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Abstract

Aim

The current study aimed to investigate the effects of Debaryomyces hansenii on the diver-

sity of bacterial lactase gene in the intestinal mucosa of antibiotic-associated diarrhea

(AAD) mice.

Methods

Eighteen mice were randomly divided into three groups (6 mice per group): healthy control

group, diarrhea model group and D. hansenii treatment group. The antibiotic-associated

diarrhea model was established by intragastric administration with a mixture of cephradine

and gentamicin sulfate (23.33 mL�kg-1�d-1) twice a day for 5 days continuously. After estab-

lishing the AAD model, the mice in the D. hansenii treatment group were gavaged with D.

hansenii for three days, while other groups were gavaged with distilled water. Then, the

intestinal mucosa of all three groups was collected and DNA was extracted in an aseptic

environment for the following analysis.

Results

The difference in the richness and homogeneity of the bacterial lactase gene among all

samples were inapparent, as the difference in the Chao1, ACE, Simpson and Shannon indi-

ces among the three groups were insignificant (P>0.05). NMDS analysis also showed that

the distance of the samples among the three groups was unobvious. Furthermore, the bac-

terial lactase gene in the mucosa mainly originated from Actinobacteria, Firmicutes and Pro-

teobacteria. Compared with the healthy control group, the abundance of lactase genes

originating from Cupriavidus, Lysobacter, Citrobacter, Enterobacter and Pseudomonas was

increased in the D. hansenii treatment group, while the lactase gene from Acidovorax and

Stenotrophomonas decreased (p < 0.01 or p < 0.05) in the diarrhea model group and the D.

hansenii treatment group.
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Conclusion

D. hansenii was capable of improving the growth of some key lactase-producing bacteria

like Deinococcus, Cupriavidus and Lysobacter for treating AAD.

Introduction

Lactase, also known as β-galactosidase, is an important enzyme for intestinal function, which

can hydrolyze lactose into glucose and galactose, allowing lactose to be absorbed and utilized

by human beings and animals. Because of inactivity and deficiency of lactase, lactose is fer-

mented by intestinal bacteria to produce significant amounts of short-chain fatty acid (SCFA)

and hydrogen rather than hydrolyzed, which cause diarrhea and is referred to as lactose intol-

erance (LI) [1,2]. Usually, intestinal lactase is produced by intestinal epithelial cells, microor-

ganisms and obtained from exogenous lactase[3]. Nevertheless, with the widespread use of

antibiotics in the clinic, increasing attention has been paid to antibiotic-associated diarrhea

(AAD). Currently, it is believed that AAD, persistent diarrhea and lactase-deficiency diarrhea

are all related to low lactase activity, which is probably due to a reduced number of lactases,

affecting the arrangement and shedding of villi[4]. Fortunately, most diarrhea can be relieved

by oral probiotics such as Lactobacillus, Bifidobacterium, Saccharomyces boulardii and by lac-

tase supplementation [5–8].

Approximately 1000 species of bacteria inhabit the human intestinal tract, which plays an

important role in metabolism, immunity and other physiological functions[9,10]. The intesti-

nal microbes that inhabit the enteric cavity and epithelial cells of the mucosa establish a com-

plete intestinal mucosal barrier together with intestinal epithelial cells, mucus and secrete so as

to play a critical role in maintaining the homeostasis and healthy[11,12]. However, the exten-

sive use of antibiotics pose a risk of improper application, which could cause an imbalance in

the intestinal microbiota, destruction of the mucosal barrier related diseases and eventually

[13]. Our previous research reported that antibiotics decrease the diversity of bacterial lactase

genes in the intestinal contents, and they transforme their community structures[14].

Yeast has been widely used in medicine, food, beverage, alcohol and other industries

because of its rapid propagation ability and efficient metabolism[15]. D. hansenii, isolated

from the natural environment, food or intestinal tract, is one of the most important unconven-

tional yeasts. A large number of studies verified that D. hansenii plays an important role in the

fermentation of cheese and sausage and the production of fuel alcohol. It can produce critical

esters in sausage manufacture, as well as the thermophilic lactase necessary to produce fuel

alcohol[16–20]. In addition, it can also produce antitoxins to inhibit the growth of the harmful

bacteria such as Candida [21]. Our previous studies showed that D. hansenii, which was iso-

lated from the mouse intestine[19], was able to tolerate a high acid and high bile salt environ-

ment, and it had high viability in the artificial gastrointestinal fluid environment. In addition,

the combination of 25% D. hansenii and 25% Qiweibaizhusan was used to modulate the popu-

lation of total intestinal bacteria and Escherichia coli, and it can also restore the bacterial diver-

sity in mice with dysfunctional diarrhea[22–25]. The vast majority of previous studies focused

on the pathogenesis or treatment of AAD, and our previous studies reported the influence of

D. hansenii on AAD based on intestinal bacterial diversity as well. The current research aimed

to investigate the effect of D. hansenii on AAD based on the diversity of the bacterial lactase

gene in intestinal mucosa by using high-throughput sequencing. It can provide further experi-

mental basis for the development and utilization of D. hansenii as a new microecological

preparation.
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Materials and methods

Reagents and medicine

Cephradine capsules (batch number: 151101) were purchased from Suzhou Chung-Hwa

Chemical & Pharmaceutical Industrial Co. Ltd., and gentamicin sulfate (batch number:

5150307) was purchased from Yichang Pharmaceutical Industrial Co. Ltd. The two antibiotics

were then prepared into a mixture at a concentration of 62.5 g�L-1[26]. The DNA extraction

reagents (such as Proteinase K, lysozyme, Tris-saturated phenol-chloroform-isoamyl alcohol

(25:24:1) and TE buffer) were purchased from Beijing Dingguo Changsheng Biotechnology

Co. Ltd., and prepared in the lab (such as 10% SDS, chloroform-isoamyl alcohol (24:1), 5

mol�L-1 NaCl, 0.1 mol�L-1 PBS and CTAB/NaCl). D. hansenii, which was provided by the labo-

ratory and shaken at 28˚C for 36 hours after being inoculated into liquid Potato Sucrose

medium in a 300 mL erlenmeyer flask. The cells were then gathered by centrifugation at

2000×g for 4 minutes after washed 1*2 times repeatedly with sterile stroke-physiological

saline solution. The above cells were diluted to 1010 mL-1 with sterile storke-physiological

saline solution eventually after being counted by hemocytometer, and stored at 4˚C for subse-

quent experiments[27].

Animals and procedures

Eighteen specific pathogen-free (SPF) Kunming (KM) mice (nine male and nine female, one

month old), weighting 20±2 g, were purchased from Hunan Slaccas Jingda Laboratory Animal

Company with license number SCXK (Xiang) 2013–0004. All procedures involving animals

were performed according to protocols approved by the Institutional Animal Care and Use

Committee of Hunan University of Chinese Medicine. Mice were randomly divided into three

groups (6 mice per group, half male and half female): healthy control group (tlcm), diarrhea

model group (tlmm) and D. hansenii treatment group (tljm). Mice in the healthy control

group were gavaged with 0.35 mL of sterile water twice a day for 5 days. To induce diarrhea,

mice in both the diarrhea model group and the D. hansenii treatment group were injected

intragastrically with a mixture of gentamicin sulfate and cefradine capsules (23.33 mL�kg-1�d-1)

twice a day for 5 days by following the procedures described previously[28]. After diarrhea

symptoms appeared (such as erected coat, reduced intake, watery stool and declined activity),

the mice in the D. hansenii treatment group were treated with D. hansenii by intragastric

administration (0.35 mL, 1010 mL-1), and the other two groups were given aseptic water twice

a day for 3 days. Then, the mucosa from the jejunum to ileum were scraped with a cover slip

after the contents were extruded and the intestine was washed twice with sterile saline solution

in a germ-free environment (each sample contains mucosa from two mice: one male and the

other female, which has three samples per group), and then were frozen immediately and

stored at -20˚C for further use [29].

Ethical approval was obtained from the Animal Ethics and Welfare Committee of Hunan

University of Chinese Medicine.

Total DNA extraction from intestinal mucosa

Total DNA from the intestinal mucosa was extracted following to our previous reports[30,31].

A total of 2.0 g of mucosa was weighed in a germ-free environment and preprocessed with 0.1

mol�L-1 phosphate buffer solution (PBS) and acetone. The cells were collected by the above

method and resuspended in 4 mL of TE buffer. Cells walls were disrupted by lysozyme, and

total DNA was purified and extracted by proteinase K, CTAB/NaCl, Tris saturated phenol-

chloroform-isoamyl alcohol (25:24:1), chloroform-isoamyl alcohol (24:1), absolute ethyl
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alcohol and sodium acetate after cells wall-broken by lysozyme. Eventually the DNA was dis-

solved in 50 μL of TE buffer for further analysis.

PCR amplification of the mucosal bacterial lactase gene and high-

throughput sequencing

The universal primers for PCR amplification were designed according to the lactase gene

sequences of Lactobacillus and Escherichia coli from NCBI and synthesized by Shanghai Per-

sonal Biotechnology Co., Ltd.[32]. The forward primer was 5'-TRRGCAACGAATACGGSTG-
3', and the reserve primer was 5'-ACCATGAARTTSGTGGTSARCGG-3'. After PCR mix-

tures were prepared (25 μL) (including 5 μL of 5 × high GC buffer, 0.25 μL of Q5 high-fidelity

DNA polymerase, 1 μL of 10 μmol�L-1 forward primer, 0.5 μL of 10 mmol�L-1 dNTP, 1 μL of

10 μmol�L-1 reserve primer, 1 μL of DNA template and 11.25 μL of sterilized ddH2O) and

added to 0.5 mL PCR tubes, the amplification was carried out as follows: conditions: initial

denaturation at 98˚C for 30 s, 32 cycles of denaturation at 98˚C for 15 s, annealing at 46˚C for

30 s and extension at 72˚C for 30 s, then extension at 72˚C for 5 min and holding at 4˚C. PCR

products of the bacterial lactase gene were purified and then detected using high-throughput

sequencing, which was performed by Shanghai Personal Biotechnology Co., Ltd.

Gene diversity and statistical analysis

The software available online, including QIIME (http://qiime.org/)[33] and Mothur (http://

www.mothur.org/), were used to analyze the sequencing results. Alpha diversity analysis,

including Chao1, ACE, Simpson and Shannon indices, was applied to identify the richness

and uniformity of the intestinal mucosa bacterial lactase gene by determining the operational

taxonomic units (OTUs)[34–37]. Principle component analysis (PCA)[36] was used to analyze

the community difference of lactase-producing bacteria according to the distance among indi-

viduals. The source and abundance of the bacterial lactase gene at the specific taxonomic levels

are presented in the figure containing species evolution and abundance information and statis-

tics table of relative abundance statistics table. Then, our measurement data were analyzed

using the SPSS 21.0 software (IBM Corp, Armonk, NY, USA), of which one-way ANOVA was

applied to compare the statistical significance of differences, with p value.

Results

Sequence statistics and OTU analysis

The diversity and richness of lactase gene can be well studied by measuring and analyzing

OTUs (operational taxonomic unit). Fig 1 shows that the numbers of OTUs of the healthy

control group, diarrhea model group and D. hansenii treatment group was 298, 435 and 326,

respectively. The results showed that 45 OTUs were unique to the healthy control group, 202

OTUs were unique to the diarrhea model group and 57 OTUs were unique to the D. hansenii
treatment group. These results suggested that antibiotic modeling increased the number of

OTUs of the lactase gene from the intestinal mucosal bacteria in mice, while the number of

OTUs of antibiotic models can be returned to normal following treatment with D. hansenii.

Alpha diversity of the bacterial lactase gene from the intestinal mucosa of

AAD mice treated with D. hansenii
By drawing rarefaction curves, the diversity of each sample could be measured to some extent.

Fig 2 shows that each curve tended to flatten with the increase in the number of measured
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Fig 1. OTUs of the bacterial lactase genes from intestinal mucosa. tlcm, healthy control group; tlmm, diarrhea

model group; tljm. D. hansenii treatment group.

https://doi.org/10.1371/journal.pone.0225802.g001

Fig 2. Rarefaction curve of the bacterial lactase gene from the intestinal mucosa in each sample. Note: The abscissa

represents the number of lactase gene sequences extracted randomly; the ordinate represents the number of observed

OTUs of the bacterial lactase gene. The data indicate that the sequencing tended to be saturated and that increasing the

amount of data would have no significant effect on obtaining new OTUs when the curve tended to be flat; tlcm1-3,

tlmm1-3, tljm1-3 are healthy control group samples 1–3, diarrhea model group 1–3 and D. hansenii treatment samples

1–3, respectively.

https://doi.org/10.1371/journal.pone.0225802.g002
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sequences. This result suggested that the sequencing results were more than enough to reflect

the current sample containing the intestinal mucosa lactase gene diversity.

The rank abundance curve and alpha indices can be used to determine the richness and

uniformity of the bacterial lactase gene from intestinal mucosa to evaluate the therapeutic effi-

cacy of D. hansenii treatment on AAD. As shown in Fig 3, there was no significant difference

in the length on abscissa and the gentleness, which indicated that D. hansenii treatment had no

significant impact on the richness and uniformity of the bacterial lactase gene among the

healthy control group and diarrhea model group. From the alpha indices, we determined that

there was no significant difference in the Chao1, ACE, Simpson and Shannon indices among

the three groups (Table 1).

Fig 3. Rank abundance curve of each sample. Note: The abscissa represents the ordinal of the OTU, and the ordinate represents the abundance of the OTU. The larger

the curve span, the richer the composition of the species was. The flatter the curve, the higher the evenness the species composition was. tlcm 1–3 represented the

healthy control group samples 1–3, tlmm1-3 represented the diarrhea model group samples 1–3, tljm 1–3 represented the D. hansenii treatment samples 1–3.

https://doi.org/10.1371/journal.pone.0225802.g003
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Beta diversity of bacterial lactase genes in the intestinal mucosa of AAD

diarrhea mice treated with D. hansenii
PCA(principal component analysis) analysis can extract the most important differences

between samples from the original data. As shown in Fig 4, that the three samples in the

healthy control group and the D. hansenii treatment group were relatively close to each other,

while the distance between the groups was relatively far, which can be clearly distinguished.

The distribution of the three samples in the diarrhea model group was very scattered and not

completely separated from the healthy control group and the D. hansenii treatment group.

This finding suggests that antibiotics altered the structure of bacterial lactase-producing genes

in the intestinal mucosa, and the percentages attributed to the variations in PC1 and PC2 were

97.32% and 2.66%, respectively.

The differences in the community were measured by distance comparison among individu-

als through NMDS analysis. The distribution of samples in the healthy control group was

more concentrated than that in the other groups, and the distance between the diarrhea model

group and the healthy control group was approximately the same distance as that between the

D. hansenii treatment group and the healthy control group (Fig 5). The results indicated that

D. hansenii treatment had no significant effect on the recovery of the community structure of

the bacterial lactase gene from the intestinal mucosa.

Abundance and source of the bacterial lactase gene from the intestinal

mucosa of AAD mice treated with D. hansenii
As shown in Fig 6(A), at the genus level, the number of known lactase-producing bacteria

detected in the healthy control group, diarrhea model group and D. hansenii treatment group

were 16, 12, and 16, respectively. Mesorhizobium was only found in the healthy control group,

and Plasmodium was only detected in the D. hansenii treatment group, Sphingomonas and Bor-
detella were not detected in the diarrhea model group. In addition, a number of other bacterial

lactase genes (other, including some genera with low abundance or unclassified) and some

new lactase-producing bacterial genera (no Blast hits) were detected. Compared with the

healthy control group, the abundance of Cupriavidus was increased significantly after treat-

ment with D. hansenii. The lactase genes originating from Acidovorax and Stenotrophomonas
were lower in the diarrhea model group and D. hansenii treatment group than the healthy con-

trol group. Conversely, the lactase gene originated from Citrobacter, Enterobacter and Pseudo-
monas in the diarrhea model group and D. hansenii treatment group was lower than that in

the healthy control group. However, the lactase genes of five genera showed no significant dif-

ference between the diarrhea model group and the D. hansenii treatment group. Through fur-

ther analysis with LEfSe, shownin Fig 6(B), it was found that Sphingomonadaceae,
Sphingomonas and Sphingomonadales were the key colony members in the D. hansenii treat-

ment group, while no key colony members were found in the healthy control group or diar-

rhea model group.

Table 1. Alpha diversity indices of the bacterial lactase gene from the intestinal mucosa of antibiotic-associated diarrhea mice treated with D. hansenii.

Group Chao1 ACE Shannon Simpson

tlcm 121.89±8.81 127.93±13.58 0.80±0.18 0.18±0.04

tlmm 160.33±24.15 167.13±13.60 2.26±1.43 0.54±0.29

tljm 150.85±61.02 154.10±58.53 1.45±0.38 0.38±0.05

Note: The larger Chao1 and ACE indices represent higher richness of the bacterial lactase gene. The larger Shannon and Simpson index a represents higher diversity of

bacterial lactase genes. tlcm, tlmm and tljm represented the healthy control group, diarrhea model group, and D. hansenii treatment group, respectively.

https://doi.org/10.1371/journal.pone.0225802.t001
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The species evolution and abundance information were used for source and abundance

analysis of the bacterial lactase gene at different classification levels (Fig 7). The evolution tree

showed that the bacterial lactase genes in intestinal mucosa mainly originated from Actinobac-
teria, Firmicutes and Proteobacteria. The abundance of the lactase gene in Actinobacteria from

the D. hansenii treatment group was the highest, followed by the healthy control group and the

diarrhea model group. Lactase genes from Aeromonas, Curvibacter and Deinococcus were only

detected in the D. hansenii treatment group, while those from Enterobacteriaceae and

Fig 4. PCA analysis of the bacterial lactase gene from intestinal mucosa. Each point represents a sample, and different color points belong to different groups. The

closer the two points are, the smaller the difference of the lactase-producing bacterial community structure between the two samples is. tlcm, tlmm and tljm were the

healthy control group, diarrhea model group and D. hansenii treatment group respectively.

https://doi.org/10.1371/journal.pone.0225802.g004

Bacteria lactase gene diversity treated by Debaryomyces hansenii

PLOS ONE | https://doi.org/10.1371/journal.pone.0225802 December 6, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0225802.g004
https://doi.org/10.1371/journal.pone.0225802


Clostridium were only detected in the diarrhea model group. Compared with the other two

groups, the abundance of lactase genes originating from Enterococcus, Lysobacter and Salmo-
nella was the highest in the D. hansenii treatment group.

Discussion

The gastrointestinal mucosa is the largest interface where interactions mainly occur between

symbiotic bacteria and the host. A dynamic and diverse bacterial community inhabits the

mucosa, which is an important part of the intestinal mucosa barrier[38]. As an important met-

abolic organ, intestinal flora participate in metabolism of human and animal metabolism with

various microbial enzymes under gene regulation [39]. Metabolism will be affected as soon as

Fig 5. NMDS analysis of the bacterial lactase gene from intestinal mucosa. Different color points represent samples from different groups. The closer distance

between the two points represented the smaller the community difference of the lactase-produced bacteria between the two samples. tlcm, tlmm and tljm represent the

healthy control group, the diarrhea model group and the D. hansenii treatment group respectively.

https://doi.org/10.1371/journal.pone.0225802.g005
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the enzyme activity is absent or reduced. Furthermore, except for dysbacteriosis, the mecha-

nisms of AAD include intestinal epithelial cilia atrophy, intestinal mucosal damage and a

decrease in cellular enzyme activity as well [40]. Fortunately, AAD can be prevented through

the rational use of medicines, and microecologics has become one of the common methods for

treating AAD. Our previous research has proven that 25% ultramicro Qiweibaizhusan com-

bined with 25% yeast has a relatively better therapeutic effect on AAD [24], which proves that

yeast has a certain therapeutic effect on AAD. Based on the chemical nature of proteins, the

activities of most enzymes are regulated by coding genes and other physicochemical factors.

At the same time, with the development of modern biological technology and continuous

research on intestinal microbiology, exploring the interactions between intestinal flora and

intestinal diseases from the perspective of bacterial functional enzyme genes has become a new

approach to conduct intestinal microbial research. Therefore, the current study was conducted

to investigate the effect of D. hansenii on the bacterial lactase gene diversity from the intestinal

mucosa of AAD mice. The results can be analyzed from three aspects: the variety of lactase-

producing bacteria, the abundance of lactase-producing bacteria and the effect of D. hansenii
on the mucosal barrier.

Intestinal bacteria mainly consist of Proteobacteria, Mycobacteria, Actinomycetes, Bacteroi-
detes, Mycobacteria, Cyanobacteria and Fusobacteria, especially Bacteroidetes and Firmicutes,
which account for approximately 90% of the total[41]. Our results showed that the lactase gene

in intestinal mucosa originated from Actinobacteria, Firmicutes and Proteobacteria, among

which Proteobacteria accounted for more than 90%. There are differences in lactase activities

produced by different bacteria in the intestine; therefore, bacterial lactase gene diversity could

be reflected through differences in the population and variety of lactase-producing bacteria.

NMDS analysis showed that antibiotics caused a large difference in the community structure

of lactase-producing bacteria, whereas the recovery effect of D. hansenii treatment on the com-

munity structure was not obvious. The statistical analysis results of lactase-producing bacteria

at different classification levels indicated that the D. hansenii had no significant effect on the

population of lactase-producing bacteria in the intestinal mucosa at all classification levels

except for the order level.

From the high-throughput sequencing results, the relative abundance was used to reflect

the quantity difference in lactase-producing bacteria. Of the known genera, the abundance of

the lactase gene originating from Cupriavidus in the healthy control group was significantly

Fig 6. (A)Relative abundance of the bacterial lactase gene from intestinal mucosa at the genus level. tlcm, healthy control group; tlmm, diarrhea model group; tljm,

D. hansenii treatment group. (B)Histogram of the linear discriminant analysis. tljm, D. hansenii treatment group.

https://doi.org/10.1371/journal.pone.0225802.g006
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higher than that in the D. hansenii treatment group. The study of Ueatrongchit showed that

Cupriavidus was the genus that produced various microbial enzymes and determined that

Cupriavidus necator produced L-threonine 3-dehydrogenase that catabolizes L-threonine[42].

Lysobacter, which is a genus of bacteria with fast growth, strong resistance and no pathogenic-

ity[43], not only can secrete a variety of extracellular enzymes such as chitinase and β-1,3-glu-

canase, but also have significant antagonism against various pathogenic bacteria [44]. Our

results showed that the lactase gene in Deinococcus was detected only in the D. hansenii treat-

ment group and that the lactase gene in Lysobacter was highly abundant in the D. hansenii
treatment group, which suggested that D. hansenii increased the quantity of potentially valu-

able lactase-producing bacteria in order to treat AAD.

The extended-spectrum cephalosporin resistant (ESCR) Enterobacteriaceae pose a serious

infection control challenge for public health [45]. The appearance of the ESCR phenotype is

mainly promoted through plasmid-mediated lateral extended-spectrum β-lactamases (ESBLs)

and AmpC gene transfer within Enterobacteriaceae [46]. The current results showed that the

lactase gene in Enterobacteriaceae was detected only in the diarrhea model group. The Lactase

gene in Enterobacteriaceae in the diarrhea model group was higher than that in the other

groups. Moreover, the abundance of the lactase gene in Enterococcus was the highest in the D.

hansenii treatment group, followed by the healthy control group and the diarrhea model

group. Enterococcus probiotics can increase the expression of small intestinal mucosa tight

junction proteins and activity of toll-like receptors 2, 4 and 9 in small intestinal mucosa, induc-

ing an immune response in piglets [47]. All of these studies suggested that antibiotics damaged

the mucosa barrier by increasing the population of bacteria with antibiotic resistance and caus-

ing dysbacteriosis. And the mucosal barrier could be restored by D. hansenii.
After treatment with D. hansenii, only a few bacterial lactase genes was recovered or

increased. The recovery of lactase gene diversity in the intestinal mucosa of AAD mice was not

significant. Perhaps our current results can be explained by a recent report, which determined

that antibiotics had a long-term impact on intestinal microorganisms[36]. The lactase-produc-

ing bacteria in the intestinal mucosa of the diarrhea model could not return to normal levels

after a few days, even following treatment with D. hansenii. Moreover, the activity of digestive

enzymes present in the brush border of villous epithelial cells in the small intestine mucosa has

the function of repairing intestinal mucosa, which is closely related to the structural integrity

of the mucosa and probiotics [48,49]. In conclusion, our results suggested that antibiotics dis-

rupted the intestinal mucosa flora in mice, and treatment with D. hansenii may be effective to

treat diarrhea by promoting the growth of a few key lactase-producing bacteria or some benefi-

cial bacteria to repair the intestinal mucosa structure.
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S2 Dataset. The raw data of diarrhea model group (tlmm).

(ZIP)

S3 Dataset. The raw data of D. hansenii treatment group (tljm).

(ZIP)

Fig 7. Source of lactase-producing bacteria from intestinal mucosa. The pie chart for each branch node indicated the taxon abundance in each

sample;the larger the fan area, the higher the abundance of the bacterial lactase gene. tlcm, tlmm and tljm represented the healthy control group,

diarrhea model group and D. hansenii treatment group, respectively.
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