achieved by the initial deregulated genes
obtained from the omics data. We also checked whether the

mapped pathways are related to cancer pathways enlisted in
KEGG database (Kanehisa et al., 2017). Figure 5A shows that
pathways mapped by IINs are more cancer specific compared
to the pathways mapped by deregulated genes for all cell lines.
Figures 4E,F show the number and overlap of deregulated
genes and IINs as prognostic markers of respective cancer type.
Figure 5B shows that compared to the deregulated genes, IINs
possess higher fractions of prognostic markers for all cancer cell
lines, except MDAMB231. This advocates the usefulness of the
IINs over deregulated genes. Moreover, as the number of IINs is
much smaller than that of deregulated genes the false discovery
rate is also expected to be lower.

Figure 6 shows overlap of cross-pathway links or paths
connecting signaling (S) proteins, TFs, and miRNAs to metabolic
(M) proteins identified using omics data derived from the
cell lines of three types of cancers. For signaling to metabolic
connection, four common paths for three cervical cell lines were
observed. However, no such overlap was found for breast and
ovarian cancer cell lines.

Analysis of pan-omics data considering transcriptomics,
genomics, epigenomics, metabolomics data in different
combinations are available for different cell lines in the
example data analysis section of APODHIN.

DISCUSSION

Large-scale genomics, transcriptomics and proteomics
approaches have made it possible to characterize different
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FIGURE 4 | Statistics derived from APODHIN database for mRNA transcriptomics data derived from different cell lines of cervical (HeLa, SiHa, and CaSki), ovarian
(IGROV1, SKOV3, OVCAR3), and breast cancer (MCF7 and MDAMB231). Transcriptomics data was derived from the GEO datasets GSE9750, GSE19352, and
GSE71363, respectively. (A) Deregulated genes, (B) Overlap of pathways mapped by deregulated genes, (C) Overlap of IINs, (D) Overlap of pathways mapped by
IINs, (E) Deregulated genes as prognostic marker, and (F) IINs as prognostic marker.
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FIGURE 5 | (A) Comparison of number of cancer specific pathways mapped by deregulated genes and IINs. (B) Comparison of fraction of prognostic markers
within the deregulated genes and network analysis derived important nodes, such as IIN and various TIN (e.g., Hubs, CN, and BN, respectively). Dashed lines are
drawn to separate cell lines of different cancer types.

clinical spectra associated with cancers. Use of pan-omics
platforms and approaches in the analysis of systemic disease like
cancer will not only help to identify numerous useful biomarkers
but also will expose areas for further improvement in therapeutic
intervention. Here, we present APODHIN web server, which
extracts cellular interactome networks from the parent meta-
interactome for the genes, mRNAs, miRNA, proteins, and
metabolites that are either deregulated or altered according to
the user supplied single or multiple omics data. These single
or multi-omics data specific meta-interactome networks are
utilized to identify TINs and their sub-modules enriched with
PPI and regulatory relationship via utilization of graph theory
based network analyses and biological pathway enrichment
analysis. Important interacting nodes (proteins and miRNAs),
IINs are identified based on the overlap of key nodes such as
hubs and bottlenecks. Using data from The Human Protein
Atlas database, APODHIN provides the probable prognostic
status of the IINs. Also, as observed in our earlier works
(Bhattacharyya and Chakrabarti, 2015), IINs extracted from
network topology, could correlate to be prospective diagnostic

and/or prognostic biomarkers or even turn out to be potential
therapeutic targets.

Molecular mechanisms for cancer progression and
development of potential therapeutics to inhibit these complex
diseases are difficult from the independent knowledge of
signaling, TFs, miRNAs, and metabolic pathways. Metabolic
reprogramming is an essential hallmark of cancer (Hanahan
and Weinberg, 2011). Understanding the coordination among
various cellular pathways, such as gene-regulatory, signaling and
metabolic pathways is crucial and may provide clues into the
molecular mechanism of metabolic adaptation in cancer and
associated cells. Therefore, there is an urgent need for systems
biology model, which can coordinate among signaling-induced
proliferation of tumor cells/growth, transcription factor/miRNA
based gene regulation and metabolic processes. Hence, we
emphasized to design a mathematical approach to identify
significant proteins forming interconnections between signaling,
regulatory and metabolic pathways. We have constructed an
integrated network where signaling (S), regulatory (TFs and
miRNAs), and metabolic (M) pathway entities are connected
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FIGURE 6 | Statistics derived from “pathway connectivity analysis” module of APODHIN database for mRNA transcriptomics data derived from different cell lines of
cervical (HeLa, SiHa, and CaSki), ovarian (IGROV1, SKOV3, OVCAR3), and breast cancer (MCF7 and MDAMB231). Transcriptomics data was derived from the GEO
datasets GSE9750, GSE19352, and GSE71363, respectively. (A) Overlap of cross-pathway links connecting signalling (S) to metabolic (M) proteins, (B) Overlap of
pathway links connecting target genes of TFs to metabolic (M) proteins, and (C) Overlap of cross-pathway links connecting target genes of miRNAs to metabolic (M)
proteins.

through protein–protein and gene regulatory interactions.
Interconnections between regulatory components such as
signaling proteins/TFs/miRNAs and metabolic pathways need to
be elucidated rigorously to understand the role of oncogene and
tumor suppressors in regulation of metabolism alongside their
normal functions. Analyses of such cross-connected network
and linking paths will facilitate probable way(s) to inhibit cancer
progression in a more specific manner.

Considering the growing demand of multi-omics data
integration followed by systems biology based analytical
interpretation of the large-scale “omics” data, implementation
of a robust and user-friendly web-based platform is very much
due. In order to make better sense out of the various “omics”
data, it is imperative to utilize them in a way so that the global

scenario of the complex and multi-layer cellular interactome can
be recapitulated. Several data portals have been coming up to
make multi-omics data accessible, visible and more importantly,
interpretable. Various programs and web portals are being
made to interpret omics data in different perspectives. Each
of these tools has its own merits and limitations also. Table 1
provides a qualitative comparison of features and functionalities
of APODHIN with respect to existing omics data analysis
tools. Web servers like OmicsNet (Zhou and Xia, 2018) is a
technically powerful web based platform specifically meant for
better visualization of molecular networks. It mainly provides
varied and efficient ways of network visualization including
different components. However, it provides minimal emphasis
on networks analysis and identification and interpretation of
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important interacting nodes and cross-pathway links. Similarly,
this server only accept differential omics data for genes/proteins
and metabolites, it does not have the option to include
the epigenetic modification, miRNA expression data, and
phosphoproteomics data. mixOmics (Rohart et al., 2017) is
a software package which is based on multi-variate analysis.
It performs data reduction, and then identifies combination
of biomarkers. It offers a network visualization but does not
consider network topology. It does not consider any meta-
interactome. Software package iOmicsPASS (Koh et al., 2019)
considers a meta-interactome by including PPIN and TF
regulatory network within omics data. But it excludes miRNA-
mRNA regulatory network. It considers only three types of omics
data, transcriptomics, proteomics, DNA copy number data, thus
limiting its applicability. Another R package Miodin (Ulfenborg,
2019) provides opportunity of creating a workflow of data
analysis. It considers different omics data, but not metabolomics
data. It requires pre-installation of several R packages. Miodin
provides Venn diagram of differentially expressed genes,
overlapped within different datasets. However, Miodin does
not consider any meta-interactome and does not construct
any network. None of these tools perform network topology
analysis and provide cross-pathway connectivity information of
proteins. APODHIN is perhaps the only available web based
platform that offers to (a) integrate multi-omics data onto
an exhaustive multi layered cellular meta-interactome network,
(b) extract and analyze the context specific networks and
sub-networks to identify TINs that could serve as potential
biomarkers and/or therapeutic targets (c) rationalize the role
of the identified TINs to the given context via pathway
enrichment and prognostic marker correlation, and (d) identify
cross-pathway interconnections between regulatory components
such as signaling proteins/TFs/miRNAs and metabolic pathways
for better understanding the role of oncogenes and tumor
suppressors in regulation of metabolic reprogramming during
cancer. Additionally, being a web based tool, APODHIN requires
no installation of software, good computing systems, and
technical expertise. We believe these features make APODHIN
useful as well as a user-friendly application.

However, there is still scope for improvement for the
APODHIN server. The example data analysis part can be
enriched to upgrade as a database. For example, in future we

would like to equip the server to accept and process raw “omics”
data directly and further create the processed data for genetic
or epigenetic alterations, differential expression and abundance,
respectively. We would also like to add components for handling
large number of datasets which will be able to analyze cohort data.
Current version is mostly aimed to patient-specific personalized
data. Similarly, the server and along with a database should
be enriched in such a way that it could be utilized for deep
learning and artificial intelligence based tools to predict the
disease outcome, recurrence and drug resistance, respectively.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article.

AUTHOR CONTRIBUTIONS

NB and SC designed the web server. NB created the web
server. KK, SB, and RB provided the data for meta-interactome
network. NB and SC analyzed the data and drafted the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

The authors acknowledge CSIR-Indian Institute of Chemical
Biology for infrastructural support. SC acknowledges the
Systems Medicine Cluster (SyMeC) grant (GAP357), Department
of Biotechnology (DBT) for funding. NB acknowledges the
Systems Medicine Cluster (SyMeC) grant (GAP357), Department
of Biotechnology (DBT) for fellowship. KK, SB, and RB
acknowledge Department of Biotechnology (DBT), Council of
Scientific and Industrial Research (CSIR), respectively for their
fellowships. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript. This manuscript has been released as a pre-print at
bioRxiv (Biswas et al., 2020).

REFERENCES
Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C.,

et al. (2018). Multi-Omics factor analysis — a framework for unsupervised
integration of multi-omics data sets. Mol. Syst. Biol. 14:e8124.

Ashtiani, M., Salehzadeh-yazdi, A., Razaghi-moghadam, Z., Hennig, H., and
Wolkenhauer, O. (2018). A systematic survey of centrality measures for protein-
protein interaction networks. BMC Syst. Biol. 12:80. doi: 10.1186/s12918-018-
0598-2

Bag, A. K., Mandloi, S., Jarmalavicius, S., and Mondal, S. (2019). Connecting
signaling and metabolic pathways in EGF receptor-mediated oncogenesis
of glioblastoma. PLoS Comput. Biol. 15:e1007090. doi: 10.1371/journal.pcbi.
1007090

Barabási, A.-L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nat. Rev. Genet. 5, 101–113. doi: 10.1038/nrg1272

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: Archive for functional genomics data sets - Update.
Nucleic Acids Res. 41, 991–995.

Bhattacharyya, M., and Chakrabarti, S. (2015). Identification of important
interacting proteins (IIPs) in Plasmodium falciparum using large-scale
interaction network analysis and in-silico knock-out studies. Malar J. 14, 1–17.

Biswas, N., and Chakrabarti, S. (2020). Artificial intelligence (AI) based systems
biology approaches in multi-omics data analysis of cancer. Front. Oncol.
10:588221. doi: 10.3389/fonc.2020.588221

Biswas, N., Kumar, K., Bose, S., Bera, R., and Chakrabarti, S. (2020). Analysis
of pan-omics data in human interactome network (APODHIN). bioRxiv
[Preprint], doi: 10.1101/2020.04.18.048207

Bovolenta, L. A., Acencio, M. L., and Lemke, N. (2012). HTRIdb: an open-
access database for experimentally verified human transcriptional regulation
interactions. BMC Genom. 13:405. doi: 10.1186/1471-2164-13-405

Frontiers in Genetics | www.frontiersin.org 13 December 2020 | Volume 11 | Article 589231

https://doi.org/10.1186/s12918-018-0598-2
https://doi.org/10.1186/s12918-018-0598-2
https://doi.org/10.1371/journal.pcbi.1007090
https://doi.org/10.1371/journal.pcbi.1007090
https://doi.org/10.1038/nrg1272
https://doi.org/10.3389/fonc.2020.588221
https://doi.org/10.1101/2020.04.18.048207
https://doi.org/10.1186/1471-2164-13-405
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-589231 December 2, 2020 Time: 19:45 # 14

Biswas et al. Analysis of Pan-omics Data

Bray, F., Ferlay, J., and Soerjomataram, I. (2018). Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers
in 185 countries. CA Cancer J. Clin. 68, 394–424. doi: 10.3322/caac.21492

Chou, C.-H., Chang, N.-W., Shrestha, S., Hsu, S.-D., Lin, Y.-L., Lee, W.-H., et al.
(2016). miRTarBase 2016: updates to the experimentally validated miRNA-
target interactions database. Nucleic Acids Res. 44, 239–247.

Ferretti, L., and Cortelezzi, M. (2011). Preferential attachment in growing spatial
networks. Phys. Rev. E 84:016103.

Gautam, P., Jaiswal, A., Aittokallio, T., Al-ali, H., and Wennerberg, K.
(2019). Phenotypic screening combined with machine learning for efficient
identification of breast cancer-selective therapeutic targets. Cell Chem. Biol. 26,
970–979. doi: 10.1016/j.chembiol.2019.03.011

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation.
Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Hern, R., Tarazona, S., Mart, C., Balzano-nogueira, L., Furi, P., Pappas, G. J., et al.
(2018). PaintOmics 3: a web resource for the pathway analysis and visualization
of multi-omics data. Nucleic Acids Res. 46, W503–W509.

Jeong, H., Mason, S. P., Barabási, A.-L., and Oltvai, Z. N. (2001). Lethality
and centrality in protein networks. Nature 411, 41–42. doi: 10.1038/3507
5138

Kan, Z., Ding, Y., Kim, J., Jung, H. H., Chung, W., Lal, S., et al. (2018). Multi-
omics profiling of younger Asian breast cancers reveals distinctive molecular
signatures. Nat. Commun. 9:1725.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 45, D353–D361.

Koh, H. W. L., Damian, F., Vogel, C., Choi, K. P., Ewing, R. M., and Choi,
H. (2019). iOmicsPASS: network-based integration of multiomics data for
predictive subnetwork discovery. NPJ Syst. Biol. Appl. 5:22.

Mcgrail, D. J., Federico, L., Li, Y., Dai, H., Lu, Y., Mills, G. B., et al. (2018). Multi-
omics analysis reveals neoantigen- independent immune cell infiltration in
copy-number driven cancers. Nat. Commun. 9:1317.

Mistry, D., Wise, R. P., and Dickerson, J. A. (2017). DiffSLC: a graph centrality
method to detect essential proteins of a protein-protein interaction network.
PLoS One 12:e0187091. doi: 10.1371/journal.pcbi.0187091

Moretti, S., Martin, O., Van Du Tran, T., Bridge, A., Morgat, A., and Pagni, M.
(2016). MetaNetX/MNXref - Reconciliation of metabolites and biochemical
reactions to bring together genome-scale metabolic networks.Nucleic Acids Res.
44, D523–D526.

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,
Kundu, D. J., et al. (2019). The PRIDE database and related tools and resources
in: Improving support for quantification data. Nucleic Acids Res. 47, D442–
D450.

Ramazzotti, D., Lal, A., Wang, B., and Batzoglou, K. (2018). Serafim, Sidow A.
Multi-omic tumor data reveal diversity of molecular mechanisms that correlate
with survival. Nat. Commun. 9:4453.

Rohart, F., Gautier, B., Singh, A., and Cao, K. A. L. (2017). mixOmics: an R package
for ‘omics feature selection and multiple data integration. PLoS Comput. Biol.
13:e1005752. doi: 10.1371/journal.pcbi.1005752

Sandhu, C., Qureshi, A., and Emili, A. (2018). Panomics for precision medicine.
Trends Mol. Med. 24, 85–101. doi: 10.1016/j.molmed.2017.11.001

Shu, L., Zhao, Y., Kurt, Z., Byars, S. G., Tukiainen, T., Kettunen, J., et al.
(2016). Mergeomics: multidimensional data integration to identify pathogenic
perturbations to biological systems. BMC Genom. 17:874. doi: 10.1186/s12864-
016-3198-9

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S.,
et al. (2016). The GeneCards suite: from gene data mining to disease genome
sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.1–1.30.33.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-cepas, J., et al.
(2019). STRING v11: protein - protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res. 47, 607–613.

TCGA (2020). Available at: https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga (accessed 22 July 2020).

Tuncbag, N., Braunstein, A., Pagnani, A., Huang, S. S. C., Chayes, J., Borgs, C.,
et al. (2013). Simultaneous reconstruction of multiple signaling pathways via
the prize-collecting steiner forest problem. J. Comput. Biol. 20, 124–136. doi:
10.1089/cmb.2012.0092

Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., et al. (2017).
A pathology atlas of the human cancer transcriptome. Science 357:660.

Ulfenborg, B. (2019). Vertical and horizontal integration of multi- omics data with
miodin. BMC Bioinform. 20:649. doi: 10.1186/s12859-019-3224-4

Ulgen, E., Ozisik, O., and Sezerman, O. U. (2019). pathfindR: an R package for
comprehensive identification of enriched pathways in omics data through active
subnetworks. Front. Genet. 10:858. doi: 10.3389/fgene.2019.00858

Vasaikar, S. V., Straub, P., Wang, J., and Zhang, B. (2018). LinkedOmics: analyzing
multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46,
D956–D963.

Vergoulis, T., Vlachos, I. S., Alexiou, P., Georgakilas, G., Maragkakis, M., Reczko,
M., et al. (2012). TarBase 6.0: capturing the exponential growth of miRNA
targets with experimental support. Nucleic Acids Res. 40, D222–D229.

Vinayagam, A., Zirin, J., Roesel, C., Hu, Y., Yilmazel, B., Samsonova, A. A.,
et al. (2014). Integrating protein-protein interaction networks with phenotypes
reveals signs of interactions. Nat. Methods 11, 94–99. doi: 10.1038/nmeth.
2733

Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Azquez-Fresno,
R. V., et al. (2018). HMDB 4.0: the human metabolome database for 2018.
Nucleic Acids Res. 46, D608–D617.

Xie, B., Yuan, Z., Yang, Y., Sun, Z., Zhou, S., and Fang, X. (2018). MOBCdb?: a
comprehensive database integrating multi - omics data on breast cancer for
precision medicine. Breast Cancer Res. Treat. 169, 625–632. doi: 10.1007/
s10549-018-4708-z

Yang, Y., Sui, Y., Xie, B., Qu, H., and Fang, X. (2019). GliomaDB: a web server
for integrating glioma omics data and interactive analysis. Genom. Proteom.
Bioinform. 17, 465–471. doi: 10.1016/j.gpb.2018.03.008

Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., and Gerstein, M. (2007).
The importance of bottlenecks in protein networks: Correlation with gene
essentiality and expression dynamics. PLoS Comput. Biol. 3:e59. doi: 10.1371/
journal.pcbi.0030059

Zhang, J., Baran, J., Cros, A., Guberman, J. M., Haider, S., Hsu, J., et al.
(2011). International cancer genome consortium data portal-a one-stop shop
for cancer genomics data. Database 2011:bar026. doi: 10.1093/database
/bar026

Zhou, G., and Xia, J. (2018). OmicsNet: a web-based tool for creation and visual
analysis of biological networks in 3D space. Nucleic Acids Res. 46, W514–W522.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Biswas, Kumar, Bose, Bera and Chakrabarti. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 14 December 2020 | Volume 11 | Article 589231

https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.chembiol.2019.03.011
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/35075138
https://doi.org/10.1038/35075138
https://doi.org/10.1371/journal.pcbi.0187091
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1016/j.molmed.2017.11.001
https://doi.org/10.1186/s12864-016-3198-9
https://doi.org/10.1186/s12864-016-3198-9
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://doi.org/10.1089/cmb.2012.0092
https://doi.org/10.1089/cmb.2012.0092
https://doi.org/10.1186/s12859-019-3224-4
https://doi.org/10.3389/fgene.2019.00858
https://doi.org/10.1038/nmeth.2733
https://doi.org/10.1038/nmeth.2733
https://doi.org/10.1007/s10549-018-4708-z
https://doi.org/10.1007/s10549-018-4708-z
https://doi.org/10.1016/j.gpb.2018.03.008
https://doi.org/10.1371/journal.pcbi.0030059
https://doi.org/10.1371/journal.pcbi.0030059
https://doi.org/10.1093/database/bar026
https://doi.org/10.1093/database/bar026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Analysis of Pan-omics Data in Human Interactome Network (APODHIN)
	Introduction
	Materials and Methods
	Server Description
	Data Collection
	Pan-omics Data Integration and Meta-Interaction Network Extraction
	Network Analysis and Identification of TINs
	Pathway Mapping and Network of Mapped Pathways
	Pathway Connectivity Analysis and Cross-Pathway Links
	APODHIN Architecture
	APODHIN Server
	APODHIN Example Data Analysis

	Results
	Input Options
	Output Options
	Example Data Analysis Option

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


