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Abstract: The advent of Whole Genome Sequencing (WGS) broadened the genetic variation detection
range, revealing the presence of variants even in non-coding regions of the genome, which would have
been missed using targeted approaches. One of the most challenging issues in WGS analysis regards
the interpretation of annotated variants. This review focuses on tools suitable for the functional
annotation of variants falling into non-coding regions. It couples the description of non-coding
genomic areas with the results and performance of existing tools for a functional interpretation of the
effect of variants in these regions. Tools were tested in a controlled genomic scenario, representing
the ground-truth and allowing us to determine software performance.

Keywords: whole genome sequencing; non-coding variants; variant prioritization; 5′UTR; splicing
prediction; mutation intolerance

1. Introduction

The sequencing of the whole human genome, completed in 2003, carried the belief of
easily solving the genetic ground of many diseases. If this has been proved to be true for
genetic disorders caused by mutations in coding sequences, it took many years and efforts
to understand the importance and the large involvement in diseases of the non-coding
regions, long referred to as ‘junk DNA’. Currently, it is known that around 80% of the
human genome contains functional elements [1], that up to 5–10% is under purifying
selection [1,2], that non-coding elements are crucial to controlling the expression of protein-
coding genes [3], and that variants in non-coding portions (non-coding variants, NCVs)
of the genome can have a critical impact on perturbing gene regulation, thus potentially
causing a variety of diseases. Moreover, recent studies have revealed an implication of
non-coding variants in regulating DNA replication timing [4], suggesting an indirect link
between DNA synthesis and transcription [5]. In this complex scenario, deciphering the
roles of non-coding variants in disease etiology remains nontrivial [3].

Whole Genome Sequencing (WGS) is potentially able to reveal single-nucleotide
variants (SNVs), insertion/deletions (InDels), as well as structural variants (SVs) and copy-
number variants (CNVs) throughout the whole genome [6], thus allowing the detection
of causative disease variants which could be missed by targeted approaches. However,
the potential of WGS is not fully exploited because the current knowledge of non-coding
regions is still lagging behind coding ones. Ellingford et al. [7] report that 63.4% of un-
translated region (UTR) variants in the ClinVar database are categorized as ‘variants of
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uncertain significance’ (VUS), thus demonstrating that non-coding regions are still widely
under-ascertained in clinical databases, even when representing quite well-studied areas. In
this context, novel algorithms are continuously being proposed to predict the pathogenicity
of variants in such critical regions, and reviews are constantly published trying to shed light
on the selection of best practices and methods to maximize successful results. For example,
Wang et al. [8] compared 24 existing methods to predict the effects of variants in the human
non-coding sequences, showing that current methods provide better concordance in results
when analyzing somatic variants than when dealing with germinal ones. On the other
hand, they demonstrate that existing computational methods show acceptable performance
only for germline variants, and that their predictive ability should be improved for different
types of non-coding variants. Even Rojano et al. [9] worked on a promising set of tools
for predicting the potential impact of variants falling in regulatory regions of the genome,
showing the advantages and limitations of tools dedicated to variant annotation more
than to variant effect interpretation. Although imperfect and in-progress, prediction tools
currently represent the unique recognized way and necessary step for rapid and massive
interpretation of ‘non-coding variants’. Nevertheless, they could hide pitfalls and issues
and often require functional tests, such as RNA sequencing or targeted approaches, multi-
plexed assays of variant effects, chromatin interaction assays, and reporter gene assays to
validate predictions [7]. Several other reviews have been published describing the limits
and strengths of different tools [10,11], focusing on those currently available to visualize
and functionally annotate WGS variants without performing comparative evaluation and
benchmarking. In this review, we provide an updated critical overview of the currently
available bioinformatics tools for interpreting SNP/indel falling in non-coding regions
(NCVs from now on), grouping selected methods based on the non-coding regions they
can target. For each of them, we: quantitatively assess and compare the performance of
the algorithms at computational and information levels, also evaluating computational
resources required for the execution; provide knowledge on their usability and effectiveness
in different genomic contexts; critically highlight limitations and advantages, when addi-
tional to those intrinsically residing in our inclusion criteria (described in the following).
To group tools depending on their target region, recent suggestions for functional element
identification were followed [12].

2. Methods
2.1. Inclusion Criteria

For each considered tool, specific features such as input requirements, output format,
supported reference genome, and the genomic context suitable for the tool are reported.
According to these criteria, methods were classified into three main categories: aggregators,
integrators, and investigators. In particular, software solutions that collect information
on variants’ annotation from other tools to propose a comprehensive overview of the
knowledge related to variants in non-coding regions were defined as ‘aggregators’. Tools
that combine variant properties (e.g., regulatory features, conservation metrics, genic
context) to provide refined scores for classifying or prioritizing the potential impact of such
variants were named ‘integrators’. Tools that develop ex-novo algorithms to investigate
and explain the functional consequences of variants in non-coding regulatory elements
were referred to as ‘investigators’. The ‘investigator’ tools, which not only annotate the
predicted impact of the variants in non-coding regions but can also provide information
concerning the functional effects of the variants, represent the focus of this review. Among
them, we identified 10 methods suitable for being included in bioinformatics pipelines for
WGS data analysis. Selection was performed based on the following criteria: (i) being freely
available; (ii) accepting VCF files as input; (iii) being fully accessible, including all additional
datasets necessary for running the tool. Selected programs were benchmarked based on
their intended usage in a controlled scenario, enabling the assessment of quantitative
performance. Programs were executed using hg19 as the reference genome.
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2.2. The Controlled Scenario: Knowledge-Based and Computational Performance

A set of manually curated known pathogenic and benign NCVs was obtained from
ncVarDB [13]. ncVarDB includes 721 certainly pathogenic and 7228 certainly benign NCVs,
spread over the whole human genome. Since it relies on the hg38 reference genome,
coordinates were converted to hg19 using the liftOver tool [14]. After conversion, three
benign variants (rs412762, rs878890367, and rs3208965) were lost. The number of SNPs in
each class (intronic, intergenic, ncRNA, 3′UTR, and 5′UTR) is reported in Table 1.

Table 1. Number of variants available in ncVarDB after conversion to hg19.

Category Pathogenic Variants Benign Variants

5′UTR 64 639
intergenic 10 100

non-coding RNA 72 738
intronic 539 5389
3′UTR 36 359

To evaluate the computational resources required by the tools, we in silico merged the
set of known variants with the variants in chromosome 20 from a sample of Han Chinese
ancestry [15] (HG005-NA24631) retrieved from the Genome In A Bottle (GIAB) project [16].
Chromosome 20 (64,444,167 bp) contained 78,186 variants distributed as follows: 88.34%
single nucleotide variants (SNVs), 11.2% small insertions/deletions (InDels), and 0.46%
larger sequence alterations; the set of non-coding variants (99.37%) overcame by far the
coding and splicing ones (0.52% and 0.11%, respectively).

The merged dataset contained 86,132 mutations and allowed us to benchmark the
performance in pathogenicity prediction and computational efficiency in a reasonable
time-frame.

All variants were annotated with VEP to identify the genomic region where they are
mapped [17]. For each tool, a set of performance metrics was retrieved including: (i) the
number of variants they could annotate; (ii) the computational time, calculated by running
jobs on a single node, with 2 12-cores CPUs (24 total cores); (iii) the availability of parallel
paradigm in the software; (iv) specificity = TN/[TN + FP]; (v) precision = TP/[TP + FP];
when allowed, (vi) sensitivity = TP/[TP + FN]; (vii) accuracy = [TP + TN]/[TP + TN + FP +
FN]. The last 4 metrics rely on the confusion matrices obtained comparing predicted results
to the ncVarDB knowledge base. In detail, (i) true positives (TP) correspond to variants
labeled as pathogenic by the tool under analysis AND by ncVarDB, (ii) true negatives
(TN) refer to variants labeled as benign by the tool AND by ncVarDB, (iii) false positives
(FP) represent variants labeled as pathogenic by the tool BUT as benign by ncVarDB,
and (iv) false negatives (FN) are variants that, although pathogenic for ncVarDB, are not
called pathogenic by the tool. In all the cases, except for the UTRs-related tools, it was
not possible to calculate FN, as the ability of the studied tool to evaluate the biological
function responsible for pathogenicity could not be clearly assessed. For example, if a deep
intronic variant has not been classified as pathogenic by splicing tools, it should not be
considered a false negative since its pathogenicity could still be attributed to a function
other than splicing.

3. Results
3.1. Method Selection

A total of 40 tools for NCV interpretation were initially considered (Table 2). Of
these, 10 ‘investigator’ tools passed our inclusion criteria (see ‘Inclusion criteria’ section
for details) and were retained for in-depth evaluation: Basenji, DeepSEA, Genomiser,
LINSIGHT, MORFEE, Orion, SPIDEX, SpliceAI, 5utr, UTRannotator (Figure 1). Their
performance (Table 3) was evaluated and described in the genomic context specific to each
tool, except for Genomiser, which was considered separately.
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Table 2. List of the tools considered for non-coding variant analysis.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

INVESTIGATORS

ARVIN 1

Predicting causal non-coding
variants. It infers non-coding

risk variants starting from
known causal variants in gene
promoters and enhancers for a

number of diseases

SNPs on
enhancers SNVs/ Indels [18] free

SNPs in bed format
+ Enhancer-promoter

interaction file + GWAVA
features + FunSeq features
+ Differential expression

p-values file

Prediction score for a list of
snps for being risk or

non-risk snps
Hg19 https://github.com/

gaolong/arvin

Basenji Tested

Annotating every mutation in
the genome with its influence

on present chromatin
accessibility and latent

potential for accessibility

Epigenetic
regions SNVs [19] free VCF

SNP activity difference
(SAD) score—difference
between the predicted

accessibility of the
alternative and the

reference alleles

Hg19 https://github.com/
calico/basenji

DeepBind 1

Predicting the sequence
specificities of DNA- and

RNA-binding proteins by deep
learning

Binding sites SNVs [20] free
(1) a list of model IDs, and

(2) a list of DNA/RNA
sequences

Weighted ensemble of
position weight matrices
or a ‘mutation map’ that
indicates how variations
affect binding within a

specific sequence

Hg19 https://github.com/
jisraeli/DeepBind.git

DeepSEA Tested

Predicting genomic variant
effects on a wide range of
chromatin features at the

variant position: transcription
factors binding, DNase I
hypersensitive sites, and

histone marks in multiple
human cell types

General purpose SNVs/Indels [21] free VCF/FASTA/BED (single
file)

Multiple files analyzing
chromatin feature
probabilities and a

functional significance
score

Hg19 http://deepsea.
princeton.edu/help/

DeltaSVM 1
Quantifying the effect of

variants in regulatory
non-coding regions

Regulatory
non-coding

regions
SNVs [22] free

Reference FASTA file (19
bp sequences centered at
the SNPs with reference

alleles) + Alternate FASTA
file (19 bp sequences

centered at the SNPs with
alternate alleles) + SVM
weight file (available for

download from the
webpage)

DeltaSVM scores, allowing
the prediction of

risk-conferring SNPs
Hg19, Hg38 http://www.beerlab.

org/deltasvm/

https://github.com/gaolong/arvin
https://github.com/gaolong/arvin
https://github.com/calico/basenji
https://github.com/calico/basenji
https://github.com/jisraeli/DeepBind.git
https://github.com/jisraeli/DeepBind.git
http://deepsea.princeton.edu/help/
http://deepsea.princeton.edu/help/
http://www.beerlab.org/deltasvm/
http://www.beerlab.org/deltasvm/
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Table 2. Cont.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

Epossum2 1
Predicting the impact of DNA
variants on transcription factor

binding
Binding sites SNVs/Indels - free

Single/few variants (in
VCF-like format), but does

not accept a VCF file
directly + one or more TFs

For each variant, a
blue/red box indicates the

likelihood of
increased/reduced TF

binding

Hg19
https:

//www.genecascade.
org/ePOSSUM2/

FUN-
LDA 1

Predicting Tissue-Specific
Functional Effects of

Non-coding Variation
General purpose SNVs/Indels [23] free

.csv, .txt or .gz file without
header (chr, hg19

coordinate or rs number),
<100,000 var

FUN-LDA scores for each
Roadmap tissue + Eigen
and Eigen-PC raw and

phred scores)

Hg19 https://github.com/
cran/FUNLDA

Geneyx
(former
Tgex’)

2

Working with GeneHancer and
VarElect, it translates the
finding of a variant in a

non-coding region into a
variant-to-gene-to-phenotype

annotation

SNVs in
enhancers,

promoters, and
ncRNA genes

SV/SNVs [24] license VCF

Report containing
prioritized variants,
together with their

annotation and analysis

Hg19 https://geneyx.com/
geneyxanalysis/

GenoCanyon 1
Inferring the functional

potential of each position in
the human genome

Conserved
regions SNV [25] free

Chromosomal
region/prediction score for
the region; pre-computed

scores are available

GenoCanyon score stating
whether a genomic locus is

functional or
non-functional

Hg19 http://zhaocenter.org/
GenoCanyon_FAQ.html

Genomiser Tested

Scoring the relevance of
variation in the non-coding

genome, and also associating
regulatory variants to specific

Mendelian diseases

General purpose SNVs/Indels [26] free

VCF, PED-file (only for
multiple samples in one

VCF), your patient’s HPO
terms (use the

HPO-Browser to find
terms), the inheritance

model if known, the
output prefix for your

output files

Annotates, filters, and
prioritizes likely causative

variants, formulating a
score

Hg19 https://github.com/
exomiser/Exomiser

Human
Splicing
Finder

2

Identifying all splicing signals,
including acceptor and donor
splice sites, branch points, and
auxiliary splicing signals (ESE

and ESS)

Splicing SNVs/Indels [27] license

Single mutations/VCF,
submitted through the

website by directly
submitting a VCF file

through an API

Pathogenicity prediction
for any mutation

potentially affecting
splicing

Hg19 https://www.genomnis.
com/the-system-1

INFERNO 1
Inferring the molecular
mechanisms of causal
non-coding variants

General purpose SNVs/Indels [28] free

GWAS/TSV
(chromosome\t rsID \t
region name\t position)

maximum of 8 Mb/rsIDs

Several files containing
relevant tissue contexts,

target genes, and
downstream biological
processes affected by
functional variants

Hg19
https://bitbucket.org/

wanglab-upenn/
inferno/src/master/

https://www.genecascade.org/ePOSSUM2/
https://www.genecascade.org/ePOSSUM2/
https://www.genecascade.org/ePOSSUM2/
https://github.com/cran/FUNLDA
https://github.com/cran/FUNLDA
https://geneyx.com/geneyxanalysis/
https://geneyx.com/geneyxanalysis/
http://zhaocenter.org/GenoCanyon_FAQ.html
http://zhaocenter.org/GenoCanyon_FAQ.html
https://github.com/exomiser/Exomiser
https://github.com/exomiser/Exomiser
https://www.genomnis.com/the-system-1
https://www.genomnis.com/the-system-1
https://bitbucket.org/wanglab-upenn/inferno/src/master/
https://bitbucket.org/wanglab-upenn/inferno/src/master/
https://bitbucket.org/wanglab-upenn/inferno/src/master/
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Table 2. Cont.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

JARVIS 3

Prioritizing non-coding
variants in whole genomes,

using human-lineage purifying
selection features and primary

sequence context

Conserved
regions SNVs [29] free

VCF and pre-calculated
JARVIS scores

gwRVIS—genome-wide
intolerance to variation

score

gwRVIS—genome-wide
intolerance to variation

score
Hg19, Hg38

https://github.com/
astrazeneca-cgr-

publications/JARVIS

LINSIGHT Tested

Improving the prediction
of non-coding nucleotide sites
at which mutations are likely

to have deleterious fitness
consequences

Conserved
regions SNVs [30] free VCF and Precomputed

LINSIGHT scores

LINSIGHT score, which
measures the probability
of negative selection on

non-coding sites

Hg19
https://github.com/

CshlSiepelLab/
LINSIGHT

MORFEE Tested Detecting variants creating
new uORF (new uAUG) 5′UTR SNVs [31] free VCF

(ANNOVAR-annotated)

MORFEE annotation
reporting the effect of the

variant on 5′UTR
Hg19 https://github.com/

daissi/MORFEE

Orion Tested

Detecting regions of the
non-coding genome that are

depleted of variation,
suggesting that the regions are

intolerant to mutations and
subject to purifying selection in

the human lineage

Conserved
regions SNVs [32] free

One or more gVCF files, a
summary by position for
all samples of either read
depth or genotype quality
(GQ), and a file containing

mutation rates;
pre-computed scores exist

Orion score, with higher
values corresponding to a

higher degree of
intolerance

Hg19 https://github.com/
igm-team/orion-public

RegulomeDB 1

Annotating SNPs with known
and predicted regulatory
elements in the intergenic

regions

Regions of
DNase

hypersensitivity,
binding sites of

TF, promoter
regions

SNVs [33] free dbSNP IDs/0-based
coordinates in batch

Graphic output + table
containing experiments

(often localized according
to tissues) regarding

various aspects (chromatin
state, accessibility, motifs,

chip data, qtl)

Hg19 https://regulomedb.
org/regulome-search/

SPIDEX Tested
Assessing whether a variant

causes dysregulation of a
splicing event

Splicing SNVs [34] free
SPANR: maximum of 40
SNV at a time; SPIDEX:

VCF of SNV

Score evaluating whether a
certain splicing isoform is
more enriched under the

presence/absence of a
given variant

Hg19

http://download.
openbioinformatics.org/
spidex_download_form.

php

SpliceAI Tested Identifying variants impacting
splice sites Splicing SNVs/Indels [35] free VCF

Delta score, highlighting
the probability of the

variant being
splice-altering

Hg19, Hg38 https://github.com/
Illumina/SpliceAI

5utr Tested
Providing different

annotations relevant to 5′UTR
(untranslated region) variants

5′UTR SNVs - free VCF
Annotation reporting the

effect of the variant on
5′UTR

Hg19, Hg38 https://github.com/
leklab/5utr

https://github.com/astrazeneca-cgr-publications/JARVIS
https://github.com/astrazeneca-cgr-publications/JARVIS
https://github.com/astrazeneca-cgr-publications/JARVIS
https://github.com/CshlSiepelLab/LINSIGHT
https://github.com/CshlSiepelLab/LINSIGHT
https://github.com/CshlSiepelLab/LINSIGHT
https://github.com/daissi/MORFEE
https://github.com/daissi/MORFEE
https://github.com/igm-team/orion-public
https://github.com/igm-team/orion-public
https://regulomedb.org/regulome-search/
https://regulomedb.org/regulome-search/
http://download.openbioinformatics.org/spidex_download_form.php
http://download.openbioinformatics.org/spidex_download_form.php
http://download.openbioinformatics.org/spidex_download_form.php
http://download.openbioinformatics.org/spidex_download_form.php
https://github.com/Illumina/SpliceAI
https://github.com/Illumina/SpliceAI
https://github.com/leklab/5utr
https://github.com/leklab/5utr
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Table 2. Cont.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

UTRan
-notator Tested

Annotating high-impact five
prime UTR variants either

creating new upstream ORFs
or disrupting existing

upstream ORFs

5′UTR SNVs/Indels [36] free VCF
Annotation reporting the

effect of the variant on
5′UTR

Hg19, Hg38
https://github.com/

ImperialCardioGenetics/
UTRannotator

VarElect
Gene-

Hancer
1, 2

Inferring direct and indirect
links between genes (or

enhancers and promoters
included in GeneHancer) and
phenotypes—GeneHancer is a
database of human regulatory

elements (enhancers and
promoters) and their inferred

target genes

Enhancers N.A. [37,
38] license Gene symbols and

phenotypes

List of input genes with a
score that tells how much

each gene is associated
with the requested

phenotype

Hg19, Hg38

https://github.com/
ucscGenomeBrowser/

kent/blob/master/src/
hg/makeDb/doc/

geneHancer.txt

INTEGRATORS

CADD

Scoring the deleteriousness of
single nucleotide variants as
well as insertion/deletions

variants

General purpose SNVs/Indels [39] Free * VCF or .tsv.gz
CADD score, measuring

the deleteriousness of
SNVs and indels

Hg19, Hg38
https://github.com/
kircherlab/CADD-

scripts

DANN
Predict pathogenicity of SNVs
and indels using deep neural

network
General purpose SNVs/Indels [40]

free
py-

Torch
imple-
men-
tation

VCF or .tsv.gz DANN score, measuring
the pathogenicity of SNVs N.A. https://cbcl.ics.uci.edu/

public_data/DANN/

DVAR Genome-wide functional
scores General purpose SNVs/Indels [41] free

.tsv (chromosome,
position, the ref

nucleotides, the obs
nucleotides, and the rs

number)

Produced functional
cluster labels and scores
the importance of each

variant
Hg19 https://www.vumc.

org/cgg/dvar

Eigen
v1.0

Eigen uses a variety of
functional annotations in both
coding and non-coding regions

and combines them into one
single measure of functional

importance

General purpose SNVs [42] free VCF
Eigen score, measuring

how functional the variant
is

Hg19, Hg38 http://www.columbia.
edu/~ii2135/eigen.html

FATHMM-
XF (old
-MKL)

Functional predictor for SNVs SNVs SNVs [43] free VCF or csv (chr, pos, ref n,
mut n)

Score highlighting the
variant pathogenicity Hg19, Hg38

https://github.com/
HAShihab/fathmm-

MKL

https://github.com/ImperialCardioGenetics/UTRannotator
https://github.com/ImperialCardioGenetics/UTRannotator
https://github.com/ImperialCardioGenetics/UTRannotator
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/makeDb/doc/geneHancer.txt
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/makeDb/doc/geneHancer.txt
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/makeDb/doc/geneHancer.txt
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/makeDb/doc/geneHancer.txt
https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/makeDb/doc/geneHancer.txt
https://github.com/kircherlab/CADD-scripts
https://github.com/kircherlab/CADD-scripts
https://github.com/kircherlab/CADD-scripts
https://cbcl.ics.uci.edu/public_data/DANN/
https://cbcl.ics.uci.edu/public_data/DANN/
https://www.vumc.org/cgg/dvar
https://www.vumc.org/cgg/dvar
http://www.columbia.edu/~ii2135/eigen.html
http://www.columbia.edu/~ii2135/eigen.html
https://github.com/HAShihab/fathmm-MKL
https://github.com/HAShihab/fathmm-MKL
https://github.com/HAShihab/fathmm-MKL
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Table 2. Cont.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

GWAVA

Predicting the functional
impact of non-coding genetic

variants based on a wide range
of annotations of non-coding

elements, along with
genome-wide properties such
as evolutionary conservation

and GC-content

General purpose SNVs/Indels [44] free
Multiple variant identifiers

(in BED format) or
chromosomal regions

GWAVA score, with higher
scores indicating variants

predicted as more likely to
be functional

Hg19 https://www.sanger.ac.
uk/tool/gwava/

IW-
Scoring

Scoring (integrates in a
weighted way the outputs of
other software, chosen by the

user from a list)

Non-coding
variations SNVs/Indels [45] free

In batches up to 100 K
SNPs/InDels (also VCF

format, but not
exclusively)

Two separate linear
weighted functional
scoring schemas for
known and novel

variations, respectively,
which differentiate

functionally significant
variations from others

Hg19 https://snp-nexus.org/
IW-Scoring/index.html

PAFA Genome-wide functional
scores General purpose SNVs/Indels [46] free VCF (<100.000 var) max 2

Mb
Prioritization of variants +

functional score Hg19, Hg38 http://159.226.67.237:
8080/pafa/

PINES

Predicting the functional
impact of non-coding variants

by integrating epigenetic
annotations in a

phenotype-dependent manner

General purpose SNVs [47] free
List of intronic or

intergenic variants one rs
per line

Identification and
prioritization of functional

non-coding SNPs
Hg19 https://github.com/

PINES-scoring/PINES

Regulation
Spotter

Integrating data from various
sources to show whether a

variant lies within a regulatory
region and has the potential to

impair gene expression

Intolerant
regions SNVs/Indels [48] free Single variant or VCF

format

Summary table with a
graphical matrix depicting
key aspects of all analyzed

variants

Hg19 https://www.
regulationspotter.org/

AGGREGATORS

Alamut
(Batch) Annotator General purpose SNVs/Indels [49] license VCF, tab-delimited files Annotated variants Hg19, Hg38

https://www.
interactive-biosoftware.

com/alamut-batch/

ANNOVAR Annotator General purpose SNVs/Indels [50] free VCF Annotated variants Hg19, Hg38
https:

//github.com/WGLab/
doc-ANNOVAR

BasePlayer

Large-scale discovery tool for
genomic variants allowing for
complex comparative variant

analyses

General purpose SNVs/Indels [51] free BAM or VCF (+BED)

Graphical user interface
for variants visualization
(built-in genome browser,
interactive variant analysis,

and data integration
tracks)

Hg38 https://github.com/
rkataine/BasePlayer

https://www.sanger.ac.uk/tool/gwava/
https://www.sanger.ac.uk/tool/gwava/
https://snp-nexus.org/IW-Scoring/index.html
https://snp-nexus.org/IW-Scoring/index.html
http://159.226.67.237:8080/pafa/
http://159.226.67.237:8080/pafa/
https://github.com/PINES-scoring/PINES
https://github.com/PINES-scoring/PINES
https://www.regulationspotter.org/
https://www.regulationspotter.org/
https://www.interactive-biosoftware.com/alamut-batch/
https://www.interactive-biosoftware.com/alamut-batch/
https://www.interactive-biosoftware.com/alamut-batch/
https://github.com/WGLab/doc-ANNOVAR
https://github.com/WGLab/doc-ANNOVAR
https://github.com/WGLab/doc-ANNOVAR
https://github.com/rkataine/BasePlayer
https://github.com/rkataine/BasePlayer
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Table 2. Cont.

Scheme Notes Aim Target Var Type Ref./
Year License Input Output

Allowed
Ref.

Genome
Repository/Homepage

RegBase

Integrating non-coding
regulatory prediction scores

and composite prediction
models from existing tools

Non-coding
regulatory
variants

SNVs [52] free * Chromosome coordi-
nates/query_file.bed Variants prioritization Hg19 https://github.com/

mulinlab/regBase

SnpEff Annotating and predicting the
effects of genetic variants General purpose SNVs/Indels [53] free VCF Annotated variants Hg19, Hg38 https://github.com/

pcingola/SnpEff

SNPNexus

Variants annotation tool
designed to simplify and assist

in the selection and
prioritization of known and
novel genomic alterations

General purpose SNVs/Indels [54] free * Single and batch Annotated variants Hg19, Hg38 https://www.snp-
nexus.org/v4/

VarAFT

Provides experiments’ quality,
annotates, and allows the

filtration of VCF files;
annotates and pinpoints
human disease-causing

mutations through access to
multiple layers of information

General purpose SNVs/Indels [55] free VCF or ANN 4.1

Graphical user interface
that allows the

simultaneous annotation,
filtration, and breadth and
depth of coverage analysis

Hg19, Hg38 https://varaft.eu/

VEP
Predic-

tor

Annotator (but specific
modules for non-coding

variants exist)
General purpose SNVs/Indels [17] free VCF, rsID or HGVS

notations Annotated variants Hg19, Hg38 https://github.com/
Ensembl/ensembl-vep

Note: The ‘Notes’ column reports, for each ‘investigator’ tool, the reason for its exclusion from the test: 1, the tool does not accept VCF as input; 2, the tool is not freely available; 3: tool
not available. (*) free for academic or non-commercial use.

https://github.com/mulinlab/regBase
https://github.com/mulinlab/regBase
https://github.com/pcingola/SnpEff
https://github.com/pcingola/SnpEff
https://www.snp-nexus.org/v4/
https://www.snp-nexus.org/v4/
https://varaft.eu/
https://github.com/Ensembl/ensembl-vep
https://github.com/Ensembl/ensembl-vep
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Figure 1. Graph of the approach followed in defining, grouping, and analyzing selected tools. A first
literature screening was performed to retrieve the most promising existing methods for NCVs analysis.
They belong to ‘Annotators’, ‘Integrators’, or ‘Investigators’ groups. Focusing on components of the
‘Investigators’ group, inclusion criteria were applied to select a set of best-hits. They were clustered
relying on the genomic region they targeted, and several features were critically evaluated.

Table 3. Performance for each selected tool, grouped by category.

Tool
Number of
Annotated

Variants from
ncVarDB

Computational
Performance

Parallel
Paradigm TP/FP/TN/FN Specificity Sensitivity Precision Accuracy

UTRs
UTRannotator 478 1 m–10 m yes 13/24/396/45 0.943 0.224 0.351 0.856

5utr 478 1 m–10 m yes 20/78/342/38 0.814 0.345 0.204 0.757
MORFEE 433 10 m–30 m no 3/14/368/48 0.963 0.059 0.176 0.857

Splicing sites
SpliceAI 4854 30 m–1 h yes 389/1/4249/n.a. 0.9998 — 0.997 —
SPIDEX 756 <1 m Yes 1 314/19/273/n.a. 0.935 — 0.943 —

Genome accessibility and mutation intolerance
DeepSEA 7879 >1 d no 388/243/6980/n.a. 0.966 — 0.615 —

Orion 4373 1 m–10 m Yes 2 169/311/3482/n.a. 0.918 — 0.352 —
LINSIGHT 1240 <1 m Yes 2 334/59/676/n.a. 0.9197 — 0.8499 —

Basenji 7946 >1 d (on CPU)
5 h–24 h (on GPU) 3 yes 117/1263/5962/n.a. 0.825 — 0.085 —

Note: 1 SPIDEX annotations are available through ANNOVAR, which supports multi-threading; 2 When using
pre-computed scores, the annotation relies either on VEP or vcfanno, which both support multi-threading.
3 Working on a single CPU, in accordance with the other software tests, the tool required days to complete the
run. An additional test on a single GPU took 23 h to generate the final output. n.a.: not available. Computational
performance is defined with predefined time intervals: <1 m, 1 m–10 m, 10 m–30 m, 30 m–1 h, 5 h–24 h, >1 d,
where m = minute, h = hour, d = day.
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3.2. Tools for Identifying NCV Affecting UTRs

Messenger RNA (mRNA) is surrounded by transcribed but untranslated regions
(UTRs), namely 5′ (upstream) and 3′ (downstream) UTRs. These intervene in the post-
transcriptional phase contributing to the regulation of mRNA stability, secondary structure,
localization, and translation. Notably, 3.7% of the genetic variants detected in GWAS
studies are located in UTRs [56,57]. Moreover, 3′UTRs usually carry polymorphisms
(MAF > 1%), whereas mutations (MAF < 1%) predominate in 5′UTR [58]. The 3′UTR is
characterized by binding sites for RNA-binding proteins (RBPs) and microRNAs (miRNA);
thus, variants in this region may lead to unstable mRNAs by creating or abolishing critical
binding sites for long non-coding RNAs, miRNAs, or proteins involved in the regulation
of translation. 5′UTR should possess a Kozak consensus sequence (ACCAUGG), which
contains the translation initiation codon and other regulatory elements like CpG sites,
uORFs (upstream Open Reading Frame), IRESs (internal ribosome entry sites), and RBP
binding sites. Moreover, it could house secondary structures, such as hairpins, which are
important in translational regulation [59]. Variations in length and sequence in 5′UTR
could have a significant impact on the overall production of the protein, mainly causing:
(i) the establishment of upstream start sites (uAUGs); (ii) the disruption of the pre-existing
start or stop codons of uORFs which are crucial tissue-specific cis regulators of translation
and are present in around half of all gene 5′UTRs; (iii) a frameshift in an existing uORF. A
recent study demonstrated that variants in 5′UTRs creating new upstream start codons or
disrupting stop codons of existing uORFs are under strong negative selection [60].

Currently, no tool is available specifically for NCV in 3′UTRs, while three ‘investigator’
tools for 5′UTR variants were identified as representative of the pool of methods targeting
this region: UTRannotator, 5utr, MORFEE.

UTRannotator [36] is a comprehensive tool for studying variants impacting uORFs
in eukaryotes. For each 5′UTR variant provided in the VCF input file, UTRannotator
evaluates whether it could lead to any of the effects listed in the previous paragraph,
assigning the number of overlapping ORFs within the 5′UTR, both in-frame and out-of-
frame, and counting 5′UTR-uORFs with a stop codon in the reference sequence. For each
of these variants, transcript-specific annotation is provided, leading to multiple annotation
consequences. As output, UTRannotator supports default VEP output, tab-delimited,
and VCF formats. For each of the five different conditions (uAUG gained/lost, uSTOP
gained/lost, uFrameShift), the tool evaluates the type of uORF disrupted and/or created
(e.g., inframe, OutOfFrame), the Kozak consensus sequence [61] and strength, as well
as other features [62]. UTRannotator is available as a VEP plugin, which represents an
advantage to VEP users.

In the reference dataset, UTRannotator could recognize 718 variants, resulting in 727 an-
notations (some variants were located in the 5′UTR of multiple genes, e.g., rs12974606).
Considering the 74 variants predicted to have a pathogenic effect on 5′UTR, ‘uAUG gained’
was the most represented class of uORF-perturbing consequence (26 variants), followed
by ‘uAUG lost’ (18 variants), ‘uFrameShift’ (11 variants), ‘uSTOP gained’ (7 variants), and
‘uSTOP lost’ (7 variants). Peculiar effects were highlighted for 5 specific variants, such
as ‘uAUG gained & uAUG lost’. The main limitations of UTRannotator are the constraint
to work on variants shorter than 5 bps, and the consideration of only canonical AUG
start sites.

5utr [63], also available as a VEP plugin, making it easy to run for VEP users, retrieves
the distance of the variant from the main start codon of the coding sequence (CDS), the
information about AUG and STOP loss/gain/change and auxiliary fields (e.g., in/out of
frame and Kozak sequence and strength) noteworthy for the interpretation of variant effects.
In particular, TE_log2fold [64] indicates the change in predicted translational efficiency
caused by the variant. Delta_dsRNA and Delta_G4 [65] parameters indicate the change in
minimum free energy of the double-stranded RNA (secondary structure) and quadruplex
structures, respectively, representing their stability. The increased stability of secondary
structures due to the variants is indicated by Delta_dsRNA negative values, which are
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associated with reduced translation. The VEP-based annotation resulted in 718 variants
falling in 5′UTRs (727 annotations, considering variants located in the 5′UTR of multiple
genes), where 151 were identified with a pathogenic effect. Among these, 5utr recog-
nised 14 ‘STOP_change’, 33 ‘STOP_loss’, 57 ‘STOP_gain’, 1 ‘AUG_change’, 21 ‘AUG_gain’,
12 ‘AUG_loss’, 3 ‘AUG_loss & STOP_change’, 2 ‘AUG_gain & STOP_change’, 2 ‘AUG_loss
& STOP_loss’, 4 ‘AUG_gain & STOP_gain’, and 2 ‘AUG_loss & STOP_gain’ events.

A ‘delta_G4’ score (∆G4) = 0 was assigned to 260 variants (94.2%), 6 variants had a
∆G4 < 0, two had 0 < ∆G4 < 1 and 2 variants obtained a ∆G4 = 1. Of the remaining 6
variants presenting a ∆G4 > 1, the highest ∆G4 value was 12.5. Concerning ‘delta_dsRNA’
(∆RNA), 41 variants were assigned a ∆RNA = 0; 126 were attributed a ∆RNA > 0; and 109
a ∆RNA < 0, showing increased stability of RNA secondary structure. For both values,
whenever a single variant was located on multiple transcripts, the extreme value was
considered.

5utr main limitations are that it works only on single nucleotide substitutions (SNVs),
and that some annotations are available only for the nearest 100 bp to CDS.

MORFEE (Mutated upstream ORF dEtEction) [31] is an R package that detects and
annotates SNVs leading to the formation of upstream translation initiation codons (AUG).
This can result in a longer protein (in the case of uAUG in frame with the main CDS with
no associated premature stop codon) or in an entirely upstream or overlapping uORF
(in the case of a 5′UTR variant associated with a stop codon prior to the main CDS or
within it, respectively). After annotation with ANNOVAR [50], 5′UTR variants are filtered,
and the GENCODE database is exploited to extract transcripts information and generate
the complementary DNA sequences. On this basis, MORFEE can determine whether an
SNV causes the formation of a new upstream ATG sequence and annotates (i) the distance
between the reference ATG and the newly created ATG (uORF-CDS distance), (ii) the
reading frame shift (0, 1, 2), and (iii) the predicted uORF length (the distance separating the
new ATG from the first stop codon in frame). Overall, MORFEE recognized 22 pathogenic
events (14 uATG events and 8 uSTOP events) in the 591 variants annotated by Annovar as
5′UTR variants.

Comparing the three tools, MORFEE is limited to annotating variants that create
uAUGs only, whereas 5utr and UTRannotator also report the disruption of the existing
stop codon of uORFs, the creation of new ones and whether the variant makes the Kozak
consensus sequence weaker or stronger. In addition, 5utr annotates the change in predicted
translational efficiency [64] and minimum free energy of the secondary structure [65].

The computational performance of the three tools is reported in Table 3. Knowledge-
based performance (confusion matrix and related indexes) were similar for the three
methods, which show quite high specificity and accuracy, whereas insufficient sensitivity
and precision. The distribution and overlap of results related to the correct identification of
pathogenic variants (referred to ncVarDB data, excluding chrM) are reported in Figure 2.
On this basis, 5utr and UTRannotator show overlapping results and a higher number of
correctly classified NCV and higher sensitivity than Morfee. In total, 19 pathogenic variants
in 5′UTR were correctly detected, 17 being detected by multiple tools, while only 2 were
specifically discovered by 5′UTR dedicated tools (Figure 2B).

3.3. Tools for Identifying NCV Affecting Splicing Sites

The precursor mRNA obtained during transcription has to be spliced into mRNA.
During the splicing process, exons are joined together after removing introns. This complex
procedure is performed by the spliceosome in eukaryotes and driven by specific sequences
and auxiliary splicing of cis elements, namely ss-recognition promoting ‘intronic/exonic
splicing enhancers’ (ISEs/ESEs) and ss-recognition repressing ‘intronic/exonic splicing
silencers’ (ISSs/ESSs). Canonical splice sites (CSSs) are usually marked, at either exons’
sides, by the canonical sequences ‘AG’ (upstream acceptor sites, 3′ splice site) and ‘GT’
(downstream donor sites, 5′ splice site). These motifs are embedded within consensus
splice site recognition sequences (mainly ‘CAG’ and ‘AGGTAAGT’, respectively) still
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under purifying selection [60]. Regions surrounding canonical splice-sites show constraints
similar to protein-truncating and missense variants [66]. Variants affecting the essential
sequences GT (at position D+1 and D+2) or AG (at position A-1 and A-2) will lead to the
disruption of the consensus sequence, thus resulting in the impaired recognition of the
splice site by the splicing machinery. Many mutations not directly affecting the canonical
sequences would lead to the same result. Splicing defects within genes are estimated
to cause at least 10% of rare pathogenic genetic variants [67] and have been identified
as a major source of Mendelian diseases [68,69]. They can be found in CSSs and splice
motifs within deep intronic regions (>50 nt from exon-intron boundaries). For example,
substitutions within introns may create novel acceptor or donor splice sites recognized by
the spliceosome, leading to the inclusion of a portion of the intron in the mature transcript.
Less common variants result in the establishment of either new exons within the intron
or novel regulatory elements, such as splicing enhancers [70]. Other variants may cause
exon skipping, extension, or truncation, leading to the alteration of reading frames or even
driving nonsense-mediated decay.
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axis). A cell is colored whenever a variant is correctly identified as pathogenic. The color scale rep-
resents the genomic feature considered by the tools: green, NCVs affecting chromatin structures; 
orange, variants in 5′UTRs; purple, variants affecting the splicing. (B) Upset plot showing the co-
occurrence of pathogenic non-coding variants from ncVarDB identified by each tool. The horizontal 
bars show the total number of pathogenic non-coding variants detected by each tool. The vertical 
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every combination of tools, and the number at the top identifies the cardinality of the set. The black 
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Figure 2. Pathogenic ncVarDB variants (excluding those on chrM) correctly marked as pathogenic by
the listed tools. (A) The heatmap shows the pathogenic variants (y-axis) detected by each tool (x-axis).
A cell is colored whenever a variant is correctly identified as pathogenic. The color scale represents
the genomic feature considered by the tools: green, NCVs affecting chromatin structures; orange,
variants in 5′UTRs; purple, variants affecting the splicing. (B) Upset plot showing the co-occurrence
of pathogenic non-coding variants from ncVarDB identified by each tool. The horizontal bars show
the total number of pathogenic non-coding variants detected by each tool. The vertical bars show the
occurrence or co-occurrence of pathogenic non-coding variants identified through every combination
of tools, and the number at the top identifies the cardinality of the set. The black dots and lines show
the combination of tools that make up each set.

Variants within modulating sequences of alternatively spliced genes may abolish
gene function or alter the balance of distinct isoforms, wiping out those depending on the
disrupted site [71].
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Two of the most commonly used tools for annotating NCV in splicing regions were
reviewed here, one leaning on VEP (SpliceAI) and one on ANNOVAR (SPIDEX).

SpliceAI [35] is an open-source, artificial intelligence-based software freely released by
Illumina, which enables the prediction of non-coding variants that disrupt the conventional
patterning of exons and introns. It relies on a 32-layer deep neural network exploiting
a 10,000-nucleotide window, thus allowing it to use both short-range characteristics (i.e.,
GT and AG dinucleotides, etc.) as well as long-range features (i.e., exon–intron length,
nucleosome positioning, etc.) for exon definition [35,70,72]. The model analyzes the impact
of input variants on the splicing, considering all bases within 50 bp from the variant on
the pre-mRNA transcript, and returns the surrounding residue with the most significant
predicted splicing alteration caused by the variant. In particular, SpliceAI outputs the
score difference (Delta score, DS) between the predicted exon-intron boundaries in the
reference and the alternative pre-mRNA transcript sequence. The output prediction score
reflects the splicing-altering probability of a genetic variant (from 0 to 1), which is higher
for variants affecting the splicing patterns of a large fraction of gene transcripts and is
correlated to the validation rates in the RNA-seq data. For each input variant, SpliceAI
retrieves the associated gene symbol, DS and delta positions (DP), acceptor gain (AG),
acceptor loss (AL), donor gain (DG), and donor loss (DL), specifying the location where
splicing differs from the reference (positive values result for the downstream region of the
variant, and negative ones for the upstream region). SpliceAI authors suggest using 0.5 as
the cutoff to distinguish true predicted splice-altering variants; 0.2 would lead to a high
recall, while 0.8 is recommended to achieve higher precision values. SpliceAI can be run in
a standalone mode or with the available pre-scored list for the VEP plugin, which could
represent an advantage for VEP users. The pre-computed set contains scores greater than
0.1 for all possible SNVs and 1–4 bases indels within genes defined by GENCODE. Due
to the time-consumption of the standalone SpliceAI software (analysis of Chr20 took 38 h
using a single core and 14.5 h using parallel execution on multiple cores), performance
analyses were run exploiting the pre-scored dataset. Out of the 86,132 variants provided,
SpliceAI scored 34,122 variants affecting the splicing process. Most of these were scored for
only 1 gene (27,694 variants, which represent 81.16% of the total scored variants). Moreover,
5279 variants were scored for 2 genes, 867 for 3 genes, 202 for 4 genes, 44 for 5 genes, 16 for
6 genes, 15 for 7 genes, 2 for 8 genes, and 3 for 9 genes. Focusing on the scores provided
in default mode, the computation of DS for (i) acceptor gain resulted in 269 variants with
0.5 < DS < 0.8 and 534 variants showing 0.2 < DS < 0.5, (ii) acceptor loss resulted in 349
with 0.5 < DS < 0.8 and 420 with 0.2 < DS < 0.5, and (iii) donor gain resulted in 541 with
0.5 < DS < 0.8 and 739 with 0.2 < DS < 0.5; (iv) donor loss in 667 with 0.5 < DS < 0.8 and
730 with 0.2 < DS < 0.5.

Major limits of SpliceAI are the exclusion of variants within 5 kb from the chromosome
ends and the focus on SNPs within 50 bp from a canonical exon.

SPIDEX [34] is a database of pre-computed scores generated by a machine-learning
approach that evaluates how strongly genetic variants potentially affect an RNA splicing
event. This is measured using the Percentage of Spliced-In (PSI) metric, which evaluates
whether a splicing isoform is enriched in the presence of a variant. Scores cover all
synonymous, missense, and nonsense exonic SNVs, as well as intronic SNVs that are in
proximity of splice junctions. SPIDEX annotation is available through the ANNOVAR
framework [50]. The software returns the gene supposedly affected by the variant, together
with two scores: dpsi_max_tissue, a percentage indicating the maximum value, across
tissues, of delta PSI (i.e., the predicted change of PSI due to the variant), and dpsi_zscore,
the z-score of the former, relative to the distribution of delta PSI due to common SNPs.

The choice of thresholds useful to determine when a variant is predicted to alter
splicing is problem-dependent. Nevertheless, Butkiewicz et al. [73] hypothesized that a
|z-score| > 2 could indicate a high likelihood of splicing disruption. Over the 86,132 vari-
ants in the reference VCF, 3317 were annotated with a SPIDEX score, and 537 had a
|z-score| > 2.
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A possible limitation of the tool is its ability to analyze only intronic SNVs located up
to 300 nt from the splice junctions.

Apart from using different algorithms, the main difference between the two programs
lies in the width of the region flanking the variant used for training the model. SpliceAI
uses a large window of 10,000 nucleotides to identify long-range features that may affect
the spliceosome, whereas SPIDEX is trained on sequence features extracted from each exon
and its neighboring introns and exons.

The performance of tools for interpreting variants in splicing regions is reported in
Table 3. They are similar both in specificity and precision. Spidex appears faster than
SpliceAI, although the latter can detect a major number of variants. A total of 44 variants
located in splicing regions were specifically identified by dedicated tools (35 by SpliceAI,
8 by Spidex, and 1 by both), while the other 348 were effectively detected also by the other
tools (Figure 2).

3.4. Tools for Identifying NCV Affecting Genome Accessibility and Mutation Intolerance

Accessible chromatin loci across the genome are called ‘open chromatin regions’
(OCRs). These nucleosome-depleted regions can be bound by protein factors and change
dynamically [74] in response to external stimuli and developmental cues, playing crucial
roles, among the others, in gene transcription [73]. OCRs containing cis-elements able to
be bound by transcription factors are well conserved among eukaryotes. Genetic lesions
in these loci can contribute to complex human diseases by re-modulating gene expression
and disrupting finely tuned transcriptional networks [3]. Two interesting aspects of the
higher-order structures are the so-called ‘topologically associating domains’ (TADs) and
the high number of intra-domain interactions. Mutations at TAD boundaries could lead
to the rewiring of cis interactions causing genes ectopic expression [75–77]. It has been
shown that, in patients with presumed genetic diseases, regions intolerant to mutations
are enriched for non-coding de-novo pathogenic variants [32]. It has also been highlighted
that conservation, indicating that a sequence has been maintained by natural selection, and
intolerance seem tightly connected concepts, since ultra-conserved non-coding elements
appeared as the most intolerant regions in the human genome [29].

A set of software programs have been developed to deal with higher-order structures,
that are becoming crucial for interpreting WGS data.

An example is DeepSEA [29], a deep-learning-based algorithm that aims at predicting
the functional impact of non-coding variants on transcription factor binding sites, DNase I
hypersensitivity domains (DHSs), and histone marks, using sequence information alone
and with single-nucleotide sensitivity. This represents a challenging task, requiring the
accurate modeling of the complex interactions between sequence context, TF binding,
and histone modifications. To compute reliable sequence-based predictions, DeepSEA
uses three main levels of information: (i) a 1 kb genomic region surrounding the variant
position; (ii) flexible modeling of the complex interactions between sequences, TFs, DHSs,
and histone marks; (iii) joint learning of chromatin factors sharing the same predictive
features to increase the computational efficiency. For each input variant, DeepSEA computes
a functional significance score based on chromatin effect predictions and evolutionary
information-derived scores. A functional significance score < 0.01 was considered to define
pathogenic variants, as it was the most stringent threshold in the summary output file.
Multiallelic variants must be removed before running DeepSEA.

Another selected tool is Orion [32], which detects non-coding regions depleted of
variations, suggesting them as intolerant to mutations and subject to purifying selection in
the human lineage. Orion scans the whole genome and, for each position, it calculates a
score as the difference between the observed and expected site-frequency spectrum (SFS)
in a window of 501 bp, where SFS is a statistic measure used in population genetics to
describe the distribution of allele frequencies across loci in a population. A higher score
indicates a more intolerant region and, consequently, a potentially more pathogenic variant.
In addition to the software to calculate the score [21], Orion provides a pre-computed
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set of scores, available to directly annotate the variants file through Vcfanno annotation
software [78]. Among the 86,132 input variants, 41,269 were annotated with an Orion score,
ranging from a maximum of 0.11607 (rs2979626) to a minimum of −8.87495 (rs561980359).
Since a threshold for assuming pathogenicity is not provided, an empirical approach
was applied, considering that exons (which tend to be intolerant) typically have a mean
score value of −0.174, introns of −0.325, and protein-coding regions of −0.262. Therefore,
damaging variants were considered when the score > −0.174. Orion’s major limit consists
in the absence of pre-computed scores, which can greatly reduce computational time
for repetitive regions and sex chromosomes, disabling any chance of finding possible
pathogenic variants in those genomic locations.

LINSIGHT [30], the updated version of fitCons [79], provides the ‘fitness consequence’
scores, used as evolution-based measures of potential genomic function. In particular,
fitCons aggregates information on natural selection obtained from the INSIGHT (Inference
of Natural Selection from Interspersed Genomically coHerent elemenTs) evolutionary
model [75,76]. For sites under negative selection, thus less likely to experience a variation
in the human lineage, the presence of an SNV will be associated with a low frequency of
segregation due to selection. Based on the same concept, LINSIGHT (Linear INSIGHT)
improved speed, scalability, genomic resolution, and prediction power by coupling the
probabilistic INSIGHT model to a generalized linear model for genomic features, avoiding
the need for discretization. The tool provides pre-computed LINSIGHT scores, which
can be employed to estimate negative selection regions in the human genome. The tool
could annotate 7252 variants out of the 86,132 in the input VCF. According to the related
publication, a score >0.8 should be associated with a strong selection; therefore, variants
localized in regions with such scores have been considered pathogenic. Of note, the tool is
based on the assumption that natural selection occurred in the past and provides useful
information about phenotypic importance in the present time. This approach leads to some
limitations, as, in this light, variants influencing clinical traits that do not show signs of
historical purifying selection (e.g., those influencing phenotypes dependent on the modern
human environment) could be difficult to study. Moreover, traits related to highly epistatic
loci or the contribution of numerous loci could be difficult to attribute to single nucleotides.

Basenji [19], the successor of Basset, is a deep convolutional neural network (CNN)-
based approach. Basenji allows: (i) training deep CNN to predict regulatory activity
along very long chromosome-scale DNA sequences; (ii) score variants according to their
predicted influence on regulatory activity; (iii) annotating the distal regulatory elements that
influence gene activity and the specific nucleotides that drive regulatory element function.
For each variant, two scores are retrieved: SAD (SNP Activity Difference) and SED (SNP
expression difference, which requires additional file input). SAD represents the difference
between the predicted accessibility of the alternative and the reference alleles. Thus, higher
positive SAD indicates higher predicted chromatin accessibility on the alternative allele
than on the reference one [80], and the higher the absolute value, the higher the impact
of the considered variant on accessibility. For Basenji, the pre-trained model offered by
developers (downloadable from GitHub) was used. Basenji annotated all 86,132 variants
contained in the VCF input file. It is relevant to note that, for each variant, 5313 SAD
scores were computed, referring to different types of cell and experimental techniques
(CAGE, DNase, and chip) [81]. The gold standard for analyzing results is to focus on SAD
scores from training datasets relevant to the cell type or tissue of interest. However, since
tests carried out in this review are general purpose, human embryonic stem cells (hESC)
were considered. Since the resulting values were highly variable, a predefined threshold
to identify relevant variants was difficult to detect. Thus, z-scores were computed for
all variants, and |z-score| > 1.96 was considered relevant, allowing the identification of
the elements belonging to the extreme 5% of the area under the normal curve. Overall,
1610 variants exceeding the fixed threshold were detected. A recognized approach for
threshold definition represents the main disadvantage of Basenji and could easily lead to
unreliable results.
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The methodologies applied by the tools in this category are quite diverse. Basenji
and DeepSEA are sequence-based methods. Basenji is trained on chromatin accessibility
profiles to predict the impact of genomic variants on gene expression, while DeepSEA is
based on a wide range of chromatin profiles to estimate the effects of sequence alterations
on chromatin accessibility. LINSIGHT belongs instead to the class of evolutionary-based
methods. It combines functional and comparative genomic data to predict the effects of non-
coding variants on fitness. Finally, Orion uses population genetics-based methodologies to
identify genomic regions that are intolerant to variation and are therefore more likely to be
pathogenic when mutated. These approaches, albeit different, are interconnected because
chromatin accessibility, evolutionary conservation, and mutation intolerance are highly
correlated features [82,83].

The performance of the considered tools for interpreting variants affecting genome
accessibility and conserved regions is reported in Table 3. All the considered tools showed
good specificity, while only LINSIGHT reported acceptable precision, as well as being the
fastest. Conversely, Basenji could detect the smallest number of TP, resulting to be the
slower and less precise tool (Table 3 and Figure 2). Interestingly, LINSIGHT and DeepSEA
show quite a high overlap in variant detection (277 variants commonly detected, of which
27 were specifically identified by these two tools) although their aims in principle are quite
different, LINSIGHT being focused on the evolutionary context, and DeepSEA on chromatin
structure aspects. A minor overlap is identifiable between the results of LINSIGHT and
Orion, although dedicated to similar aspects (respectively, regions that are conserved and
intolerant to variations).

3.5. Phenotype-Based Functional Prediction Tool

Among the general purpose “investigator” tools, Genomiser [26] is the only one able
to interpret and associate non-coding variants to specific Mendelian disorders. It is an
Exomiser-based [84] whole–genome analysis framework able to score the relevance of varia-
tions in the non-coding genome and associate them with specific Mendelian diseases while
exploiting the Human Phenotype Ontology [85] as input data. It relies on a customizable
configuration file containing all the steps to be performed, the input VCF file, the pedigree
(for multiple samples), the patient’s HPO terms (advised), and the inheritance model (if
known). Each variant is scored according to CADD or ReMM score [86,87] (from 0 for
non-deleterious to 1 for deleterious), allele frequency, regulatory sequences, chromosomal
topological domains, and its phenotypic relevance in relation to the disease. Scores can
be prioritized through phenotype similarity algorithms, assessing variants’ likelihood to
contribute to the pathological phenotype. Genomiser can be run with or without HPO
terms. In this latter case, results are based on ReMM-predicted pathogenicity and the
allele frequency of the variant in reference databases, their rank relying on their likelihood
of pathogenicity.

The output includes the associated genes and, for each variant, (i) the available
pathogenicity scores (i.e., CADD, Polyphen, Mutationtaster, Sift, ReMM), (ii) the Exomiser
variant score, which predicts a measure of rarity and pathogenicity of the variant (0 for
probably benign, 1 for probably pathogenic), (iii) the Exomiser gene-phenotype score, based
on the phenotypic similarity between the given HPO terms and rare diseases known to be
associated with the gene in OMIM or Orphanet (from 0, if no phenotype information is
provided, to 1), (iv) the Exomiser gene-variant score, which states how likely the considered
variant acts on the predicted gene, and (v) the Exomiser gene combined score, used for
the prioritization process, ranging from 0 to 1 [84,88]. Initial tests were performed on
Chr20 variants, without relying on HPO terms since data belonged to a healthy individual,
to evaluate the tool’s performance in the simplest conditions. In this case, 380 out of
78,186 variants contained in the considered VCF file were marked as relevant, 364 of
which lay in non-coding regions. To exploit Genomiser’s ability to detect the variants’
impact on the provided HPO phenotype, it was also run after enriching the Chr20 VCF
file with 6 variants (two in splice regions, two upstream a gene, one in 5′UTR, and one
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in an intron) selected from ncVarDB pathogenic set, causing independent pathologies.
Associated HPO terms were also provided to detect the ability of the tool to correctly
identify the additional variants as the cause of the disease. Genomiser was run 6 times (1 for
each variant and associated pathology), and, in all cases, it was able to detect the variant of
interest as contributing to the HPO term-related pathology, ranking it on top of the list (1st
or 2nd position). Overall, Genomiser took less than 10 min to provide the output.

4. Discussion

Bioinformatics tools currently available to predict the effect of genetic variants in the
human genome are heavily biased towards the protein-coding regions due to the wider
knowledge related to genes and protein function. Despite the scarce attention gained in the
past, non-coding variants may affect gene function, thus playing a role in human diseases.
Interpreting the effects of NCVs is a new and difficult challenge, which needs to be afforded
with the support of advanced bioinformatics software programs. In this review, tools for
non-coding variants’ effect interpretation were evaluated, and their performance was tested
on a computational and information basis. In particular, tools for interpreting variants
falling in UTRs, splicing, and intolerant regions, other than those affecting the genome
accessibility, were taken into account, tested, and compared.

Other non-coding regions of the human genome could be modified by variants po-
tentially affecting the system’s physiology. Among them, non-coding RNAs (ncRNAs)
and proximal/distal cis-regulatory elements are of particular interest. From a process
regulation perspective, housekeeping and regulatory ncRNAs exist. The first are abun-
dant and ubiquitous in cells and primarily regulate generic cellular functions, whereas
the second ones act as regulators of gene expression at epigenetic, transcriptional, and
post-transcriptional levels [74,89–91]. Gene expression regulation is also strictly monitored
by proximal and distal cis-regulatory elements, characterized by defined histone marks to
enable their identification and to regulate transcription activation based on timing, tissue,
and associated genes. Proximal elements mainly include gene promoters, whereas distal
elements refer to enhancers, typically found in DNaseI hypersensitive sites surrounded
by nucleosomes marked by H3K4me1 and H3K27ac, and transcription factors [92,93].
Promoters and enhancers include specific motifs in their sequence, which are recognized
and bound by distinct transcription factors, and, probably, other non-coding elements.
This should be considered when investigating the pathogenicity of variants on such ele-
ments [94–96]. Other elements in non-coding regions are CpG islands, regions of at least
200 bp, with a GC amount greater than 50%, and an observed-to-expected CpG ratio
greater than 60% [97]. Mutations at CpG islands could affect promoter activity, causing, for
example, stable silencing or, conversely, the constitutive expression of genes [98].

It should be noted that, at the moment, variants at these sites cannot be functionally
annotated by specific tools but only by general-purpose ones that are potentially able to
deal with variants over the entire genome.

To carry out quantitative analysis, a controlled scenario was identified, exploiting
variants identified in Chr20 of a healthy individual, enriched by the set of known benign
and pathogenic variants available through ncVarDB. The full dataset was helpful when
determining computational performance, while the ncVarDB subset was crucial for calcu-
lating specificity, precision, sensitivity, and accuracy (Table 3). Specificity, which defines
how good a test is in identifying true negatives, was >0.8 for all tools, whereas the other
performance features spanned from extremely low to extremely high values. Overall, the
entire group of examined tools contributed to the functional annotation of most of the
721 pathogenic variants provided by ncVarDB (Figure 2). Among them, 596 (82.66%) were
correctly annotated as pathogenic by at least one tool. Regarding the 125 pathogenic vari-
ants not annotated correctly, 57 belonged to the mitochondrial chromosome (not considered
by the majority of tools), whereas 11, although annotated as pathogenic by ncvarDB, are re-
ported in ClinVar [99] with conflicting or uncertain interpretations. The remaining 57 (7.9%)
pathogenic variants were not correctly classified by any tool considered in this review. Re-
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lying on the fact that each evaluated software contributed to the variant identification with
a set of uniquely detected variants, the overall approach we could suggest when dealing
with the analysis of non-coding regions consists of the integration of outputs from multiple
methods, as also reported by Liu et al. [100]. Figure 2 is highly representative, from both
qualitative (Figure 2A) and quantitative (Figure 2B) points of this concept view, underlying
the need to combine more than one tool to both functionally annotate the vast majority of
variants and to strengthen the reliability of prediction. However, most variants are correctly
detected by wide-spectrum programs such as DeepSea, LINSIGHT, and SpliceAI, and their
combination may constitute a good compromise.

Another consideration concerns the computational efforts: the present study was
carried out on a single chromosome of a single individual. Nevertheless, in WGS, 23 chro-
mosome couples should be analyzed, often in trios. This implies that high-performance
computing will be necessary for WGS analysis, and available software should enable the
parallel computational paradigm.

Hopefully, in the near future, advances in both molecular biology (some regions of
the genome deserve additional research to evaluate the consequences of variants in those
sequences) and computational domains (novel bioinformatics algorithms are expected,
exploiting cutting-edge technologies) will significantly improve the understanding of
non-coding variants, whose impact is still an open challenge in current human genetics.
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