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Abstract: Outlier detection is an important research direction in the field of data mining. Aiming at
the problem of unstable detection results and low efficiency caused by randomly dividing features of
the data set in the Isolation Forest algorithm in outlier detection, an algorithm CIIF (Cluster-based
Improved Isolation Forest) that combines clustering and Isolation Forest is proposed. CIIF first uses
the k-means method to cluster the data set, selects a specific cluster to construct a selection matrix
based on the results of the clustering, and implements the selection mechanism of the algorithm
through the selection matrix; then builds multiple isolation trees. Finally, the outliers are calculated
according to the average search length of each sample in different isolation trees, and the Top-n objects
with the highest outlier scores are regarded as outliers. Through comparative experiments with six
algorithms in eleven real data sets, the results show that the CIIF algorithm has better performance.
Compared to the Isolation Forest algorithm, the average AUC (Area under the Curve of ROC) value
of our proposed CIIF algorithm is improved by 7%.

Keywords: Isolation Forest; clustering; k-means; selection matrix

1. Introduction

Outlier detection is an important research direction in the field of data mining, which
aims to uncover the unusual data present in a dataset [1,2]. The most widespread definition
of an outlier is that proposed by Hawkins [3]. Outliers are those data objects that deviate
from most of the data set, raising the suspicion that these deviations are not generated by
random factors, but by a completely different mechanism. The main reasons for outliers
are anomalies in the data itself and errors caused by the collection of data.

Isolation Forest is an unsupervised detection method specially designed based on the
isolation of outliers [4]. The method isolates outliers by splitting the data space through a
random hyper plane, reflecting the characteristic that outliers are easily isolated. With high
accuracy and low computational complexity, this method is widely used in the industry.
However, the Isolation Forest uses a completely random selection of features and feature
values when constructing isolation trees, and the overly random selection leads to a possible
invalid selection of feature values, resulting in divided features as interference features and
affecting the detection results.

In response to the limitations of the Isolation Forest method, this paper proposes an
algorithm CIIF that combines clustering and Isolation Forest. First, the proposed method
clusters the dataset using the k-means method [5] and constructs a selection matrix based
on the results of the clustering. Then, the process of isolation trees construction splits
the sample set using a selection matrix, which can effectively avoid the error caused by
the defects of the traditional Isolation Forest. Finally, outliers are calculated based on the
average search length of each sample in each decision tree, and the n samples with the
highest outliers are listed as outliers.
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Our main contributions are summarized as follows:

1. The proposed method introduces a pre-selection mechanism to improve the shortcom-
ings of Isolation Forest which are the unstable detection results and the low efficiency
caused by randomly dividing features of the dataset.

2. The proposed method uses the k-means algorithm to obtain the distribution of the
dataset, which is used to construct a selection matrix to implement a pre-selection
mechanism.

3. The proposed method introduces the parameter selection degree I to control the
influence of the pre-selection mechanism on the method and avoid overfitting.

The methods for outlier detection can be classified into distribution-based methods,
nearest-neighbor-based methods, clustering-based methods, neural network-based meth-
ods, classification-based methods, and isolation-based methods.

The distribution-based outlier detection algorithm is one of the first proposed algo-
rithms, whose main idea is to assume that the data distribution of a dataset fits a statistical
model and define outliers as those points that are in the low probability region [6]. Classic
representative models include the Gaussian distribution model [7–10], etc.

The outlier detection algorithm based on nearest neighbors is to detect outliers based
on the relationship between all data and their nearest neighbors. This class of methods
can be divided into two categories: distance-based methods [11–13] and density-based
methods [14–17]. Classic representative algorithms are the KNN (K-Nearest-Neighbor)
algorithm [18] based on distance and the LOF (Local Outlier Factor) algorithm based on
density [19].

The clustering-based outlier detection algorithm [20] is an unsupervised algorithm
whose main idea is to detect outliers by analyzing the relationship between data points
and clusters, which has good results for most data sets [21–23]. The disadvantage of the
clustering-based outlier detection algorithm is that the main purpose of the algorithm is
to obtain the distribution characteristics of the dataset, and the detection efficiency for
outlier points is not optimal, and the model needs to be adjusted according to the actual
application, so it cannot be flexibly applied to different datasets. The DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm is the representative of this
type of method [24–26].

The classification-based outlier detection algorithm trains a classifier from a labeled
dataset and uses this classifier to detect outliers [27]. The algorithm also has a disadvantage.
When the amount of data in the training dataset is insufficient, the efficiency and accuracy
of the trained classifier will fall as expected.

With the development of deep learning techniques, neural network-based
methods [28–30] have also advanced. This type of method has high detection accuracy
and good performance on different types of datasets. However, the models for this type
of approach are usually more complex and require a lot of time to train the model. Some
of the popular methods are as follows: Autoencoder Ensemble [31–33], GAN (Generative
Adversarial Network)-based model [34–36], Graph neural network [37–40], etc.

The isolation-based outlier detection method defines data that can easily be isolated
as outliers [41–43]. Isolation Forest is the representative of this type of method, which
constructs multiple isolation trees by splitting the sample space through hyper planes.
These isolation trees are completely random in the selection of attributes and split values
each time during the construction process. These isolation trees constitute the Isolation
Forest. The Isolation Forest algorithm defines those points that are easily isolated as outliers,
which tend to be the leaf nodes closest to the root node in the isolation trees. These outliers
are too different from other samples in the sample space and are far from the distribution
center of the sample. Therefore, we can locate potential outliers by calculating the average
finding length of sample points in the entire forest.
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2. Materials and Methods

The Isolation Forest algorithm can cause the constructed isolation tree to fail to accu-
rately reflect the difference between normal and outlier points due to the random selection
of split values in the process of constructing the isolation tree, which finally affects the
detection results.

As shown in Figure 1, the blue asterisk indicates normal data, and the red asterisk
indicates an outlier, due to the random selection of the split value, normal data may be
more likely to be isolated than an outlier.

Figure 1. The principle of IF, (a) normal data; (b) outlier. The blue asterisk indicates normal data, and
the red asterisk indicates an outlier.

To improve the shortcomings of the IF, CIIF introduces a pre-selection mechanism.
The main idea is to select a suitable cluster based on the data distribution of the dataset,
and preferentially select the boundary and center of that cluster as the split values, which
is shown in Figure 2:

Figure 2. The principle of CIIF, (a) normal data; (b) outlier. The blue asterisk indicates normal data
and the red asterisk indicates an outlier, the data in the selection cluster are indicated by the purple
dots.
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As shown in Figure 2, the outliers are isolated more accurately in CIIF.
CIIF is divided into two phases, the training phase, and the evaluation phase. The

training phase is divided into two steps, firstly, the construction of the selection matrix, and
then the construction of the Isolation Forest.

2.1. Training Phase
2.1.1. Selection Matrix

The CIIF algorithm is an unsupervised outlier detection algorithm that analyzes the
distribution of the dataset through the k-means clustering algorithm, divides the dataset
into k clusters, and selects the appropriate cluster as the selection cluster Cs.

Definition 1. selection cluster Cs
Let the dataset X be divided into k clusters C1, C2, . . . , Ck by the k-means clustering method,

and each cluster is scored as follows:

Score(ci) =
∑mi

j=1 dist
(
cixj

)
ni

(1)

where dist(ci,xj) is the Euclidean distance, n1, n2, . . . nk are the amount of data contained in each
cluster, and c1, c2, . . . ck are the cluster centers of each cluster.

Define the cluster with the lowest score as the selection cluster Cs.
The choice of selection cluster Cs directly affects the performance of the whole algo-

rithm. Different clusters as the selection cluster will lead to a large difference in the results
of the algorithm. Clusters with large data-to-data differences as the selection cluster can se-
riously degrade the performance of the algorithm, and clusters with larger amounts of data
are more suitable as the selection cluster than those with smaller amounts of data. Therefore,
it is necessary to score each cluster to determine the best choice of selection cluster.

The selection matrix S is built based on the selection cluster.

Definition 2. selection matrix S
Let the dimension of the dataset be d, and define the selection matrix as:

S = {S1, S2, · · · Sd} (2)

Define the maximum value of the selection cluster Cs in dimension d as Max(cd), the
minimum value as Min(cd), and the average value as Mean(cd), then:

sd = {Max(c), Min(c), Mean(c)} (3)

The construction process of matrix S is shown in Algorithm 1.
The selection matrix S is the set of data boundaries and means of the selection cluster

Cs in each attribute, which reflects the distribution characteristics of the selection cluster.
The CIIF algorithm implements the selection mechanism for split value selected by the
selection matrix when constructing the forest. In this process, the selection of the split
values will be prioritized from the optional points of the selection matrix S in that attribute.



Entropy 2022, 24, 611 5 of 17

Algorithm 1. Get-S(D, k)

Input: D-input data, k-number of clusters
Output: selection matrix S

1. Initialize S
2. C← k-means(D, k)//Cluster the dataset, return the result C = {C1,C2, . . . ,Ck}
3. for i = 1 to k do
4. scorei ← scorei∪Score(Ci);//Score each cluster
5. end for
6. s← argmin(scorei)//Get the serial number of the selection cluster
7. n← size(Cs);//Cs = {x1,x2, . . . ,xn}, xn = {nn1,nn2, . . . ,nnd}, d-number of dimensions
8. /* Construct the selection matrix S*/
9. for I = 1 to d do
10. Sam← Φ

11. for j = 1 to n do
12. Sam← Sam∪nij

13. end for
14. si ← {Min(Sam), Max(Sam), Mean(Sam)}
15. S← S∪si;
16. end for
17. return S

2.1.2. Isolation Forest

Set the selection degree I to control the degree of influence of the selection matrix S on
the algorithm.

Definition 3. selection degree I
The selection degree I is defined as the maximum number of times that split value can be

selected by the selection matrix S in each attribute.

The degree of selection is a parameter that controls the randomness of the algorithm
and is determined artificially. The larger the value of I, the more the forest is influenced
by the selection cluster Cs and the lower the randomness; the smaller the value of I, the
less the forest is influenced by the selection cluster Cs, the greater the randomness, and the
closer it is to the original Isolation Forest algorithm; when the selection degree I is 0, the
algorithm is the original Isolation Forest algorithm at this time.

Definition 4. discriminant matrix J
Define the discriminant matrix J as the record of the number of split values decided by each

dimension according to the selection matrix S during the construction of the Isolation Forest by CIIF:

J(d) = i (4)

where d represents the dimension and i is the record value. Equation (4) indicates that CIIF performs
i times split value selection for d dimensions in constructing the Isolation Forest.

The isolation tree is the core of the whole CIIF algorithm. To construct the isolation tree,
we first select a subsample from the sample space, use the subsample as the root node of the
isolation tree, then randomly select an attribute, choose a value from the candidate values
of the selection matrix S in the range of the subsample in the selected attribute, use the
value as the split value, and update the record of the selected attribute in the discriminant
matrix; If the candidate values of the selection matrix in the selected attribute are not in the
range of the subsample or the record of the selected attribute in the discriminant matrix J is
greater than the selection degree I, then randomly select a value as the split value in the
range of the subsample.
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The subsample space is divided into two subspaces according to the split value, and
the data with value less than the split value in the selected attribute are grouped in the
left subspace, and the data with value greater than the split value are grouped in the right
subspace, and the two subspaces are the two subtrees of the root node. The above process
is repeated recursively for both subtrees until the leaf nodes contain only one data, or all
the data in the leaf nodes have the same value; or the height of the tree exceeds the limit, at
which point the isolation tree construction is completed. The construction process of the
isolation tree is shown in Algorithm 2.

Algorithm 2. iTree(D, l, L, S, J)

Input: D-input data, l-current tree height, L-height limit, S-selection matrix, J-discriminant
matrix
Output: an iTree

1. get selection degree I
2. if l > L or |x| <= 1 then
3. return exNode
4. else
5. let Q be a list of attributes in D
6. randomly select an attribute q∈Q
7. let k be the serial number of q in D
8. s← {x | x cS(k, : ),min <= x <= max}
9. if s 6= Φ and J(k) < I then
10. randomly select a split point p from s
11. J(k)← J(k) + 1
12. else
13. randomly select a split point p from max and min values of attribute q in D
14. end if
15. Dl← filter(D, q < p)
16. Dr← filter(D, q > =p)
17. return inNode{Left← iTree(Dl, l + 1, L, S, J),
18. Right← iTree(Dr, l + 1, L, S, J),
19. SplitAtt← q,
20. SplitValue← p}
21. end if

Construct multiple isolation trees to form an isolation forest, the construction process
of an isolation forest is shown in Algorithm 3.

Algorithm 3. iForest(D, t, X)

Input: D-input data, t-number of isolation trees, X-subsampling size
Output: a set of iTrees

1. Initialize Forest
2. Initialize J
3. set height limit L = ceiling(log2X)
4. S← Get-S(D, k) //get the selection matrix
5. for I = 1 to t do
6. D’← Sample(D,X)
7. Forest← Forest∪iTree(D’, 0, L, S, J)
8. end for
9. return Forest
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2.2. Evaluation Phase

After the training phase, the proposed method will calculate the outlier scores of all
data points in the isolation forest with the following outlier score calculation formula:

score(x, n) = 2−
E(h(x))

c(n) (5)

where h(x) is the path length of sample x from the root node to the leaf node where it is
located, E(h(x)) is the expectation of path length h(x) in an isolated forest, and c(n) is the
average of the path lengths of all data points, calculated as follows:

c(n) = 2H(n− 1)− 2(n− 1)
n

(6)

where H(i) is the Harmonic series, which can be calculated as ln(i) + γ, and γ is the Euler’s
constant, which is approximately equal to 0.5772156649.

When E(h(x)) tends to 0, the outlier score tends to 1, and the data point x is judged to
be an outlier. On the contrary, if the score tends to 0, the data point x will be judged as a
normal point. When the score tends to 0.5, it is not possible to determine whether the data
point x is an outlier.

This algorithm has two stages, the first stage is to construct the selection matrix and
the second stage is the improved Isolation Forest algorithm. The first stage clusters the
data set by the k-means algorithm, and the selection matrix is constructed according to
the clustering results. The computational complexity of computing the Euclidean distance
of the data set is O(n2), the computational complexity of the k-means algorithm is O(n),
and the computational complexity of constructing the selection matrix is O(n), so the
computational complexity of the first stage is O(n2). The second stage is the improved
Isolation Forest algorithm with linear computational complexity. Thus, the computational
complexity of the whole improved algorithm is O(n2).

3. Results
3.1. Subsection

To verify the effectiveness of the algorithm, experiments were conducted on 11 differ-
ent publicly available real datasets from UCI and ODDS [44–54], and the AUC value was
used as the Accuracy Metric of the algorithm.

The specific attributes of datasets are shown in Table 1. The breastw dataset is the
Wisconsin breast cancer diagnosis dataset, which is a high-dimensional dataset publicly
available at UCI and contains diagnostic data for malignant and benign tumors. The
diagnostic data for malignant tumors are labeled as outliers. The annthyroid dataset is a
thyroid disease dataset, which is divided into two categories: noisy and normal, and the
noisy data are labeled as outliers. The arrhythmia dataset, which is a cardiac arrhythmia
dataset, divides the data into multiple categories, the eight categories with less data are
labeled as outliers. The pima dataset is an Indian diabetes dataset, divided into two
categories: abnormal and normal; the abnormal data are labeled as outliers. The vertebral
dataset is a genomic dataset with six dimensions, classifying data into normal and abnormal
categories, the abnormal data are labeled as outliers. The wine dataset is a dataset of results
of chemical analyses of wines made from three different grapes from the same region of
Italy, which identified the number of 13 components contained in the three wines, the data
for one of the wines are labeled as outliers. The ionosphere dataset is a binary dataset
with 34 dimensions, classifying the data into bad and good classes, removing an invalid
attribute, the bad class data are labeled as outliers. The shuttle dataset is the flight data of
the aircraft; the data are divided into two categories, the data of the category with smaller
number are labeled as outliers. The cardio dataset is the fetal heart rate measurements
on the ECG that have been processed by a professional physician. The data are divided
into three categories: normal, suspicious, and pathological, with the suspicious category
discarded and the pathological category labeled as outliers.
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Table 1. Testing dataset.

Dataset Data Volume Dimension Number of Outliers Outlier Ratio %

breastw 683 9 239 34.9927
annthyroid 7200 6 534 7.4167
arrhythmia 452 274 66 14.6018

pima 768 9 268 34.8958
speech 3686 400 61 1.6549
thyroid 3772 6 93 2.4655

vertebral 240 6 30 12.5
wine 129 13 10 7.7519

ionosphere 351 33 126 35.8974
shuttle 49,097 9 3511 7.1511
cardio 1822 21 176 9.6122

3.2. Evaluation Metric

For a binary classification algorithm, data samples can be classified into four categories
based on the classification results and true labels: True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN), as shown in Table 2.

Table 2. Confusion matrix of classification results.

Actual
Forecast

Positive Negative

Positive TP FN
Negative FP TN

Area under the Curve of ROC (AUC) is the value of the area between the Receiver
Operating Characteristic (ROC) curve and the horizontal coordinate. The ROC curve is a
curve on a two-dimensional plane with the horizontal coordinate of the false-positive rate
(FPR) and the vertical coordinate of the true-positive rate (TPR). The formula for calculating
FPR and TPR is as follows:

TPR =
TP

TP + FT
(7)

FPR =
FP

TN + FP
(8)

AUC is calculated as:

AUC =
∑ip rankip −

M(M+1)
2

MN
(9)

where ip denotes a positive sample, rank is the sample serial number, M is the number of
positive samples, and N is the number of negative samples. the AUC value is generally
between 1 and 0.5, and the closer the AUC value is to 1, the better the performance
of the algorithm. If the AUC value is below 0.5, the algorithm is not applicable to the
detection dataset.

3.3. Experimental Results

Six typical outlier detection algorithms are used as comparison algorithms with the
proposed CIIF to compare the AUC values and computational times on 11 datasets. The
six comparison algorithms are Isolation Forest, LOF, KNN, COF (Connectivity-based
Outlier Factor) [55], FastABOD (Fast Angle-Based Outlier Detection) [56], and LDOF (Local
Distance-based Outlier Factor) [57].
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Table 3 shows the AUC values of each algorithm on the 11 datasets and highlights the
best AUC value with the second-highest AUC value on each dataset. By comparing the
AUC values of each algorithm, we can see that the CIIF performs well on the annthyroid,
arrhythmia, speech, vertebral, wine, and ionosphere datasets, and has a significant im-
provement compared to the Isolation Forest and other comparison algorithms; outperforms
other comparative algorithms on thyroid and shuttle dataset, with less difference com-
pared to the Isolation Forest; outperforms the original Isolation Forest algorithm and other
comparison algorithms on the breastw dataset, and differs less from the COF; outperforms
the Isolation Forest and other comparison algorithms on the pima dataset, and differs less
from FastABOD. The performance on the cardio dataset is slightly worse than the original
Isolation Forest algorithm and COF algorithm, and less different from the KNN algorithm.

Table 3. AUC results on 11 real-world datasets AUC of several algorithms. The highlighted data
indicate the best and second best values on each data set.

Data
AUC

CIIF IF LOF KNN COF FastABOD LDOF

breastw 0.9922 0.9876 0.2421 0.9881 0.1273 0.6220 0.6394
annthyroid 0.9073 0.8212 0.6958 0.6938 0.6523 0.2153 0.7377
arrhythmia 0.8392 0.8035 0.5092 0.5092 0.7229 0.2562 0.5092

pima 0.8502 0.8064 0.4491 0.8275 0.4859 0.2580 0.5221
speech 0.6048 0.4539 0.5467 0.4821 0.5747 0.2662 0.6592
thyroid 0.9799 0.9749 0.6836 0.9481 0.6121 0.1642 0.7098

vertebral 0.6911 0.3659 0.4846 0.3238 0.4805 0.6270 0.5281
wine 0.9403 0.7829 0.4008 0.8462 0.2319 0.5647 0.4496

ionosphere 0.8624 0.8527 0.8643 0.8793 0.8529 0.1738 0.8831
shuttle 0.9983 0.9968 0.5184 0.6339 0.5534 0.4172 0.5208
cardio 0.9305 0.9042 0.6128 0.9161 0.5796 0.4759 0.5798

Figure 3 shows the ROC curves of CIIF and other comparison algorithms on 11 datasets.
The ROC curves of the proposed algorithm on the annthyroid, pima, thyroid, vertebral,
wine, and cardio datasets are above the other algorithms; The ROC curves of the proposed
algorithm on the shuttle, breast, and pima datasets nearly overlap with those of the Isolation
Forest and are higher than those of other algorithms. On the speech dataset, CIIF does
not work as well as LDOF. On the ionosphere dataset, CIIF does not work as well as
LDOF, KNN and LOF. The results of comparing six state-of-the-art algorithms on eleven
real-world datasets show that CIIF achieves the highest Area under ROC Curve (AUC) on
nine datasets. Thus, the CIIF outperforms the IF and the other comparison algorithms in
overall performance.
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Figure 3. Cont.
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Figure 3. ROC curve of several algorithms in several datasets: (a) breast; (b) annthyroid; (c) arrhythmia;
(d) pima; (e) speech; (f) thyroid; (g) vertebral; (h) wine; (i) ionosphere; (j) shuttle; (k) cardio.

As shown in Figure 4, the proposed algorithm has a higher computational time than
LOF, KNN, COF, FastABOD, LDOF on datasets with smaller datasets. From Figure 5, the
difference between the computational time of LOF, KNN, COF, LDOF, and the CIIF is
not significant on the datasets with larger data volume such as shuttle data set, and the
computational time of FastABOD is even much higher than the proposed algorithm. The
computational time of the Isolation Forest is smaller than that of the CIIF on each dataset,
but the CIIF has higher AUC values and better detection results on most of the datasets.
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Figure 4. Computational times(s).

Figure 5. Computational time of shuttle(s).

The experimental results show that CIIF has good detection performance on most of
the datasets; the computational time on the datasets with less data is slightly higher than
other algorithms, but within the acceptable range; the computational time on the datasets
with larger data is smaller or not much different compared to other algorithms. Therefore,
the CIIF is effective and feasible.

3.4. Parameter Analysis

The effect of selection degree I, number of subsampling X, on the proposed algorithm
was analyzed experimentally on annthyroid, arrhythmia, pima, ionosphere, shuttle, and
cardio dataset.

3.4.1. Effect of Selectivity I

Experiments were conducted with different I on six datasets. The range of I was set
to integers from 1 to 10, because the proposed algorithm is no different from the Isolation
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Forest when I is less than 1, and the AUC values tend to be smooth when I is greater than
10. The experimental results are shown in Figure 6.

Figure 6. AUC impact of I.

From the results, the influence of different I on each dataset is small. When I = 2, the
AUC values reach the optimal value on each dataset and then decrease. Therefore, in the
CIIF, the value of the selection degree I is generally set to 2, so that the CIIF can achieve the
optimal performance on most dataset.

3.4.2. Effect of Selectivity Subsampling X

Experiments were conducted on the datasets with large data such as annthyroid,
speech, and shuttle, to explore the effect of subsampling X on the results. Because the
subsampling number is too large for datasets with smaller data, they will no longer be
subsampled, but use all the data to construct isolation trees, which eventually leads to all
isolation trees in the isolation forest being constructed from the same set of samples.

From Figure 7, the detection performance of the CIIF on the shuttle dataset increases
with the subsampling X and reaches the best at subsampling of 256. The detection per-
formance on the annthyroid and speech datasets starts to level off at subsampling of 256,
before which there are large fluctuations in detection performance. When the subsampling
is too small, the detection performance of the CIIF is poor and unstable; when the sub-
sampling is too large, the sample set will contain too many normal samples, leading to a
certain degradation in performance and leading to greater time cost. Therefore, the best
comprehensive performance of the proposed algorithm is achieved when the subsampling
is 256.
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Figure 7. AUC impact of subsampling X.

IF takes a completely random selection of attributes and split values in the training
process, ignoring the distribution characteristics of the dataset itself, so, as a result, the
constructed isolation forest cannot accurately reflect the isolation of each sample, resulting
in a decrease in detection accuracy. CIIF takes account of the distribution characteristics
of the dataset and performs a heuristic training process based on these characteristics,
resulting in better performance.

4. Conclusions

In this paper, we propose an improved isolation forest algorithm, which constructs
a selection matrix to realize the pre-selection mechanism of attribute values for isolation
forest division by clustering and analyzing the data distribution of the dataset, avoiding
the problem of low accuracy caused by too much randomness of the Isolation Forest.
Experiments on 11 datasets on UCI and ODDS verified the effectiveness of the algorithm.
In the experiments, it was found that the performance of the k-means algorithm is too greatly
affected by the given k value, and there is no less lossy way to select the appropriate k value
for a data set, and the result of the clustering algorithm directly affects the performance of
the CIIF, so the next step is to study the effect of different clustering algorithms on the CIIF
and the improvement of k-means algorithm.
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