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Abstract: The vigilance of the driver is important for railway safety, despite not being included in the
safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection
system for high-speed train safety based on monitoring train driver vigilance using a wireless
wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the
driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG
collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first
part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive
driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data
are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector
machine (SVM) classification algorithm is implemented to determine the vigilance level using the
Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early
warning device begins to work if fatigue is detected. The simulation and test results demonstrate the
feasibility of the proposed fatigue detection system for high-speed train safety.

Keywords: high-speed train safety; vigilance detection; wireless wearable; brain-computer interface;
fatigue detection system

1. Introduction

From 1 April 1997 to 18 April 2007, the railway transportation in China experienced six great
“improvements” in train speed. The speed of Chinese high-speed trains has been raised to 200 km/h,
and accordingly, the Chinese high-speed train technology is the worldwide leader. Since the “7.23”
Yong-Tai-Wen railway accident (which occurred on 23 July 2011), the most serious railway accident
in Chinese railway history, high-speed train accident prevention in China has been changed from
passive control modes to active ones [1]. According to the accident investigation report, the causes
of the accident were associated with the design, approval, and use of the TCC (the Train Control
Centre). Little attention is paid to the important part of the high-speed train Safety Management
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System (SMS), namely, the “emergency management” during an accident. The literature shows that it
is the SMS, such as organization, communication-team work, system design, and quality of procedures
and perception, that mainly affects the high-speed train in terms of safety. However, the train drivers,
signallers, and controllers are also important to railway safety. Especially in case of an emergency, the
driver’s performance is a major contributor to incidents and accidents [2–4]. It is crucial to analyse the
contribution of the driver’s performance to railway safety and accidents.

1.1. Train Safety and Accidents Analysis

The safety of the railway depends on several factors, including the safety culture,
communication-team work, system design, quality of procedures, perception, information system, shift
pattern and workload. Numerous studies have been performed to investigate the causes of accidents
on the railway system. Table 1 summarizes the distribution of occurrence types of 78 train accidents
reported in the UK [5]. The top 3 occurrence categories of railway accidents are human failure (HF) to
collision, derailment, and level crossing occurrence. As shown in Table 2, nearly 39.74% (31 out of 78) of
the train accidents fell into these three categories. This shows that Human failure is a major contributor
to railway accidents, which mainly affect the railway system in terms of safety. In Europe, literature by
Evans [6] shows that at least 75% of the fatal railway accidents between 1990 and 2009 were due to
human error, e.g., exceeding speed, signal passed at danger, signalling/dispatching error, etc. Table 3
shows the results of railway-performance shaping factors (R-PSFs) of train safety in serious accident
analysis, where 10 factors responsible for railway accidents are listed. In Table 3, three red boxes show
the railway-performance shaping factors as distraction (loss of concentration or vigilance), fatigue
(shift pattern) and workload (time pressure and stress). The proportions of these three factors were
15.76%, 5.76% and 3.73%, respectively. This shows that driver fatigue has always been an important
factor in transportation accidents, particularly for high-speed train drivers who work in a monotonous
and high-concentration-demanding circumstance for many work hours.

Table 1. Numbers and percentages of train accidents and adverse events.

Occurrence Category Type of Adverse Event Number Percentage

Collision

Human failure (HF) 1 1.28%

28.2%

Technical failure (TF) 3 4.83%
External intrusion (EI) 5 6.41%

HF+TF 2 2.56%
HF+EI 9 11.5%
TF+EI 2 2.56%

HF+TF+TF 0 0

Derailment

Human failure (HF) 2 2.56%
Technical failure (TF) 13 16.6%

External intrusion (EI) 6 7.69% 32.1%
HF+TF 4 5.13%
HF+EI 0 0
TF+EI 0 0

HF+TF+TF 0 0

Level crossing occurrence

Human failure (HF) 0 0
Technical failure (TF) 0 0

External intrusion (EI) 2 2.56% 19.2%
HF+TF 0 0
HF+EI 12 15.3%
TF+EI 0 0

HF+TF+TF 1 1.28%

Others 16 16 20.5%

Total 78 78 100%
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Table 2. Numbers and percentages of train accidents based on Human failure (HF).

Occurrence Category Number of Related Human Failures (HFs) Percentage

Collision 12 15.38%
Derailment 6 7.69%

Level crossing occurrence 13 16.67%
Total Top 3 frequent occurrence 31 39.74%

Total cases 78 100%

Table 3. Railway-Performance Shaping Factors (R-PSFs) of train safety in the accident analysis.

No. Railway-Performance Shaping Factors
(R-PSFs) Total Top 10 Factors Categories Accidents Percentage

1 Safety culture (SMS) Organization 115 19.49%
2 Distraction (loss of concentration or vigilance) Personal 93 15.76%
3 Communication-team work Team 90 15.25%
4 System design System 71 12.03%
5 Quality of procedures Organization 58 9.83%
6 Perception Personal 56 9.49%
7 Train (experience) Personal 34 5.76%
8 Fatigue (shift pattern) Personal and Organization 34 5.76%
9 Workload (time pressure and stress) Task and Personal 22 3.73%
10 Quality of information Team 17 2.88%

Total 590 100%

1.2. Driver Vigilance Detection Technologies

Studies of train driver fatigue have shown that critical incidents are more likely to occur at certain
times of the day and at certain periods within a duty [7–9]. Fatigue and vigilance, the first two of the
highest-ranking topics, were found to be critical problems of railroad operational safety in 2006 [10].
Especially for high-speed train safety, the vigilance of the driver is a major factor in maintaining basic
awareness of oncoming traffic [11].

The Chinese traditional train driver alarm system requires the driver to pedal at least once every
30 s [12]. Otherwise, the control system of the train assumes he is not alert and sends an alarm to the
driver. If the driver still fails to step on the pedal after 7 s, the train will automatically brake to a stop
for the safety of the passengers. Although it is a safe strategy guarding against the declination of driver
vigilance, an undesired braking action will result in time loss and disruption to railway schedules.
Moreover, to improve the efficiency of railway operation and personnel utilization. Most countries
have adopted a single-driver operating system [13]. If the driver is drowsy, no second driver can
operate the train. After the train brakes, no other vigilant driver can restart the train. Therefore, it is
necessary to detect and relieve the fatigue of drivers for high-speed train safety in the course of trains
running on schedule.

Technologies to detect the vehicle driver’s vigilance have been rapidly developed by various
vehicle manufacturers, for example, in the applications of a drowsy-driver-detection system for Volvo
trucks [14]. In the literature [15], authors have evaluated the use of fatigue detection technologies
in a fatigue risk management system for the transport industry. They proposed a set of evaluative
and operational criteria for organizations and regulators to contemplate the use of these technologies.
However, in the railway transportation field, most studies focus only on the management of driver
shift system procedures, policies, and regulations of related companies or the railroad administration
to avoid incidents [16,17]. In high-speed trains, the driver’s vigilance can be the main factor that affects
the railway system in terms of safety, especially in the case of emergency.

The driver’s vigilance detection technology can be divided into three main categories:
(1) vehicle-behaviour-based technology; (2) driver-behaviour-based systems; and (3) driver-
physiological-signal-based algorithms [18–22]. The first category is not suitable for trains because they
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use a track [23]. The second category analyses the changes of driver behaviour, such as eye tracking,
yawning, percent eye closure (PERCLOS), blink frequency, nodding frequency, facial position, and
inclination of the driver’s head [24–28]. Recent progress in machine vision research and advances in
computer hardware technologies have made it possible to measure eyelid movement, face expression
and head pose using video cameras. Usually, a recorded video is used to analyse and classify
the vigilance level of the driver. The quality of video images is susceptible to or dependent on
environmental and driver conditions, such as light conditions, the glass of driver, etc. Furthermore,
false estimation can also be caused by the variability of the driver’s behaviours, such as sleeping with
open eyes.

The last category is the driver-physiological-signal-based algorithms for driver vigilance detection,
using electrocardiosignal (ECG), electrooculography (EOG), electroencephalographic (EEG), or Heart
Rate Variability (HRV) [29–33]. These systems are more reliable because physiological signs of
drowsiness are well known and rather similar. The EEG signal is always regarded as a “gold
standard” of vigilance detection. Proven techniques of signals processing, such as date compressing,
de-noising, feature extraction and classification, make it be possible to cope with the EEG single.
Principal Component Analysis (PCA), independent component analysis (ICA), sparse representation
and compressed sensing and so on are widely applied to EEG detection [2,34–38]. The literature
shows that a typical sleep stage can be divided into non-rapid-eye-movement (NREM) sleep and
rapid-eye-movement (REM) sleep based on the EEG signal [39]. NREM sleep is further subdivided
into stages 1 to 3. The first stage, which is the transition period from alertness to sleep, is considered
to be the drowsy stage in this paper. In this stage, the increasing power of theta (4–8 Hz) and alpha
(8–14 Hz) waves is observed by Parikh [40], as well as the decreasing power of beta (14–34 Hz) waves
at the area of occipital sites (O1 and O2). The difficulties of the driver-physiological-signal-based
measures lie in how to obtain EEG signal recordings comfortably under driving conditions and classify
the driver vigilance with so many EEG signals. Nevertheless, the physiological signal measures are
believed to be accurate, valid, and objective in determining driver vigilance. Currently, there are two
front-ends for EEG signal collection: dry electrodes and wet electrodes. A wet electrode tests with a
smearing conducting solution. Thus, it can be used only under special circumstances. Compared with
the wet electrode, there is no limit of dielectric or environment for the dry electrode [41–45]. Table 4
shows a survey and comparison of the existing systems used for driver vigilance monitoring.

Despite the success of the existing approaches/systems for driver vigilance detection of active
vehicle safety, until now, few researchers have investigated high-speed train safety deeply and
systematically based on train driver’s vigilance detection. In this paper, a fatigue warning system for
high-speed train safety is introduced based on train driver vigilance detection using wireless wearable
EEG collection technology. An 8-channel wireless wearable brain–computer interface (BCI) hardware
system is designed to collect the train driver’s EEG signal comfortably. A support vector machine
(SVM) classification algorithm with the Fast Fourier transform (FFT) for extraction of the EEG power
spectrum density (PSD) is implemented for the high-speed train driver’s EEG signal to determine the
vigilance level. The proposed system is the first scheme to design a novel fatigue detection system for
high-speed train safety.

The rest of this paper is organized as follows: in Section 2, the general system architecture of
the proposed fatigue detection system is presented. Section 3 focuses on the wireless wearable EEG
collection system for the train driver. Train Driver vigilance detection is developed in Section 4, and the
early warning system is described in Section 5. The experiments and analysis are reported in Section 6.
Finally, some conclusions are provided in Section 7.
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Table 4. Survey and comparison of the existing systems used for driver vigilance monitoring.

Category Technologies Pros (Advantage) Cons (Disadvantage) Countries

Vehicle-behaviour-based
technology

Using lane departure, steering
wheel movements, and the
pressure of the driving pedal

This technology provides a non-invasive
method for the driver

It is difficult to construct a common model due
to variability and changes of road
circumstances. It is not suitable for high-speed
trains because they use a track

America, Europe,
South Korea, Japan
and China

Driver-behaviour-based system
Using eye tracking, percent eye
closure and the expression of
the driver’s face

It provides a non-invasive method for the
driver. Recent progress in machine vision
and computer hardware have made it
possible to measure the driver’s vigilance

Video is susceptible to driving conditions, such
as light conditions. False estimation can also be
caused, such as sleeping with open eyes. If the
driver leaves the cockpit of train, these
technologies cannot detect the
driver’s behaviour

America, Europe
and France

Driver-physiological-signal-based
algorithm

Using electroencephalography
(EEG), electrooculography
(EOG), and Heart Rate
Variability (HRV)

These systems are more reliable because
physiological drowsiness signs are well
known and rather similar from one driver
to another. The EEG signal is regarded as
a “gold standard” of vigilance detection.
In this paper, a wireless wearable EEG
signal collection system for high-speed
train drivers is presented

The difficulties of the
driver-physiological-signal-based measures are
in how to obtain EEG signal recordings
comfortably under driving conditions and
classify the driver vigilance with so many EEG
signals. At the same time, the wearable
comfortable EEG collection system is very
important for train drivers

America, Europe,
Japan and China
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2. System Architecture

The general architecture of the fatigue detection system, as illustrated in Figure 1, has three major
steps: (1) the wireless wearable EEG collection system; (2) the train driver vigilance detection system;
and (3) the early warning device.
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In the first step, an eight-channel wireless wearable BCI system collects the driver’s EEG signal
and transmits the recorded data to a PC/FPGA/DSP via a Bluetooth interface. As shown on the left of
Figure 1, a wireless wearable EEG collection system embedded in the driver’s cap is designed. The BCI
system consists of eight stainless steel dry electrodes. It incorporates the use of a wireless and wearable
EEG device to conveniently record EEG signals from the head regions of the train driver.

The second step is train driver vigilance detection using SVM with the FFT to extract the PSD of
the EEG signal. As shown in the middle block of Figure 1, after the original EEG signal is collected
from the train driver’s head, a wavelet de-noising algorithm is implemented to remove interference,
such as blinking (<5 Hz) and electromyography (>30 Hz). Then, the PSD is extracted as the feature of
each state (alert/drowsy) using the FFT. Finally, an SVM algorithm is proposed to establish a vigilance
detection model based on the training data. In this paper, two vigilance levels are defined: alert and
drowsy. In the experiment and simulation, a personal computer is used to process the simulation data.
The improved versions will be completed in the experiment using DSP or FPGA.

In the last step, as shown in the right part of Figure 1, an early warning system is designed.
When fatigue is detected, a massage chair begins to work to warn the high-speed train driver. At the
same time, the early warning system messages about the high-speed train driver’s situation is sent to
the TCC.
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3. Wireless Wearable EEG System for High-Speed Train Drivers

EEG data are highly important to our train driver vigilance detection. To collect the EEG signal
of the driver, an eight-channel wireless wearable BCI system is designed as shown in Figure 2.
The electrodes, which are a type of sensor for EEG acquisition, are placed on the pre-frontal (Fp1,
Fp2), temporal (T3, T4), posterior occipital (O1, O2), and central (C3, C4) regions of the cerebrum
according to the 10–20 electrode system in Figure 3. The signal process model stores the collected signal.
The Bluetooth in front of the signal-processing model transmits the data to a PC. The power display
outside the signal-processing model informs the user of how much power remains. Figure 4 shows
usage of the BCI system. By referencing the appearance of the train driver’s hat, the driver vigilance
detection device can be easily embedded into the cap, and it hardly affects the driver’s operation.
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A set of high-comfort wireless wearable BCI equipment for testing and simulation in the lab
has been made. The basic scheme of our homemade EEG-based BCI system is as proposed in
Figure 5. The BCI system consists of an EEG collection cap, reference electrodes, and processing
model (see Figure 5a). In Figure 5b, the positions of eight dry electrodes installed in the EEG collection
cap correspond to the cerebrum areas. The installation positions have close relationships with driver
vigilance levels detection. In the homemade wireless wearable BCI system, the EEG collection cap is
able to comfortably collect the train driver’s brain signal data for testing and simulation in the lab.
There are eight single-channel EEG collection models. As shown in Figure 5c, for a single model, the
structure has a five-part structure: (1) a stainless steel dry electrode; (2) a TGAM model (the chip used
to process the EEG signal); (3) a Bluetooth model; (4) a reference electrode; and (5) a battery model.
The EEG signal is obtained by the stainless steel dry electrodes first and then amplified and filtered by
the think gear basic module (TGAM) model with hardware filtering of 3 Hz to 100 Hz and a sampling
rate of 512 Hz. Next, the EEG signal is transmitted to the PC via Bluetooth. The reference electrode
provides the reference potential for the stainless steel dry electrode. The system is powered by eight
3-V DC batteries. Figure 5d shows the processing model, including the TGMA, Bluetooth, and batteries
installed into some boxes, which were designed by SolidWorks software and manufactured by a 3D
printer. Finally, all chips of the TGAM, Bluetooth and batteries are arranged into a bag, as shown in
Figure 5a, to make the equipment more wearable for train driver experiments.
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To validate the efficiency of our homemade wearable BCI system in data acquisition accuracy,
a 64-channel EEG provided by Brain Products (BP, Gilching, Germany) was used.

As shown in Figure 6, the commercial BP system consists of a Brain Cap, a Brain Amp, and the
Recorder Analysis Software.Sensors 2017, 17, 486 9 of 20 
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4. Train Driver Vigilance Detection

After a high-speed train driver’s EEG signal is obtained, data processing begins in the next steps,
described as follows:

4.1. Data Preprocessing

The purpose of this step is to extract the features of alert and drowsy EEG signals of train drivers
by removing various interference. In this paper, a wavelet de-noising method is introduced because
of its multi-resolution capability, which is appropriate for the non-stationary EEG signal. A six-layer
decomposition of the db5 wavelet is implemented for the original EEG signal to extract theta, alpha and
beta rhythms. The 6-layer decomposition is implemented to get the sub-band wavelet detail coefficients
(Di, i = 1, 2, 3, 4, 5, 6) and approximation coefficients (Ai, i = 1, 2, 3, 4, 5, 6). The decomposition space
tree and frequency range are shown in Figure 7. By reconstructing the decomposition coefficients of
D3, D4, D5, and D6, the useful EEG signal is extracted, and various low-frequency and high-frequency
interferences are removed. Then, the PSD is adopted as the train driver’s EEG feature to distinguish two
states. The significant differences of the power scalp topographies of various frequency components in
the states of (a) alert and (b) drowsy are shown in Figure 8.
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alertness; (b) power scalp topographies in drowsiness.

In the alert case, the lower-frequency components are found in the area of the forehead, and
the higher-frequency components are distributed in the occipital area. In the case of drowsiness,
low-frequency components and high-frequency components in the forehead and occipital areas are
approximately uniform. Different states between the occipital and forehead areas are distinguished
by using the PSD of different frequency components. Under the assumption that the driver’s state at
time t remains identical to that within the previous r seconds, the feature of the EEG signal at time t
is calculated as the average PSD of the previous s seconds and t seconds. The PSD of each second is
calculated using FFT and is subsequently converted into a logarithmic scale. Next, a Hanning Window
is used to extract the PSD of theta, alpha, beta rhythms as the feature of drowsiness and alertness.

4.2. Vigilance Detection Based on SVM Classification

Developed from statistical learning theory (SLT), the SVM maps the input data to a
high-dimensional feature space and constructs a linear optimal classification hyperplane. It addresses
a nonlinear EEG data classification problem. The theoretical analyses of linear and nonlinear SVMs are
described as follows.

As shown in Figure 9, the linear SVM separates two classes of sample points, denoted by ‘*’ and
‘+,’ using the optimal hyperplane H and maximizes the margin, which is the distance between H1

and H2 (the lines pass through the nearest point away from H). Assume that the training data set is
T = {(x1, y1), (x2, y2), . . . , (xm, ym)} (xi∈Rn, yi∈{1, −1}), where xi is the training driver’s EEG data, yi
is the label of the data class, m is the number of training data, and n is the dimension of xi. In this
paper, yi = 1 represents the class of xi that is alert, and yi = −1 represents the class of xi that is drowsy.
For the linear classification case, the training data can be separated by the hyperplane H in (1):

w · x + b = 0 (1)

where w is the weight vector and b is the bias vector.
Therefore, H1 and H2 can be represented by (2):{

w · x + b = +1 H1

w · x + b = −1 H2
(2)

Thus, the margin in Figure 5 is represented as 2
‖w‖ and calculated using (1) and (2).
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Ideally, all sample points can be separated by H and are located outside the margin. In reality,
because of the noise or the complexity of the training data, some sample points are inside the margin,
which makes the linearly separable SVM invalid. Therefore, a positive slack variable ξ is introduced to
transform it to a linearly separable approximate situation, which is defined as (3):{

w · xi + b ≥ +1− ξi if yi = +1

w · xi + b ≤ −1 + ξi if yi = −1
(3)

where ξi is introduced to measure the deviation between yi and w·xi = b. If 0 < ξi < 1, xi is inside the
margin and is correctly classified. If ξi > 1, xi is inside the margin but falsely classified. Finally, (3) can
be simplified as (4):

yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . m. (4)

The classification hyperplane is represented as w*·x = b* = 0, and the optimal classification
function is calculated using (5):

f(x) = sgn(w∗ · x + b∗) = sgn{
m

∑
i=1

yiai(xi · x) + b} (5)

To approximate the nonlinear separable situation, the input x is first mapped to a
higher-dimensional space via a nonlinear mapping φ(x). Thus, the approximate nonlinear separable
SVM classification function can be rewritten as (6):

f(x) = sgn{
m

∑
i=1

yiaiκ(xi, x) + b} (6)

where κ(xi, x) = (φ(xi) · φ(x)) is called a kernel function. Any function that satisfies the Mercer
theorem can be used as a kernel function. Some common kernel functions are as follows:

Linear kernel: κ(x, xi) = (x · xi).
Polynomial kernel: κ(x, xi) = ((x · xi) + c)d, c ≥ 0.
RBF kernel: κ(x, xi) = exp(−g‖x− xi‖2), g ≥ 0.

After determining the vigilance level using (6), the train driver’s vigilance level is sent to the
designed massage chair via Bluetooth. Then, the massage chair begins to work. At the same time, the
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train driver’s vigilance system sends an alarm signal to the train driver, and the alarm signal will be
uploaded to the management operation centre.

5. Early Warning System

In this paper, an early warning system is designed. If fatigue is detected, a massage chair can
be used to continuously warn the high-speed train driver. As shown in Figure 10, considering the
existing massage chair in the market and the appearance of the train driver’s chair, a fatigue-warning
device was designed and modelled using SolidWorks.
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Figure 10. High-speed train driver’s fatigue warning device. (a) The model of vibrate chair;
(b) Experimental massage chair in the test; (c) Experimental massage chair in the test.

Eight massage heads with high mechanical vibrational frequency, which are evenly distributed on
the chair back, can rotate to massage the back of the driver. The Bluetooth located lateral of the chair
is used to receive the information about the driver’s vigilance level (drowsy or alert). If the driver is
detected drowsy, the massage chair begins to work. At the same time, the early warning system is
designed to send a warning message about the high-speed train driver’s vigilance level.

6. Experiments and Analysis

The goal of this section is to demonstrate experimentally and scientifically the validity of the
proposed fatigue detection system for high-speed trains based on train driver vigilance using the
wireless wearable EEG. It is extremely important to affect the high-speed train safety and avoid railway
incidents and accidents. An experimental environment to evaluate the proposed system’s performance
has been implemented in State Key Laboratory of Traction Power, Southwest Jiaotong University
in China.

The experimental environment consists of three parts, as shown in Figure 11a. The first part is
a homemade wearable BCI model for the train driver’s EEG collection in our State Key Laboratory
of Traction Power. The second part is the train driver’s EEG signal data pre-processing and driver
vigilance detection model. As shown in Figure 10, it is used in the virtual driving environment in the
simulation centre of the State Key Laboratory of Traction Power, Southwest Jiaotong University for our
proposed method.

Figure 11b–f illustrate the EEG collection and vigilance detection experiments in the State Key
Laboratory of Traction Power, Southwest Jiaotong University. Figure 11g,h are images of the high-speed
train simulator of the simulation centre of the State Key Laboratory of Traction Power, which is the
only high-speed simulator in the world. Figure 11i is the operation interface of the high-speed train
monitoring platform. The algorithm is implemented on a laptop computer equipped with an Intel i3
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1.9-GHz CPU and 4 GB of RAM with Bluetooth for communication. Figure 11j shows a sample image
frame from the experiment on train driver vigilance detection.Sensors 2017, 17, 486 13 of 20 
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experiments of EEG collection and diver vigilance detection are the actual data. To avoid the traffic 
risks of actual fatigue driving tests, the train driver experiments in the High-Speed Rail Simulator 
were finished in the State Key Laboratory of Traction Power. During the entire experiment, the 
investigators observed and recorded the subject’s physical behaviours, yawns and inclinations of the 
head as the drowsiness indices in a subsequent study. The train driver’s fatigue experimental 
conditions are set as follows: 

Condition 1: (1) sleep deprivation; (2) the test time is between 4 and 6 a.m. the next day. 
Condition 2: (1) having a normal night’s sleep; (2) the test time is between 9 and 11 a.m. the next 

day. 

Condition 1 is identified as drowsiness, while condition 2 is identified as alertness. 
Figure 12 shows the raw EEG data of the drowsy state and the alert state from O1, whereas 

Figure 13 shows the raw EEG data from BP equipment.  
  

Figure 11. Experimental environment. (a) Experimental prototype; (b) EEG collection experiment;
(c) EEG collection experiment; (d) EEG collection experiment; (e) EEG collection experiment; (f) EEG
collection experiment; (g) High-speed train experimental simulator; (h) CRH high-speed train
simulation cab; (i) CRH high-speed train simulation monitoring platform; (j) The train driver vigilance
detection in experiment.

In the experiment, ten qualified drivers with no neurological diseases wore the wireless wearable
BCI system as in Figure 11b–f, and the collected EEG signals are given in Table 5. The experiments of
EEG collection and diver vigilance detection are the actual data. To avoid the traffic risks of actual
fatigue driving tests, the train driver experiments in the High-Speed Rail Simulator were finished in
the State Key Laboratory of Traction Power. During the entire experiment, the investigators observed
and recorded the subject’s physical behaviours, yawns and inclinations of the head as the drowsiness
indices in a subsequent study. The train driver’s fatigue experimental conditions are set as follows:

Condition 1: (1) sleep deprivation; (2) the test time is between 4 and 6 a.m. the next day.
Condition 2: (1) having a normal night’s sleep; (2) the test time is between 9 and 11 a.m. the next day.

Condition 1 is identified as drowsiness, while condition 2 is identified as alertness.
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Figure 12 shows the raw EEG data of the drowsy state and the alert state from O1, whereas
Figure 13 shows the raw EEG data from BP equipment.

Table 5. Ten drivers served in the experiment.

Driver Sum Subject Number Age

10

Male 7

24
26
40
42
24
22
19

Female 3
25
24
26
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Figure 13. Raw EEG signal in alert and drowsy states from BP equipment.

The good quality of our homemade BCI system is observed. The bursting of the alpha rhythm is
observed as in the red box of the drowsy state. To remove the interference, a 6-layer decomposition of
the db5 wavelet is implemented in the original EEG signal. The original signal and the decomposition
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signal at each level and the frequency of them are shown in Figure 14. Because the hardware filter of
our homemade equipment is 3–100 Hz, the signal of a6 can be regarded as noise. From Figure 14, the
level d2 and level d1 can be regarded as noise. Therefore, by extracting the decomposition signal of
d3 (32–64 Hz), d4 (16–32 Hz), d5 (8–16 Hz), and d6 (4–8 Hz), the useful EEG signal is obtained and
some low- and high-frequency interferences are removed.Sensors 2017, 17, 486 15 of 20 
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Figure 14. Original signal and its decomposition at each level.

Libsvm-3.20, an SVM toolbox, was used in this paper to implement most functions, including
data normalization, parameter optimization of the kernel function, training of the SVM classification
model, and classification. Because of the excellent performance, the RBF kernel was used to map
the training data to a higher-dimensional space. According to the frequency range of theta (4–8 Hz),
alpha (8–14 Hz) and beta (14–34 Hz), these three frequency bands were used for feature extraction.
The feature of the EEG signal at time t was calculated as the average PSD from time t − r to time
t, and a Hanning window is used for feature extraction. r is used for feature extraction as the time
window. For different r values, for example r = 0, 1, 2, 3, and 4, the contour line of classification
accuracy, as shown in Figure 15, corresponds to different C (the error penalty parameter) and g (the
parameter of the RBF kernel) values. This contour line provides optimal parameters of C and g, which
maximize the classification accuracy, and it indicates that the optimal classification accuracy of the
training data increases with the increase in r. To validate the proposed algorithm, cross-validation
whit leave-one-out method is utilized. We dividing the original data into three parts, and two parts are
considered as training data, while the remain one is considered as testing data.

This paper detects driver’s vigilance level at a fixed frequency (r = 0, 1, 2, 3, 4), the classification
accuracy rate is defined as Equation (7):

accuracy rate =
correctly detection time

total detection time
(7)

Here correctly detection time presents the time which drowsiness is detected as drowsiness, while
alertness is detected as alertness.
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Besides, the sensitivity and the false positive are computed as Equations (8) and (9):

Sensitivity =
true positive

total actual positive
(8)

False postive = 1− true negative
total actual negative

(9)
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Here, true positive means the time which drowsiness is detected as drowsiness, while total actual
positive means the actual drowsy time. Ture negative means which alertness is detected as alertness,
while total actual negative means the actual alertness time.

Tables 6 and 7 show the average classification accuracy of O1 and O2, where drivers 1, 2, 3, 4, 5, 6,
7, 8, 9 and 10 represent different train drivers. With the increase of r, the classification accuracy rate
increases. As in the red box of Tables 6 and 7, the equipment yields excellent classification efficiency,
which is as high as approximately 90.70%. And as shown in Tables 8–11, the sensitivity can be as high
as approximately 86.80%, while the false positive can be down to around 5.40% when r = 4. In addition,
the testing time of O1 and O2 as shown in Tables 12 and 13, when r = 4, the minimum time is 2.16 s,
which shows the good performance in real-time of this system. All these results indicate the proposed
method has good performance in high-speed train drivers’ vigilance detection.
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Table 6. Classification accuracy (%) of the testing data (O1).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 77.49 78.71 78.49 85.63 85.10 85.73 81.86 79.77 79.20 76.71
1 80.27 83.57 80.26 88.44 86.46 87.93 82.62 80.35 81.81 81.11
2 84.74 86.13 81.23 89.19 88.84 88.87 86.21 86.53 85.07 85.45
3 88.70 89.42 85.34 91.16 89.74 89.24 87.32 89.19 87.79 90.95
4 91.18 92.69 95.64 93.02 90.70 91.11 91.91 93.90 91.35 92.44

Table 7. Classification accuracy (%) of the testing data (O2).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 85.78 88.68 76.15 81.27 77.43 82.13 79.33 78.31 81.90 76.67
1 87.46 91.26 83.09 82.57 81.88 83.91 83.24 82.24 84.88 80.52
2 91.42 93.91 87.50 83.76 84.93 87.68 86.71 85.45 87.19 83.62
3 95.09 96.26 91.69 88.79 86.28 88.97 88.51 87.51 91.74 87.18
4 96.38 98.25 93.19 93.46 91.59 92.73 91.57 91.93 93.17 94.94

Table 8. Sensitivity (s) of testing data (O1).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 68.34 70.06 69.75 79.77 79.02 79.91 74.49 71.56 70.75 67.23
1 72.26 76.89 72.25 83.67 80.92 82.97 75.56 72.37 74.42 73.44
2 78.53 80.46 81.23 84.71 84.23 84.27 80.58 81.02 78.99 79.52
3 84.03 85.03 85.34 87.43 85.47 84.78 82.12 84.71 82.77 87.14
4 87.46 89.54 93.59 89.99 86.80 87.36 88.47 91.20 87.70 89.20

Table 9. Sensitivity (s) of testing data (O2).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 79.98 84.01 66.44 73.67 68.25 74.87 70.94 69.50 74.55 67.17
1 82.31 87.57 76.20 75.49 74.52 77.37 76.43 75.03 78.72 72.61
2 87.79 91.22 82.37 77.16 78.79 82.62 81.27 79.52 81.94 76.96
3 92.83 94.43 88.16 84.16 80.67 84.41 83.77 82.38 88.23 81.92
4 94.59 97.15 90.23 90.60 88.03 89.60 88.00 88.50 90.20 92.63

Table 10. False positives (s) of testing data (O1).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 13.34 12.64 12.77 8.51 8.83 8.45 10.77 12.02 12.35 13.81
1 11.72 9.75 11.72 6.79 8.00 7.11 10.32 11.67 10.80 11.22
2 9.05 8.20 11.15 6.33 6.55 6.53 8.16 7.96 8.85 8.62
3 6.63 6.19 8.68 5.11 5.99 6.30 7.48 6.33 7.19 5.24
4 5.10 4.16 2.31 3.95 5.40 5.15 4.65 3.40 5.00 4.32

Table 11. False positive (s) of testing data (O2).

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 8.42 6.65 14.14 11.13 13.39 10.61 12.28 12.88 10.75 13.83
1 7.39 5.05 10.04 10.35 10.76 9.55 9.95 10.55 8.96 11.57
2 4.95 3.40 7.37 9.64 8.93 7.26 7.85 8.62 7.56 9.72
3 2.65 1.91 4.78 6.58 8.11 6.47 6.75 7.36 4.75 7.56
4 1.84 0.65 3.85 3.68 4.84 4.14 4.86 4.65 3.86 2.75
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Table 12. Testing time (s) of O1.

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 0.95 0.94 0.98 0.96 0.98 0.93 0.94 0.96 1.01 1.00
1 1.27 1.29 1.31 1.28 1.31 1.30 1.35 1.30 1.35 1.30
2 1.57 1.58 1.59 1.59 1.59 1.58 1.60 1.59 1.63 1.55
3 1.89 1.91 1.90 1.90 1.93 1.92 1.87 1.91 1.88 1.88
4 2.19 2.16 2.29 2.22 2.21 2.23 2.24 2.31 2.21 2.19

Table 13. Testing time (s) of O2.

r (s) Driver1 Driver2 Driver3 Driver4 Driver5 Driver6 Driver7 Driver8 Driver9 Driver10

0 0.95 0.96 0.98 0.98 0.98 0.92 0.94 0.95 0.96 0.97
1 1.29 1.31 1.29 1.31 1.33 1.29 1.28 1.30 1.31 1.26
2 1.66 1.64 1.59 1.65 1.60 1.60 1.62 1.60 1.61 1.55
3 1.87 1.93 1.92 1.94 1.89 1.93 1.92 1.88 1.87 1.94
4 2.21 2.30 2.36 2.26 2.26 2.22 2.29 2.18 2.21 2.21

Finally, other two related studies which is also involved EEG signal are compared. One is
Lin et al. [19], which proposed a BCI based smart living environmental auto-adjustment control system
in UPnP home networking. They employed the Mahalanobis distance to estimate the human’s vigilance
level. The other is Li et al. [20]. They propose to apply SVM based posterior probabilistic model
(SVMPPM) for automated drowsiness detection. Concrete details are seen in Table 14.

Table 14. Comparison.

Reference NO. Preprocess Time Window Model Signal Source Terminal Device Accuracy (%)

[19] Band-pass filter 10 min Mahalanobis distance Single-Channel - 82
[20] Band-pass filter 1 min SVMPPM Three-Channel Smartwatch 88.6

Present work DWT r (s) SVM Eight-Channel Massage Chair 90.70

7. Conclusions

In this paper, the design of a fatigue detection system for high-speed trains based on the train
driver vigilance using wireless wearable EEG is presented. EEG collection technology, wireless
wearable technology and human’s vigilance detection technology are combined for the first time to
address high-speed train safety. In addition, a high-speed train driver’s fatigue warning device is
designed to warn the train driver and the TCC.

The final experimental results show the validity of our method in simulation and tests. Especially,
the equipment gives an excellent classification efficiency, which is as high as approximately 90.70%,
when the time-window is 4. At the same time, the sensitivity can be as high as approximately 86.80%,
while the false positive rate can be reduced to around 5.40%. In addition, the minimum testing time
is 2.16 s, which shows the good performance in real-time of this system. All these results indicate
that the proposed method has good performance in driver vigilance detection. In both theoretical
analysis and practical experiments, the proposed system demonstrates the feasibility of the proposed
fatigue-detecting system for high-speed train. The proposed method can be essential part of high-speed
train operational safety.
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17/3/486/s1.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under
Grant No. 51675451, by the Science and Technology Projects of Sichuan and Chengdu under Grant Nos.
2016GZ0026, 2017RZ0056 and 2015-HM01-00338-SF, and by the Fundamental Research Funds for the Central
Universities under Grant No. 2682016ZDPY03.

http://www.mdpi.com/1424-8220/17/3/486/s1
http://www.mdpi.com/1424-8220/17/3/486/s1


Sensors 2017, 17, 486 19 of 21

Author Contributions: The asterisk indicates the corresponding author, and the first four authors contributed
equally to this work. Xiaoliang Zhang, Jiali Li, Yugang Liu and Zutao Zhang, designed the system. Jiali Li,
Zhuojun Wang, Dianyuan Luo, Xiang Zhou, Miankuan Zhu and Waleed Salman designed the experimental system
and analysed the data. Guangdi Hu and Chunbai Wang provided valuable insight in preparing this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fan, Y.X.; Li, Z.; Pei, J.J.; Li, H.Y.; Sun, J. Applying systems thinking approach to accident analysis in China:
Case study of “7.23” Yong-Tai-Wen High-Speed train accident. Saf. Sci. 2016, 76, 190–201. [CrossRef]

2. Zhang, Z.T.; Luo, D.Y.; Rasim, Y.; Li, Y.J.; Meng, G.J.; Xu, J.; Wang, C.B. A vehicle active safety model: Vehicle
speed control based on driver vigilance detection using wearable EEG and sparse representation. Sensors
2016, 16, 242. [CrossRef] [PubMed]

3. Zhang, Z.T.; Li, Y.J.; Wang, F.B.; Meng, G.J.; Waleed, S.; Layth, S.; Zhang, X.L.; Wang, C.B.; Hu, G.D.; Liu, Y.G.
A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle
Filter for Vehicle Reversing Safety. Sensors 2016, 16, 848. [CrossRef] [PubMed]

4. Kong, W.; Lin, W.; Babiloni, F.; Hu, S.; Borghini, G. Investigating driver fatigue versus alertness using the
granger causality network. Sensors 2015, 15, 19181–19198. [CrossRef] [PubMed]

5. Dong, S.K.; Yoon, W.C. An accident causation model for the railway industry: Application of the model to
80 rail accident investigation reports from the UK. Saf. Sci. 2013, 60, 57–68.

6. Evans, A.W. Fatal train accidents on Europe’s railways: 1980–2009. Accid. Anal. Prev. 2011, 43, 391–401.
[CrossRef] [PubMed]

7. Castillo Aguilar, J.J.; Cabrera Carrillo, J.A.; Guerra Fernández, A.J.; Carabias Acosta, E. Robust road condition
detection system using in-vehicle standard sensors. Sensors 2015, 15, 32056–32078. [CrossRef] [PubMed]

8. Tang, X.F.; Gao, F.; Xu, G.Y.; Ding, N.G.; Cai, Y.; Ma, M.M.; Liu, J.X. Sensor systems for vehicle environment
perception in a highway intelligent space system. Sensors 2014, 14, 8513–8527. [CrossRef] [PubMed]

9. Lee, B.G.; Lee, B.L.; Chung, W.Y. Mobile healthcare for automatic driving sleep-onset detection using
wavelet-based EEG and respiration signals. Sensors 2014, 14, 17915–17936. [CrossRef] [PubMed]

10. Frederick, C.G. Railroad Operational Safety: Status and Research Needs; Transportation Research E-Circular:
Washington, DC, USA, 2006.

11. Golightly, D.; Ryan, B.; Dadashi, N.; Pickup, L.; Wilson, J.R. Use of scenarios and function analyses to
understand the impact of situation awareness on safe and effective work on rail tracks. Saf. Sci. 2013, 56,
52–62. [CrossRef]

12. The Chinese Train Driver Alarm System Requires the Driver to Pedal at Least Once Every 30 s.
Available online: http://epaper.bjnews.com.cn/html/2015-02/11/content_562127.htm?div=-1 (accessed on
1 March 2017).

13. Guo, Z.Z.; Tang, Y.H. Safety evaluation model for the on-duty operation of single locomotive driver.
China Railw. Sci. 2008, 29, 107–113.

14. Fatigue Driving Nemesis, Volvo Truck Driver Assistance System Launched. Available online: http://www.
chinatruck.org/news/201504/13_53482.html (accessed on 1 March 2017).

15. Dawson, D.; Searle, A.K.; Paterson, J.L. Look before you sleep: Evaluating the use of fatigue detection
technologies within a fatigue risk management system for the road transport industry. Sleep. Med. Rev. 2014,
18, 141–152. [CrossRef] [PubMed]

16. Coplen, M.; Sussman, D. Fatigue and alertness in the United States railroad industry part II: Fatigue research
in the office of research and development at the federal railroad administration. Transp. Res. Part F Traffic
Psychol. Behav. 2000, 3, 221–228. [CrossRef]

17. Michael, W. Research into Health on the Railway. Available online: http://www.slideserve.com/liam/
research-into-health-on-the-railway (accessed on 1 March 2017).

18. Joan, F.A.; Sergio, R.; Miguel, A.M.; Sandra, G. Acute sleep deprivation induces a local brain transfer
information increase in the frontal cortex in a widespread decrease context. Sensors 2016, 16, 540.

19. Lin, C.T.; Chang, C.J.; Lin, B.S.; Hung, S.H.; Chao, C.F.; Wang, I.J. A real-time wireless brain-computer
interface system for drowsiness detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.ssci.2015.02.017
http://dx.doi.org/10.3390/s16020242
http://www.ncbi.nlm.nih.gov/pubmed/26907278
http://dx.doi.org/10.3390/s16060848
http://www.ncbi.nlm.nih.gov/pubmed/27294931
http://dx.doi.org/10.3390/s150819181
http://www.ncbi.nlm.nih.gov/pubmed/26251909
http://dx.doi.org/10.1016/j.aap.2010.09.009
http://www.ncbi.nlm.nih.gov/pubmed/21094337
http://dx.doi.org/10.3390/s151229908
http://www.ncbi.nlm.nih.gov/pubmed/26703605
http://dx.doi.org/10.3390/s140508513
http://www.ncbi.nlm.nih.gov/pubmed/24834907
http://dx.doi.org/10.3390/s141017915
http://www.ncbi.nlm.nih.gov/pubmed/25264954
http://dx.doi.org/10.1016/j.ssci.2012.08.007
http://epaper.bjnews.com.cn/html/2015-02/11/content_562127.htm?div=-1
http://www.chinatruck.org/news/201504/13_53482.html
http://www.chinatruck.org/news/201504/13_53482.html
http://dx.doi.org/10.1016/j.smrv.2013.03.003
http://www.ncbi.nlm.nih.gov/pubmed/23796506
http://dx.doi.org/10.1016/S1369-8478(01)00006-7
http://www.slideserve.com/liam/research-into-health-on-the-railway
http://www.slideserve.com/liam/research-into-health-on-the-railway
http://dx.doi.org/10.1109/TBCAS.2010.2046415
http://www.ncbi.nlm.nih.gov/pubmed/23853367


Sensors 2017, 17, 486 20 of 21

20. Li, G.; Lee, B.L.; Chung, W.Y. Smartwatch-Based Wearable EEG System for Driver Drowsiness Detection.
Sensors 2015, 15, 7169–7180. [CrossRef]

21. Picot, A.; Charbonnier, S.; Caplier, A. On-line detection of drowsiness using brain and visual information.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2012, 42, 764–775. [CrossRef]

22. Zhang, Z.T.; Zhang, J.S. A new real-time eye tracking based on nonlinear unscented kalman filter for
monitoring driver fatigue. J. Control. Theory Appl. 2010, 8, 181–188. [CrossRef]

23. Lee, J.W.; Lee, S.K.; Kim, C.H.; Kim, K.H.; Kwon, O.C. Detection of drowsy driving based on driving
information. In Proceedings of the 2014 International Conference on Information and Communication
Technology Convergence (ICTC), Busan, Korea, 22–24 October 2014; pp. 607–608.

24. Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review.
Sensors 2012, 12, 16937–16953. [CrossRef] [PubMed]

25. Li, G.; Chung, W.Y. Detection of driver drowsiness using wavelet analysis of heart rate variability and
a support vector machine Classifier. Sensors 2013, 12, 16494–16511. [CrossRef] [PubMed]

26. Ji, Q.; Lan, P.; Looney, C. A probabilistic framework for modeling and real-time monitoring human fatigue.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2006, 36, 862–875.

27. Fu, X.P.; Guan, X.; Peli, E.; Liu, H.B.; Luo, G. Automatic calibration method for driver’s head orientation in
natural driving environment. IEEE Trans. Intel. Transp. Syst. 2013, 14, 303–312. [CrossRef] [PubMed]

28. Zhang, Z.T.; Zhang, J.S. Sampling strong tracking nonlinear unscented kalman filter and its application in
eye tracking. Chin. Phys. B 2010, 19, 324–332.

29. Šušmáková, K. Human sleep and sleep EEG. Meas. Sci. Rev. 2004, 4, 59–74.
30. Jung, T.P.; Makeig, S.; Stensmo, M.; Sejnowski, T.J. Estimating alertness from the EEG power spectrum.

IEEE Trans. Biomed. Eng. 1997, 44, 60–69. [CrossRef] [PubMed]
31. Yu, H.B.; Lu, H.T.; Tian, O.Y.; Liu, H.J.; Lu, B.L. Vigilance detection based on sparse representation of EEG.

In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2439–2442.

32. Wang, S.Y.; Zhang, Y.Q.; Wu, C.X.; Darvas, F.; Chaovalitwongse, W.A. Online prediction of driver distraction
based on brain activity patterns. IEEE Trans. Intel. Trans. Sys. 2015, 16, 136–150. [CrossRef]

33. Yeo, M.V.M.; Li, X.P.; Shen, K.Q.; Wilder-Smith, E.P.V. Can SVM be used for automatic EEG detection of
drowsiness during car driving. Saf. Sci. 2009, 47, 115–124. [CrossRef]

34. Aviyente, S. Compressed Sensing Framework for EEG compression. In Proceedings of the IEEE Workshop
on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007; pp. 181–184.

35. Antoniol, G.; Tonella, P. EEG Date Compression Techniques. IEEE Trans. Biomed Eng. 1997, 44, 105–114.
[CrossRef] [PubMed]

36. Chuang, C.H.; Lin, Y.P.; Ko, L.W.; Jung, T.P.; Lin, C.T. Automatic Design for Independent Component
Analysis Based Brain-Computer Interfacing. In Proceedings of the 2013 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2180–2183.

37. Wu, R.C.; Lin, C.T.; Liang, S.F.; Huang, T.Y.; Jung, T.P. EEG-Based Fuzzy Neural Network Estimator for
Driving Performance. In Proceedings of the 2004 International Conference on Systems, Man and Cybernetics,
The Hague, The Netherlands, 10–13 October 2004; pp. 4034–4040.

38. Morabito, F.C.; Labate, D.; Bramanti, A.; Foresta La, F.; Morabito, G.; Palamara, I.; Szu, H.H. Enhanced
compressibility of EEG signal in Alzheimer’s Disease Patients. Sensors 2013, 13, 3255–3262. [CrossRef]

39. Lin, C.T.; Wu, R.C.; Liang, S.F.; Chao, W.H.; Chen, Y.J.; Jung, T.P. EEG-based drowsiness estimation for safety
driving using independent component analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 2726–2738.

40. Parikh, P.; Micheli-Tzanakou, E. Detecting drowsiness while driving using wavelet transform. In Proceedings
of the IEEE 30th Annual Northeast on Bioengineering Conference, Springfield, MA, USA, 17–18 April 2004;
pp. 79–80.

41. Estepp, J.R.; Christensen, J.C.; Monnin, J.W.; Davis, I.M.; Wilson, G.F. Validation of a dry electrode system for
EEG. In Proceedings of the Human Factors and Ergonomics Society 53th Annual Meeting, San Antonio, TX,
USA, 19–23 October 2009; pp. 210–214.

42. Fiedler, P.; Brodkorb, S.; Fonseca, C.; Vaz, F.; Zanow, F.; Haueisen, J. Novel TiN-based dry EEG electrodes:
Influence of electrode shape and number on contact impedance and signal quality. In Proceedings of the
XII Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidki, Greece,
27–30 May 2010; pp. 418–421.

http://dx.doi.org/10.1109/JSEN.2015.2473679
http://dx.doi.org/10.1109/TSMCA.2011.2164242
http://dx.doi.org/10.1007/s11768-010-8043-0
http://dx.doi.org/10.3390/s121216937
http://www.ncbi.nlm.nih.gov/pubmed/23223151
http://dx.doi.org/10.3390/s131216494
http://www.ncbi.nlm.nih.gov/pubmed/24316564
http://dx.doi.org/10.1109/TITS.2012.2217377
http://www.ncbi.nlm.nih.gov/pubmed/24639620
http://dx.doi.org/10.1109/10.553713
http://www.ncbi.nlm.nih.gov/pubmed/9214784
http://dx.doi.org/10.1109/TITS.2014.2330979
http://dx.doi.org/10.1016/j.ssci.2008.01.007
http://dx.doi.org/10.1109/10.552239
http://www.ncbi.nlm.nih.gov/pubmed/9214790
http://dx.doi.org/10.1109/JSEN.2013.2263794


Sensors 2017, 17, 486 21 of 21

43. Harland, C.J.; Clark, T.D.; Prance, R.J. Remote detection of human electroencephalograms using ultrahigh
input impedance electric potential sensors. Appl. Phys. Lett. 2002, 81, 3284–3286. [CrossRef]

44. Gargiulo, G.; Calvo, R.A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Mohamed, A.; Schaik, V. A new EEG recording
system for passive dry electrodes. Clin. Neurophysiol. 2010, 121, 686–693. [CrossRef] [PubMed]

45. Vojkan, M.; Cary, G.; Jan, P. To what extent can dry and water-based EEG electrodes replace conductive gel
ones? A Steady State Visual Evoked Potential Brain-Computer Interface Case Study. In Proceedings of the
International Conference on Biomedical Engineering, Venice, Italy, 23–25 November 2011; pp. 14–26.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.1516861
http://dx.doi.org/10.1016/j.clinph.2009.12.025
http://www.ncbi.nlm.nih.gov/pubmed/20097606
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Train Safety and Accidents Analysis 
	Driver Vigilance Detection Technologies 

	System Architecture 
	Wireless Wearable EEG System for High-Speed Train Drivers 
	Train Driver Vigilance Detection 
	Data Preprocessing 
	Vigilance Detection Based on SVM Classification 

	Early Warning System 
	Experiments and Analysis 
	Conclusions 

