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ABSTRACT: Lattice constants such as unit cell edge lengths and plane
angles are important parameters of the periodic structures of crystal
materials. Predicting crystal lattice constants has wide applications in crystal
structure prediction and materials property prediction. Previous work has
used machine learning models such as neural networks and support vector
machines combined with composition features for lattice constant
prediction and has achieved a maximum performance for cubic structures
with an average coefficient of determination (R2) of 0.82. Other models
tailored for special materials family of a fixed form such as ABX3 perovskites
can achieve much higher performance due to the homogeneity of the
structures. However, these models trained with small data sets are usually
not applicable to generic lattice parameter prediction of materials with
diverse compositions. Herein, we report MLatticeABC, a random forest
machine learning model with a new descriptor set for lattice unit cell edge
length (a, b, c) prediction which achieves an R2 score of 0.973 for lattice parameter a of cubic crystals with an average R2 score of
0.80 for a prediction of all crystal systems. The R2 scores are between 0.498 and 0.757 over lattice b and c prediction performance of
the model, which could be used by just inputting the molecular formula of the crystal material to get the lattice constants. Our results
also show significant performance improvement for lattice angle predictions. Source code and trained models can be freely accessed
at https://github.com/usccolumbia/MLatticeABC.

1. INTRODUCTION

The periodic structures of crystal materials can be summarized
by their space group and the parallelepiped unit cell as shown in
Figure 1. A unit cell is defined by six lattice parameters/
constants including the lengths of three cell edges (a, b, c) and
the angles between them (α, β, γ). The shape of the unit cell of a
crystal material determines its crystal system out of seven
possibilities: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal, and cubic. Lattice constants and their
changes such as lattice distortion upon different pressures and
temperatures are related to many interesting physical and
chemical properties of the materials.1−3 Lattice mismatch
between the films and the growth substrates is also known to
cause major issues in fabricating large and high quality of
heteroepitaxial films of semiconductors such as GaAs, GaN, and
InP.4 Finding a new material with the desired matched lattice
constant is then a big challenge for both experimental approach
based on X-ray electron or neutron diffraction techniques and
first-principles calculations for large-scale screening.
Computational prediction of lattice constants of crystal

materials has wide applications in both materials property
prediction and discovery,5 crystal structure prediction,6,7 and
large screening of materials for materials fabrication.8 Lattice
prediction models are very helpful for the crystal structure

prediction algorithms, which can allow conducting mutagenesis
experiments to examine how composition changes may affect
the structural mutations in terms of lattice constant changes or
symmetry breaking. Crystal structure prediction can also be used
to augment the X-ray diffraction (XRD)-based crystal structure
determination via space group identification or providing initial
parameters for the XRD-based Rietveld refinement method for
structure determination. During the past 15 years, a series of
prediction approaches have been proposed for lattice constant
prediction, which can be categorized by their input information
used, the descriptors or features, the machine learning model,
and the chemical system or materials family they are trained for.
According to the input information of the predictionmodels, the
approaches can be divided into composition (such as atomic
properties of their constituent elements)-based lattice parameter
prediction models4 and structure-based prediction models.9
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While the majority of methods are based on composition
information, the structure-based approaches can also bring
interesting insights.8 In this paper,9 a deep learning method is
proposed to predict lattice parameters in cubic inorganic
perovskites based on Hirshfeld surface representations of crystal
structures. They showed that two-dimensional Hirshfeld surface
fingerprints contain rich information encoding the relationships
between chemical bonding and bond geometry characteristics of
perovskites.
Lattice prediction methods can also be classified by the

machine learning models used. A variety of machine learning
models have been applied for lattice constant prediction
including conventional machine learning methods in the early
stage such as linear regression,4,10 support vector machines,11,12

neural networks (NNs),10,13 gene expression programming,8

random forests (RFs),14 and Gaussian process regression.15

However, the performance difference among different machine
learning algorithms has not been thoroughly evaluated.
A major difference among different lattice constant prediction

studies is the chemical systems or materials families they focus
on. The majority of the studies are focused on a special category
of materials with fixed mole ratios, including the cubic
perovskites ABX3,

4,11,16−19 A2XY6,
8 half-Heusler ternary com-

pounds (XYZ),20 and binary body-centered cubic crystals.12

Most of such studies use an extremely small data set (<200
samples) coupled with selected elemental properties to achieve
high accuracy (coefficient of determination (R2) > 0.95) as
evaluated by the random hold-out or cross-validation methods.
However, due to the high similarity (or redundancy) among the
samples, these two evaluation methods tend to overestimate the
prediction performance.21 Another reason for the reported high
accuracy is because the space group and the structure topologies
of the samples in their dataset are all identical and the variation
among the lattice structures is only due to variations of some
element’s properties.
On the other hand, few studies have been reported to predict

lattice constants of generic crystal materials with varying mole
ratios or a different number of elements. In 2017, Takahashi et
al.12 calculated the lattice constants of 1541 binary body-
centered cubic crystals using density functional theory and
trained a prediction model using support vector regression
(SVR) and feature engineering based on atomic number, atomic
radius, electronegativity, electron affinity, atomic orbital, atomic
density, and the number of valence electrons. They reported an
R2 accuracy of 83.6%. In 2020, Liang et al.5 proposed a neural
network called Cryspnet based on extended Magpie elemental
descriptors22 for lattice constant prediction for materials with

formulas of generic forms. They built a neural networkmodel for
each Bravais lattice type. For cubic (P, I, F) materials, their
models achieve R2 scores of 0.85, 0.80, and 0.83. For other
crystal systems, the R2 regression performance ranges from 0.11
to 0.77, with increasing scores for Bravais lattice types with
higher symmetry.
While the choice of machine learning algorithms affects the

prediction performance, it is found that the descriptors play a
major role in lattice parameter prediction. Fundamentally, any
factor that contributes to the change of lattice constants can be
added to the descriptor set of the prediction model. A large
number of descriptors have been used for lattice constant
prediction even though some of them may be specific to the
form of the chemical compositions. For perovskite lattice
constant prediction, the following descriptors have been used:
valence electron,10,23 ionic radii (which reflects bond
lengths),8,23 tolerance factor (t r r

r r2 ( )
A X

B X
= +

+ ) calculated from

ionic radii of the A-site and B-site cations and rX, the ionic radius
of the anion,4 electronegativity,24,25 and ionic charge.26 In terms
of ionic radii, there are several ways to combine the values of the
component elements such as the sum, differences, or ratios. In
the structure-based lattice constant prediction,9 both graph
representations and two-dimensional (2D) fingerprints have
been used by measuring (di, de) at each point on the surface and
then binning them into a 2D histogram. In lattice constant
prediction of binary body-centered cubic crystals, Takahashi et
al.12 recommended seven descriptors for predicting lattice
constant a including the atomic number of element A and B,
density, atom orbital of elements A and B, difference in
electronegativity between A and B, and atomic orbital B +
difference in the electronegativity between A and B. When
trained with 1541 samples, their SVR model achieved a mean R2

score of 83.6% via cross-validation and a maximum error of 4%
when compared to experimentally determined lattice constants.
In this work, we focus on the lattice edge length (a, b, c)

prediction problem for generic crystal materials. Compared to
previous work, our data sets are much larger (10−100 times),
enabling us to achieve high performance for generic lattice
parameter prediction. Our model has achieved exceptionally
high accuracy for cubic systems with R2 reaching 0.973, of which
the materials have a single edge length a as their lattice
parameter. Cubic crystals consist of 18,325 or 14.63% of all
125,278 crystals deposited in the materials project database as of
September 2020. Using a data set with 18,325 samples of cubic
crystals in the Materials Project,27 we develop a RF model using
a set of novel descriptors for generic crystal materials lattice edge

Figure 1.Unit cell descriptors and lattice constants. (a) Unit cell and lattice constants: a, b, c andα, β, γ. (b) Cubic unit cell where a = b = c and α = β = γ
= 90°
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length prediction of which the number of elements and the mole
ratios are not stereotyped. Our experiments show that our
MLatticeABC algorithm achieves a much better performance
compared with previous methods with an R2 reaching as high as
97% for cubic materials.
Our contributions can be summarized as follows:

• We propose a new descriptor set for generic lattice
constant a, b, c prediction of crystal materials.

• We conduct extensive experiments with different
combinations of descriptors and transfer learning
strategies and evaluate and compare the performances
of different machine learning algorithms.

• Our experiments show that our MLatticeABC algorithm
based on RF achieves state-of-the-art prediction perform-
ance in generic lattice edge length prediction.

2. EXPERIMENTS
2.1. Datasets. We used the Materials Project API to

download the crystal lattice information of known inorganic
materials deposited in the Materials Project database http://
www.materialsproject.org. We observed that the direct use of
MPDataRe- trievav.get_dataframe function with structure.latti-
ce.a/b/c/α/β/γ leads to an inconsistent dataset because these
lattices are the primitive lattice parameters. However, for cubic
crystals, about 13,000 of the crystals’ primitives are smaller units
with α/β/γ equal to 60° instead of 90°, while the remaining
5000 or so cubic crystals have a cubic unit cell representation
with 90° for α/β/γ. To address this inconsistency issue, we
instead downloaded all structural cif files of the crystals in the
conventional_standard format and read the lattice parameters
from them. In total, we got 125,278 materials on September 10,
2020, from theMaterials Project database, which we call the MP
dataset. These materials can be divided into seven groups by
their crystal system types with corresponding sample numbers:
triclinic (15,297), monoclinic (29,872), orthorhombic
(26,801), tetragonal (14,654), trigonal (11,086), hexagonal
(9243), and cubic (18,325). For these materials, the distribution
of the lattice cell lengths a, b, c is shown in Figure 2. It can be
found that most of the values of a and b are distributed between
2.5 and 17.5 Å and peaks are around 6 Å. The values of lattice
parameter c are mainly distributed between 2 and 25 Å with a
more flat distribution.
As one of the major focus areas of this study, we also show the

lattice parameter a of cubic materials in Figure 3. Unlike the
overall distribution of a in Figure 2, the number of cubic
materials decreases obviously when their length a surpasses 12.5
Å. Also, most of the values of a are distributed between 2.5 and

15.0 Å in cubic materials. In addition, we show the distribution
of samples in terms of element number in the crystals in our
overall dataset in Table 1. It is found that most of the samples are
ternary and quaternary followed by binary materials.

3. RESULTS
3.1. Prediction Performance of MLatticeABC for Cubic

Materials. We ran random hold-out experiments 10 times and
report the average and standard deviation of performance
measures of these runs in terms of R2, root mean square error
(RMSE), and mean absolute error (MAE). For our RF model
with the enhanced mapgie + total atom number feature, the
average R2, RMSE, andMAE for unit cell length a predictions for
the cubic crystals are 0.973, 0.144, and 0.484, respectively, which
are much better than the baseline results reported in ref 5. In
their report (Table 4), the length a prediction performances are
reported for three cubic Bravais lattices with R2 of 0.80, 0.83, and
0.85. Figure 4a shows the parity plot of one of our hold-out
experiments for lattice a prediction of cubic materials, which is
the performance of more than 3000 samples, accounting for
about 20% of the total cubic materials, of the test set.
To understand why the number of atoms in a material is so

critical to the prediction of lattice edge length a for cubic
systems, we plot the parity plot of a against the total atom
number in Figure 4. It shows that there is a strong correlation
between the number of atoms in the unit cell and the lattice edge
length a for cubic crystals. Due to the varying volume of atoms of

Figure 2. Histogram of the lattice constant (edge length a/b/c) distribution. (a) Histogram of a, (b) Histogram of b, and (c) Histogram of c.

Figure 3.Histogram of the lattice constant (edge length a) distribution
for cubic materials.
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different elements, for crystals with a specific lattice parameter a,
the number of atoms also varies.
3.2. Prediction Performance of MLatticeABC for all

Crystal Materials. We conduct extensive experiments to
evaluate our model performance in predicting the a, b, c, and V
over all crystal systems in the downloaded MP dataset using the
same 10-repeats random hold-out test set validation evaluation
approach. In each experiment, the training set and validation set
are divided into 80 and 20%. The results are shown in Table 2. It
is found that our RF model can achieve R2 of up to 0.973 in
lattice parameter, a prediction for cubic materials using only
composition as the input. The performances over other crystal
systems except Monoclinic are also good ranging from 0.779 to
0.900. In general, the higher the symmetry, the better the
prediction performance. It is also interesting to find that the
prediction performance over lattice b and c are all lower than
those on lattice a, with all R2 scores being between 0.498 and

0.757. In addition, we can see from the table that monoclinic
lattice constant prediction has the worst performance: its R2

scores of a, b, c prediction are only 0.530, 0.498, and 0.518,
respectively. Especially the prediction performance for predict-
ing lattice constant a is far lower than its prediction performance
for other crystal systems. This is because the crystal structure of
monoclinic is relatively complex; the side lengths a, b, c are not
equal, and the angle β has a big variation. Further feature
engineering and more data are needed for improving the model
performance. One interesting result we find is that, compared
with orthorhombic and monoclinic, our model performs better
for triclinic. This is because it has many isomers for a chemical
formula, and the isomers from one formula can be divided into
training sets and test sets at the same time, which improves the
accuracy of prediction results.
However, unlike the edge length prediction, the volume

predictions of cubic and hexagonal are not as good, which have

Table 1. Distribution of Samples in Terms of Element Number in the Crystal

the number of elements in each crystal 1 2 3 4 5 6 ≥=7

the number of crystal 713 19123 58592 34866 10200 1601 183
percentage 0.57% 15.26% 46.77% 27.83% 8.14% 1.28% 0.15%

Figure 4.High prediction performance for lattice parameter a prediction for cubicmaterials and the key parameter, the total number of atoms. (a) True
and predicted lattice constant parameter a by MLatticeABC where the descriptors include the enhanced Magpie feature + total atom number. (b)
Correlation of total atom number with lattice a of cubic materials.

Table 2. Prediction Performance of MLatticeABC in Terms of R2 Score for a, b, c, and V over Different Crystal Systems

crystal system train set size test set size a b c V

cubic 14,660 3665 0.973 ± 0.007 0.793 ± 0.115
hexagonal 7394 1849 0.900 ± 0.013 0.757 ± 0.036 0.852 ± 0.117
trigonal 8868 2218 0.838 ± 0.013 0.700 ± 0.075 0.898 ± 0.063
tetragonal 11,723 2931 0.858 ± 0.011 0.677 ± 0.029 0.862 ± 0.033
orthorhombic 21,440 5361 0.779 ± 0.012 0.603 ± 0.029 0.654 ± 0.022 0.787 ± 0.070
monoclinic 23,897 5975 0.530 ± 0.022 0.498 ± 0.015 0.518 ± 0.013 0.881 ± 0.076
triclinic 12,237 3060 0.788 ± 0.011 0.754 ± 0.021 0.664 ± 0.024 0.856 ± 0.103

Table 3. Prediction Performance of MLatticeABC in Terms of R2 Score for α, β, and γ over Monoclinic and Triclinic

crystal system train set size test set size α β γ

monoclinic 23,897 5975 0.388 ± 0.006
triclinic 12,237 3060 0.187 ± 0.012 0.188 ± 0.011 0.087 ± 0.010
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an R2 score of 0.793 and 0.852, respectively. Although for
monoclinic, the volume prediction is far better than its crystal
length prediction, which is a little bit unexpected. Moreover, we
present the results for the angle prediction of monoclinic and

triclinic in Table 3. The R2 scores for α, β, γ predictions are only
0.187, 0.188, and 0.087 for triclinic. For monoclinic, R2 can
reach 0.388, which is better than triclinic performance.
However, our lattice angle prediction performance is a

Figure 5. Performance comparison of MLatticeABC and Cryspnet for lattice constant (a, b, c) prediction in terms of R2. For Cryspnet, the shown
scores are the average for crystal systems withmultiple Bravais lattice types. Since there is no simple way tomap trigonal crystals to the Cryspnet lattice-
type models, their performances on this crystal system are not reported.

Figure 6. The top 20 important features for crystal length prediction for cubic, hexagonal, and trigonal crystals. The top features are also observed for
other crystal systems. (a) Cubic a, (b) hexagonal a, (c) hexagonal c, and (d) trigonal a.
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significant improvement compared to those of Cryspnet,5 whose
scores are no more than 0.06 and 0.17 for monoclinic and
triclinic angle prediction.
We also compare our model performance over all lattice

systems with those of the baseline algorithm, Cryspnet,5 which is
a neural network-based model for generic lattice parameter,
crystal system, and space group prediction using composition as
the only input. In this approach, Matminer library was used to
generate descriptors, which are then fed into the neural network
to predict the Bravais lattice, space group, and lattice parameters.
The performance comparison is shown in Figure 5. We find that
for all crystal systems, the performance of MLatticeABC is
better, with significant improvements for triclinic crystals. The
performance gap may be due to the fact that Cryspnet does not
use global composition features such as the total atom number
and the statistics of atoms of different elements.
In order to see the relationship between descriptors and lattice

constants, we calculated and ranked the top 20 features by their
feature importance scores for some crystal systems when the RF
with Magpie (the best classifier) is applied for classification in
Figure 6. We find that the total atom number, maximum atom
number, and mean atom number have a major impact, which
explains why our model is so much better than models with only
Magpie features as used in previous approaches.
3.3. Prediction Performance ofMLatticeABCwithData

Augmentation. It is also known that crystals of different
crystal/lattice systems have some special patterns in terms of
their lattice parameters. Table 4 shows the relationship between

lattice parameters of the crystals. In a previous work on generic
lattice parameter prediction,5 a separate model is trained for
each Bravais lattice type. However, we wonder if the training
samples from other lattice systems can help to improve the
performance. For example, can we build a more accurate model
for lattice parameter a prediction of cubic materials by including
other rectangular cuboid crystals as training samples since they
are strongly related? To verify this hypothesis, we did the

following experiments by first splitting the cubic samples into
80% training and 20% testing sets. Then, we use the 80% training
plus the samples of tetragonal and orthorhombic to train the
model and evaluate their performance on the original 20% test
samples. We repeat this 10 times to get the average scores. The
descriptor set and the machine learning model are the same as in
MLatticeABC. The results are shown in Table 5. The crystal
system in the parenthesis is the crystal type of the test set. We
find that the performance of the ML model with extended
training samples always decreases for lattice constant a
prediction for both cubic (from line 2 to line 7) and
orthorhombic crystals (from line 8 to line 11). This means
that the data augmentation strategy which trains models with
samples from other lattice systems has an adverse effect on the
prediction performance, and it is wise to train separate lattice
parameter prediction models for different crystal systems using
samples of that specific crystal system only.

3.4. Performance Comparison of Different Algo-
rithms. Many different machine learning algorithms and
descriptors have been used for lattice parameter prediction.
Here, we evaluate how deep neural networks (DNNs), RF, and
SVR perform with different feature sets. We use the cubic crystal
dataset and repeat the hold-out experiments 10 times. The
performance comparison is shown in Figure 7 and Table 6,
which shows the baseline algorithm performance as reported in
ref 5. First, from Figure 7, we find that the performances of the
RF model in terms of both R2 and RMSE are always better than
those of neural networks (NN), which are better than the
performance of SVR. Second, it is found that the enhanced
Magpie features can clearly boost the prediction performance.
Moreover, the figure shows that the performance improvements
due to the inclusion of atom number are significant. The parity
plots in Figure 8 further show that the RF with our descriptor set
has the best performance.

4. DISCUSSION

Our extensive experiments show that the prediction perform-
ance is strongly affected by the available dataset including its size
and sample distribution and also the descriptors used. Our data
augmentation results show that including the samples from
other lattice systems can deteriorate the prediction performance
for the crystal system-specific ML models, which is contrary to
the common practice of data augmentation or transfer learning.
Here, it is more appropriate to train individual models using only
samples of that lattice system.
To gain further understanding of how descriptor combina-

tions affect the model performance, we compare the perform-
ances of different feature combinations using a set of ablation

Table 4. Lattice Parameter Relationships for Materials of
Different Lattice Systems

crystal system edge lengths axial angles space groups

cubic a = b = c α = β = γ = 90 195−230
hexagonal a = b α = β = 90, γ = 120 168−194
trigonal a = b ≠ c α = β = 90, γ = 120 143−167
tetragonal a = b ≠ c α = β = γ = 90 75−142
orthorhombic a ≠ b ≠ c α = β = γ = 90 16−74
monoclinic a ≠ c α = γ = 90, β ≠ 90 3−15
triclinic all other cases all other cases 1−2

Table 5. Prediction Performance Comparison for Lattice Parameter a of Cubic Materials with Data Augmentation

descriptors train sample no test sample no a

(cubic) 14,660 3665 0.973 ± 0.007
(cubic) + tetragonal 29,314 3665 0.966 ± 0.008
(cubic) + orthorhombic 41,461 3665 0.920 ± 0.011
(cubic) + tetragonal + orthorhombic 56,115 3665 0.920 ± 0.019
(cubic) + hexagonal + trigonal 34,989 3665 0.955 ± 0.012
(cubic) + tetragonal + orthorhombic + hexagonal + trigona 76,444 3665 0.934 ± 0.010
orthorhombic 21,440 5361 0.779 ± 0.012
orthorhombic + cubic 39,765 5361 0.753 ± 0.017
orthorhombic + cubic + tetragonal 54,419 5361 0.708 ± 0.014
orthorhombic + cubic + tetragonal + trigona 65,505 5361 0.699 ± 0.012
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experiments. We evaluate the RF models only on the cubic
system for simplicity. From Table 7, we first find that the
element_atom_no_stat descriptor set is better than both
Magpie and enhanced Magpie as proposed in ref 5 with an R2

score of 0.887 compared to 0.732 and 0.830 of Magpie and

EnhancedMagpie, respectively. When combined with enhanced
Magpie, the prediction performance of RF is greatly improved
by including the element atom number statistics in the unit cell.
We also compare our model performance with Roost,28 a

powerful graph neural network-based prediction model using

Figure 7. Performance comparison of different algorithms for lattice constant a prediction. (a) Performance comparison in terms of R2 and (b)
performance comparison in terms of RMSE.

Table 6. Prediction Performance Comparison with Baselines

algorithm R2 MAE RMSE

SVR with Magpie 0.560 ± 0.013 1.063 ± 0.021 1.969 ± 0.063
DNN with Magpie 0.691 ± 0.022 0.825 ± 0.030 1.678 ± 0.053
RF with Magpie 0.732 ± 0.017 0.802 ± 0.021 1.559 ± 0.055
SVR with enhanced Magpie 0.602 ± 0.016 1.023 ± 0.022 1.886 ± 0.065
DNN with enhanced Magpie 0.706 ± 0.015 0.739 ± 0.033 1.625 ± 0.047
RF with enhanced Magpie 0.830 ± 0.025 0.512 ± 0.029 1.227 ± 0.114
SVR with element_atom_no_stat + enhanced Magpie 0.951 ± 0.009 0.316 ± 0.005 0.656 ± 0.063
DNN with element_atom_no_stat + enhanced Magpie 0.960 ± 0.015 0.246 ± 0.029 0.592 ± 0.124
RF with element_atom_no_stat + enhanced Magpie 0.973 ± 0.007 0.144 ± 0.005 0.484 ± 0.076

Figure 8. Parity plots of different algorithms for lattice constant a predictions for cubic materials. (a) DNN + complete descriptor set, (b) RF +
complete descriptor set, and (c) SVR + complete descriptor set.

Table 7. RF Prediction Performance Comparison with Different Descriptor Combinations

feature sets R2 MAE RMSE

Magpie 0.732 ± 0.017 0.802 ± 0.021 1.559 ± 0.055
enhanced Magpie 0.830 ± 0.025 0.512 ± 0.029 1.227 ± 0.114
element_atom_no_stat 0.887 ± 0.007 0.675 ± 0.014 1.005 ± 0.039
element_atom_no_stat + Magpie 0.968 ± 0.015 0.150 ± 0.007 0.529 ± 0.136
element_atom_no_stat + enhanced Magpie 0.973 ± 0.007 0.144 ± 0.005 0.484 ± 0.076
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only composition as the input. In this approach, a composition
formula is represented as a complete graph, which is then fed
into a message-passing graph neural network for feature
extraction and regression. This approach has been shown to
have strong extrapolation performance compared to other
composition features29 in formation-energy prediction. How-
ever, we find that since Roost does not use global composition
features such as the total atom number, its performance is not
good compared to our MLatticeABC. It achieves an R2 score of
only 0.78 for lattice length a prediction of cubic materials.

5. CONCLUSIONS
Computational prediction of crystal unit cell lattice constants
has wide applications in property investigation and crystal
structure prediction. While previous studies have focused on
models for specialized chemical systems with the same structure
(a single space group) and identical anonymous formula and
trained with small datasets, this study aims at developing a
generic lattice constant predictor for crystal materials with more
than 125,278 samples and 18,325 samples for the cubic system.
We propose MLatticeABC, a RF machine learning model with a
new feature set combined with the standard composition
features such as Magpie descriptors for effective lattice constant
(edge length) prediction. Extensive standard and ablation
experiments show that our RF models with the new descriptors
can achieve a high prediction performance with R2 as high as
0.97 for lattice length a prediction for the cubic system covering
more than 18,000 samples. The lattice length prediction
performance degrades with a decrease of the structure symmetry
in general and is lower for lattice lengths b and c. The lattice
angle prediction performances for monoclinic and triclinic are
much lower compared to lattice length prediction but are much
better than the previous state-of-the-art algorithm Cryspnet.
These machine learning models along with our easy-to-use
open-source code at https://github.com/usccolumbia/
MLatticeABC can contribute to downstream tasks such as
materials property prediction, materials screening, and crystal
structure prediction.

6. MATERIALS AND METHODS
6.1. Descriptors. In this work, we focus on developing

lattice constant prediction models from materials composition
only with the goal of downstream crystal structure prediction.6

Such composition-based models are also needed for large-scale

screening of hypothetical materials composition datasets
generated by generative machine learning models.30

In the baseline model for generic lattice constant prediction,5

Magpie descriptors plus a few new descriptors have been used.
The Magpie predictor set22 is based on calculating the mean,
average deviation, range, mode, minimum, and maximum of a
set of elemental properties (weighted by the fraction of each
element in the composition). The element properties included
in theMagpie descriptor calculation include the atomic number,
Mendeleev number, atomic weight, melting temperature,
periodic table row and column, covalent radius, electro-
negativity, number of valence e−in each orbital (s, p, d, f,
total), number of unfilled e−in each orbital (s, p, d, f, total),
ground-state band gap energy, ground-state magnetic moment.
Additionally, they have added the following descriptors
including stoichiometry p-norm (p = 0,2,3,5,7), elemental
fraction, fraction of electrons in each orbital, band center, and
ion property (possible to form ionic compound, ionic charge).
Compared to the previous studies of lattice constant

predictions for perovskites,11 one major difference of the
generic lattice parameter prediction problem is the varying
number of elements and the different mole ratios in the
compositions of materials. For example, the following formulas
are all included in our dataset which have different numbers of
elements and stoichiometries: Sn4S4, Pr20S32, Ge4Sb4,
Sm64Cd16Ni16, and Mg4Co16O32. While descriptors based on
ionic radii, electronegativity, ionic charges, and so on have been
defined for lattice constant prediction of perovskites, they need
to be extended or adjusted to be applicable for formulas with a
varying number of elements and different mole ratios.
In this work, we start with the Magpie descriptors and the

baseline descriptors in Cryspnet5 and propose MLatticeABC, a
RF lattice parameter (a/b/c) prediction model with a new set of
descriptors. The feature set of our model includes the enhanced
Magpie features as described in ref 5 (which includes theMagpie
descriptors plus stoichiometry, valence orbitals, ion properties,
band center, number of elements, and element fractions) and an
additional descriptor set that characterizes the distribution of
atom numbers of all elements in the formula. For inorganic
compounds, different elements have different numbers of atoms.
We added the maximum, minimum, average (all atoms divided
by the number of element types), the variance of the atomic
numbers, and the total atom number as our descriptors. We
called the new descriptor set as the element_atom_no_stat

Figure 9. Architecture of the deep neural network.
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descriptor set. The new descriptor set is inspired by the Magpie
predictors, which consist of the minimum, maximum, mode,
weighted average, and weighted average deviation of the
corresponding element properties over a specific composition.
This element_atom_no_stat descriptor set includes the
statistics of the number of atoms of each element in the formula
from which we calculate the minimum, maximum, mean, and
variance. It also includes the number of total atoms in the unit
cell, which is a key feature that we found to be important for
lattice edge length prediction.We also compare the performance
of our model with the Roost model28 in which a whole graph-
based graph neural network is used to extract descriptors for
composition-based property prediction. This model has
achieved outstanding results in composition-based formation-
energy prediction.29

6.2. Machine Learning Models: RF, DNNs, and SVR. In
this study, we combine different descriptors withDNNs, RF, and
SVR to identify the best model for lattice constant prediction.
We use the RF31 to create lattice prediction models. RF is a

supervised ensemble learning algorithm that constructs a
multitude of many decision trees at training time and outputs
the average of the regression values of the individual trees. RF
algorithms have demonstrated strong prediction performance
when combined with composition features in our previous
studies.13 In our RF regression models, “mse” was used as our
criterion. The number of trees, max features, max depth, min
samples split, andmin samples leaf were set to 100, 70, 32, 8, and
1, respectively, in the RF algorithm which was implemented
using the Scikit-Learn library in Python 3.6.
The deep neural network as shown in Figure 9 is composed of

five fully connected layers with 249, 256, 128, 128, 64, and 1
nodes from the input layer to the output layer. The action
functions for these layers are relu. After each layer, except the last
layer, there is a dropout layer with 0.2 as the drop rate. The
validation split and batch size are set as 0.2 and 80, respectively.
We set the epochs as 2000 which have an early stopping with the
patience of 200 and the monitor of “val rmse”. Standard gradient
descent is used as the optimizer which has a learning rate of
0.002. The loss function is “mse”. The network parameters are
optimized manually to achieve the best performance with a
reasonable amount of trial-and-error fine-tuning. Before training
the neural network, our data set was reprocessed by a standard
scaler.
For comparison, we also include SVR32 models in our

evaluation, which constructs one or a set of hyperplanes used for
regression in a high-dimensional space. There are several unique
benefits in SVR, such as working well in both high-dimensional
and low-dimensional data and having excellent generalization
capability. We use the Scikit-learn implementation of the SVR
with the RBF kernel. In our experiment, the regularization
parameter C is set to 10, and the gamma is “auto”. Our data set
was reprocessed by a standard scaler to train the SVR model.
6.3. Evaluation Criteria. We evaluate model performance

by splitting a whole dataset into 80% as training and 20% as
testing and then train the model and make predictions. This
process is repeated 10 times to get the average performance
scores. As a standard regression problem, the following three
performance criteria have been used to compare the perform-
ance of different models, including the RMSE, MAE, and R2.
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where ai
exp denotes experimental lattice constant a/b/c of sample

i, and ai
pred is the predicted lattice constant value of a/b/c for

sample i.
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