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Abstract

Total generalized variation (TGV)-based computed tomography (CT) image reconstruction,
which utilizes high-order image derivatives, is superior to total variation-based methods in
terms of the preservation of edge information and the suppression of unfavorable staircase
effects. However, conventional TGV regularization employs /;-based form, which is not the
most direct method for maximizing sparsity prior. In this study, we propose a total general-
ized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV
and offer efficient solutions to few-view CT image reconstruction problems. To solve the
nonconvex optimization problem of the TGpV minimization model, we then present an effi-
cient iterative algorithm based on the alternating minimization of augmented Lagrangian
function. All of the resulting subproblems decoupled by variable splitting admit explicit solu-
tions by applying alternating minimization method and generalized p-shrinkage mapping. In
addition, approximate solutions that can be easily performed and quickly calculated through
fast Fourier transform are derived using the proximal point method to reduce the cost of
inner subproblems. The accuracy and efficiency of the simulated and real data are qualita-
tively and quantitatively evaluated to validate the efficiency and feasibility of the proposed
method. Overall, the proposed method exhibits reasonable performance and outperforms
the original TGV-based method when applied to few-view problems.

Introduction

X-ray computed tomography (CT) serves revolutionary functions in biology, medicine, and
other fields. Considering that excessive X-ray radiation exposure may cause genetic disease,
recent studies have aimed to reduce radiation dose during X-ray CT inspection [1-2]. A prom-
ising strategy to reduce radiation dose is to under-sample the X-ray projections across the
human body. However, image reconstruction from few-views can be treated as an ill-posed
mathematical problem that is difficult to converge to the correct solution without extra prior
information.
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The development of compressive sensing (CS) theory has spurred considerable research
attention on the additional sparse prior of images to reduce the sampling rate [3-4]. Total vari-
ation (TV) regularization employing the image gradient sparsity is a popular method that han-
dles few-views problems in CT image reconstruction [5-15]. However, TV is based on the
assumption that the image is piecewise constant. Thus, the TV algorithm suffers from over-
smoothing and staircase effect, which in turn may produce undesirable blocky images [16, 17].

Several methods have been proposed to improve the performance of TV and eliminate the
above drawback [18-26]. To our knowledge, two strategies have been widely investigated: 1)
improvement of the original TV norm by introducing a penalty weight with sufficient local
information, such as the edge-preserving TV (EPTV) model [18] and the adaptive-weighted
TV (AwTV) model [19]; 2) involvement of high-order derivatives [22-27], such as total varia-
tion stokes(TVS) model [24], the high-degree TV (HDTV) model [25], and the total general-
ized variation (TGV) model [26, 27], et al. The strategy of incorporating TV norm with local
information can lower staircase effects but often still retain some artifacts. The latter strategy
usually shows a favorable performance with a suitable balance between first-order and high-
order derivatives. In particular, TGV regularization can automatically balance first-order and
high-order derivatives instead of using any fixed combination [28]. Hence, this process can
yield visually pleasant results in images with piecewise polynomial intensities and sharp edges
without staircase effects.

In the traditional concept, TGV is based on the [;-norm, which is a relaxation of the /y-
norm for easy computation at the expense of performance on employing sparsity prior. In fact,
the most direct measure of sparsity is to count the nonzero components of the target vector
[29]; this strategy leads to an ly-norm solution but encounters nondeterministic polynomial-
time hard (NP-hard) problems. Employing an [,-norm (0 < p < 1) relaxation for convenient
properties in sparsity seeking has gained considerable interest in recent years [30-33]. Sidky
et al. replaced the /;-norm with the /,-norm in the minimization function and proposed a total
p-variation (TpV) minimization algorithm [34]. Although the /,-norm causes nonconvex opti-
mization problems, it may allow efficient image reconstruction with a few projection datasets
for radiation dose reduction [35].

In this article, we explore an [,-norm (0 < p < 1) relaxation, which is close to the [-norm
and can accurately measure sparsity, to improve the sparsity seeking features of TGV. The
proposed regularization model is called total generalized p-variation (TGpV). The proposed
model is efficiently solved through variable splitting and alternating minimization method in
conjunction with nonconvex p-shrinkage mapping [31]. The novelty of this work is threefold.
First, the TGpV model is far less restrictive than the TGV and TpV models for X-ray CT
image reconstruction. It not only shows excellent performance in detail preservation by
incorporating high-order image derivatives but also achieves an accurate measurement of
sparsity potential from image regularity prior. Second, an effective iterative algorithm is pro-
posed to optimize the objective function of the TGpV minimization with a fast and stable
convergence result. Third, fast and efficient closed-form solutions are investigated and
derived for computationally complex subminimization problems by using the proximal point
technique and fast Fourier transforms. The advantage of our approach is demonstrated in
both numerical simulation and real CT data, relative to the previous TpV-based and TGV-
based reconstructions.

The remainder of this paper is organized as follows. Section 2 briefly introduces the TGpV
model and then describes the constrained TGpV minimization model and the present TGpV-
ADM algorithm for image reconstruction. Section 3 presents the experimental results. Finally,
Sections 4 and 5 respectively contain the discussions and conclusions.
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Methods
Total Generalized p-Variation

Let a = (0, a;) denote the positive weights, the discretized second-order TGV [28] can be writ-
ten as follows:

TGV, () = argmin o | Vi — |, + o, |[e(w)];, (1)

where w is a variable used to balance the first and higher order derivatives, and the operators 17
and € are given by

<

1
«Vx 5 (Vyvx + vxvy)
, €(v) = : (2)

(Vv +Vy,) Vy,

1
2

The original version of TGV uses an [;-based form. The sparsity of a target vector is gener-
ally measured directly by counting the nonzero components in it; using an Jo-norm solution is
a better way to take advantage of the sparsity prior. However, this strategy involves an NP-hard
problem and lacks efficient solvers for practical image reconstruction.

Another strategy is to using the pth power of the [,-norm (0 < p < 1) which is a relaxation
closer to the [,-norm and can measure sparsity better than the /;-norm. Hence, dealing with [,
minimization, we propose the following modified form of the second-order TGpV:

TGpV;(u) = argmin o [|Vu — o], + o, ||le(w)]| 0<p<l (3)

P )
The ,-norm based form of TGV can express a lower level of sparsity than the conventional
form. Thus, maximizing this sparsity can further relax the requirements of data sampling. On

the other hand, a multiple description of sparsity leads to wide selections and may provide a
comprehensive validity for different objects.

Constrained TGpV minimization

To promote the sparsity feature of TGpV, we introduce it into the CT imaging model based on
a regularization framework. The CT imaging model can be approximated by the following dis-
crete linear system:

b= Au. (4)

The vector b represents the projection data, the vector u represents the object to be recon-
structed, and the system matrix A is a pixel-driven projection operator.

To solve the linear system of Eq (4), a constrained TGpV minimization model for describing
the intensity variations of an image is used as follows:

u" = argmin TGpV>(u), subjectto |Au—b|, <e, (5)
where e is a data-error tolerance parameter.

The optimization problem in Eq (5) is referred to as TGpV minimization. In this study, we
investigate CT image reconstruction by minimizing the energy function with the TGpV
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regularization term by solving the constrained nonconvex optimization problem as follows:

argmin o [|Vu — of|, + o, |le(w) st. JJAu—1b|, <e. (6)

I

TGpV minimization reconstruction algorithm

We apply variable splitting and alternating direction method (ADM) [36] to obtain efficient
and easy-to-code algorithms for solving the minimization problems involved in our method. A
generalized p-shrinkage operator [31] showing a qualitative resemblance to the [, proximal
mapping is considered to provide a closed solution to the [,—I, problem in the reconstruction
procedure. The reconstruction algorithm that utilizes TGpV minimization is summarized
below.

Introducing the vectors d, s and o, we consider the following constrained minimization
problem, which is equivalent to Eq (6):

ming |d], + ],

(7)

st.Vu—w=d, e(w) =sandAu — b =g, ||o||, <e.

To reformulate the original constrained problem to a sequence of unconstrained subprob-
lems, the augmented Lagrangian method [37] is used here. The augmented Lagrangian energy
associated to Eq (7) is defined as

- ~ A
Ly(u,0,d,5,d57) = o |d], + ' (d = Vut o) + T ld = Vu+ ol

oyl + 57 — (o)) + 22— (o) ®)

—#"(Au—b—0) +5 | Au—b—ol},

where d, 3, 7 are Lagrange multipliers, and 4o, 4,, and y are positive constants used to balance
the terms.

As a powerful technique to optimize problems through variable splitting, the alternating
direction method is used to solve the problem efficiently. The augmented Lagrangian function
L4 can be split into four subproblems with respect to d, s, u, and w. The solution to minimizing
L, is equivalent to solving the subminimization problems as follows:

i.. The subminimization problem with respect to d can be written as follows:

~k 2

d+d——Vuk+cok
*0

. o)

,
2
. 0
mino||d||, + =
inc ], +
2
This minimization problem corresponds to an £,~¢, norm. To derive an efficient solution to

this problem, an explicit proximal mapping for general p is considered [31]. The p-shrinkage
operator shrink,, (-,1/p) is defined as

shrink,(£,1/B)2max{[¢] — g%~ 0} - % (10)
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Thus, this minimization problem can be directly solved by

PL
d*" = shrink,(Vu* — o* — = o/ %) (11)
0

ii.. The minimization w.r.t s can be written as

2

(12)

gk
s+ ——g(ah)
A

in o 5], + 2
min o, [sfl, + 2

This problem is solved with the same adaptation of the p-shrinkage operator as follows:

~k
1 = shrink (e(w) — i— o, /2). (13)

1

iii.. The subminimization problem w.r.t u corresponds to the following quadratic positive def-
inite problem:

7 d
ming |Au — b — o*|2 — 7" (Au — b — ") + 5“ ot + F Vu + ot (14)
u 0 )
The first-order necessary conditions for optimization are
ak
(LATA + AV V)u = pA" (b + ") + A"F + 4,V (d + -+ ). (15)
0
The exact minimizer of Eq (14) is formulated as
ak
U = (ATA + 2, V)| pAT(b + 6*) + ATF + 2, VT (d + —+ o) |, (16)
0
where M+ stands for the Moore-Penrose pseudoinverse of matrix M.
Then, the noise term o can be updated by
o = min{l7 e/||Aut! — sz} (AU = b). (17)
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iv.. The subminimization problem w.r.t w can be written as follows:

~k 2

~r s
Sk+1 + —— 8((1))

dk+1 _’_j__ vuk+1 +CL)
0

LA
min —

[0}

* )
-1

3

2

The optimality conditions in the above case are

Sx 1 k+1 gz
y <VXT (wax — skt — 21) +V; (2 Vo, +V,0,) -5 — A))

‘0

” ) (19)
T k1 _ Sy (1 i 5
W\ Vi V,o, =7 — ) + V! 3 Vo, +Vo,)—s" - =

Tk
+7 <w +d 4+ f— — qu”l) =0,

1

dk
+2, <a)y +dit ;—y - Vyuk“> =0.

0

The exact minimizer of Eq (18) is formulated as
i +
w k1 — (AOI + L, VIV, + ;vj Vy)

ak §k gk vxwk
(J,U(qukﬂ — ;L_:) + /11v:(5i+1 +f) + ileT(SI;“ +f_ Ty)>’

y

2 *
ki (zol LYY, évax>

~ 21
k+1 k+1 d]; T (k+1 gl; T ( k+1 512 Vwaﬁ“ ( )
/lo(vyu - dy _l_) +/11vy (Sy +)_) +}~1vx (Sz +T—T) .
0 “1 1

v.. Finally, the Lagrange multipliers are updated as follows:

dl = gk + io(dk“ — Vit 4+ a)k“),
SR — 3k 4 ).1<Sk+1 _ 8(&)k+1)), (22)
1~,k+1 — ;,k +”<O.k+1 + b —Aukﬂ).

Efficient Fourier-based solvers for subminimization problems

The pseudoinverse is used to solve the subminimization problem w.r.t u (Eq (16)) in the recon-
struction algorithm. This solution may only work for a toy example but is far less feasible for
practical CT reconstruction because CT data are excessively large. This subproblem is conven-
tionally solved using iterative methods, such as conjugate gradient [38-39] and nonmonotone
alternating direction algorithm [40], which may also lead to significant computation and mem-
ory consumption.
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Our observation shows that an exact solution to the u -subproblem is generally unnecessary.
Rather, an approximate solution can be used. We introduce a proximal point technique [41,42]
to avoid the prohibitive cost and solve the subproblem efficiently.

In Eq (14), 3 [[Au — b — ¢* ||> can be linearized at current point 4* in each iteration:

2
27

1 1 1
3 HAu —b— akHim 3 HAu" —b— 0"Hz+pT(u —u") +2_r Hu — u"H (23)

where p = AT(Au—b-0") denotes the gradient at u*, and 70 is a parameter.
Then, the u -subproblem can be transformed to an approximation problem by adding the
proximal term

min, (b~ 20 ) 4 L)

~ 2 (24)
2 d*
—#(Au— b —d*) + 2||d" + — - Vu+ ot
2 2o ,
The first-order necessary conditions for optimality are
H )y T _ Mk T T gk+1 % k
TI+AUVV u=_u up +A T+ A4V d —&—; + o |. (25)
-0

The circulant matrices can be diagonalized under the Fourier transform, and 17”7 is a con-
stant and block-circulant matrix. Thus, under the periodic boundary condition for u, the coeffi-

cient matrix (EI + /IOVTV) can be diagonalized blockwise by the 2D Fourier matrix.
T

Denoting. G = diag [IF (EI + )LUVTV) ]F’l] , where IF stands for a Fourier transform matrix
T

implemented by 2D fast Fourier transform (FFT), diag[M] is a vectorization diagonal operator
which returns a vector constructed by the principal diagonal entities of M, we have

Wt =TF" (}F('l; Uk — pup + ATF + A, V(A d* )2+ w")) /G) (26)

Consequently, the u-subproblem can be solved by only two FFTs, thereby avoiding the
costly calculation of pseudoinverse.

We further exploit the fast calculation of the solution to the w-subproblem. For conve-
nience, Eq (19) can be reformulated by grouping like terms

w, B2 ’

Cy C,
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where the coefficient matrices are listed as follows:

G = A+ 4 (VIV, 4 V1Y),

C, = 2l +2,(V)V, + %vjvx),

C, = %Vf v, (28)

By = 4y (Vb = b = 8/, ) 2, (VI 4 55/ + VI 3/2) )

B, =, (Vyuk“ e /xo) + A (V;(s’;“ +35/2,) + V(s 4 3 /zl)).

Similarly, the coefficient matrix is blockwise diagonal. Multiplying a preconditioned matrix
with Fourier transform converts the linear system into the following form:

F 0 C, G1[F O B Fo, F 0 B,
- . (29)
o ] e e

Let C, = diag[F C, F'], we have

a. * (Fo,) + 6? * (Fo,) = FB,

- _ ) (30)
C,.x (Fw,) + C,. * (IFa)y) =FB,
where.* is componentwise multiplication.
Then, we can obtain the following closed forms:
FB, CI| /|G €]
oM =F" )
FB, C, G G
A (31)
C, FB, C, Cr
o =TF" .
y —~ o~
C, FB,|, G G,
where ||+ is defined as
Mll M12
=M. * My, — M,. x M,,. (32)
My M,, B

The augmented Lagrangian function (8) is expected to be minimized by solving the four
subproblems alternately. All of the subproblems in the proposed algorithm have noticeably
efficient solutions: the d-subproblem and the s-subproblem are solved by using easy-to-com-
pute p-shrinkage operators; the u-subproblem and the w-subproblem are converted to Fourier-
based formulations, which can be rapidly calculated using FFT techniques. Thus, the proposed
algorithm is efficient and practical for the low cost in each iteration.

Pseudocode of the TGpV-ADM reconstruction algorithm

In summary, the workflow of present TGpV-ADM method for X-ray CT image reconstruction
is listed in Algorithm 1.
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Algorithm 1. Constrained TGpV minimization in the ADM (TGpV-ADM) framework.
Input A, b, u, Ao, A1, 00,04, T,€, initialize do, so, uo, wo, and k=0.Givenpe (0, 1) :
While “not converged, ” Do

(1) Update d“"* by d*"! « shrink,(Vu* — o — % oy /%)
(2) Update s by s'! — shrink (g(w") —%,azl/il),
(3) Update u*"* by uf! «— F* (]F (g uk — up + ATF + 2, VT (d 4+ d¥ )2, + w")) /G>

(4) Update o' by ¢! «— min{l7 e/HAu"+1 - b|\2} (Auktt — D),

FB, Cf| /|G €
w F! ) ’
FB, C, G G,

*

G FB| J|C
wy"“ — F! . . o
C3 IFBZ C3 C2 *

*

(5) Update o' by

)

dk — gk 4 Jo(d — Vi 4 oft)
(6) Updatemultipliersby ¢ $! 35 4 ] (5! — g(@*)) ,
;k+l — ;k +,u(b+o"‘“ 7Auk+l)
(7) ke—k+1.

End Do
Obtain reconstruction result:u.

Parameter selections

Parameters y, Ao, and A, are used to balance the data fidelity and two regularization terms. To
get the optimal performance, the values of them should be set in accordance with both the
noise level in the observation and the sparsity level of the underlying image. Generally, the
higher the noise level is, the smaller y should be. Actually, they are often empirically selected by
visual inspection. Based on our experience, a simple way to choose them is to try different val-
ues from 2° up to 2'* and compare the recovered images. For most CT imaging cases, the value
of parameter y could be given larger than that of 1o and ;.

The positive weights oy and ; are used to balance the first and second derivatives. Proper
values of them should be chosen based on sparsity feature of the underlying image. Generally,
0, 011 €[ 1, 4] is suitable for most applications.

Parameter p is in (0, 1) and plays a vital role. The penalty function is somewhat approxi-
mated but not strictly equivalent to [, minimization; thus, a considerable value should be deter-
mined rigorously. Based on our experience, p€[0.5, 0.9] is adequate for noiseless datasets, and
Pp€[0.7, 0.9] is adequate for noisy datasets.

Performance evaluations

For the quantitative evaluation of the TGpV-ADM algorithm, the root-mean-square error
(RMSE), peak signal-to-noise ratio (PSNR), and normalized root mean square distance
(NRMSD) [43] are used as measures of the reconstruction quality. The RMSE, PSNR and
NRMSD are defined as follows:
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MAX?
PSNR = 10log,, Ni(f) (34)
ﬁz If, — ”i|2
Py
N
Z Ifi — ”i|2
NRMSD = | (35)
>
=1

where fand u denote the ideal phantom and the reconstruction, respectively, and i indexes the
pixels in the image. N is the total number of pixels in the image. An RMSE/NRMSD value close
to zero suggests high similarity to the ideal phantom image. And a higher PSNR indicates that
the image is of higher quality.

Results

To validate and evaluate the performance of the proposed method, three types of projection
data (computer-simulated digital Moby phantom, computer-simulated digital CS-phantom,
and experimental anthropomorphic phantom projection data) were used in the experiments.
Both computer-simulated digital phantom projection data and real CT projection data were
used to compare the proposed TGpV-ADM method with the standard TV-ADM [42],
TpV-ADM [35],and TGV-ADM [27] algorithms. The implementations of these three compar-
ison methods are described in S1 Appendix. All of the experiments were performed under
Matlab 2012a running on an HP-Z820 workstation with Intel Xeon E5-2650 dual-core CPU
2.60 GHz.

To assess the quantitative evaluations of image quality (RMSE, PSNR, NRMSD), the tests of
statistical significance were carried out using 60 phases of the Moby phantom. First, we per-
formed the F-test. If the p-value of F-test was larger than 0.05, the t-test was then carried out; If
the p-value was less than 0.05, the variances of the two samples could not be assumed to be
equal and the Welch’s t-test [44] was then carried out. In the statistical significance tests, vari-
able were expressed as Mean * standard deviations.

Digital Moby phantom study

In the first group of simulation study, a digital Moby phantom [45-46] was used to simulate
the few-view projection data. The Moby phantom, which modeled a 3D mouse anatomy, was
often used in simulation studies for single photon emission computed tomography and X-ray
CT. One typical frame of the phantom is shown in Fig 1 (or S1 Fig).

Noise-free cases

For the CT projection simulation, we chose a geometry that was representative of a fan-beam
CT scanner setup. The imaging configurations were as follows: (1) the projection data com-
prised 36 projections at an interval of 5° onto a 720-bin linear detector array, (2) the distance
from the detector to the X-ray source was 600 mm, (3) the distance from the rotation center
to the source was 300 mm, and (4) the space of each detector bin was 0.1 mm. All of the

PLOS ONE | DOI:10.1371/journal.pone.0149899 February 22, 2016 10/28
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Fig 1. Digital Moby phantom used in simulation study. Display window is [0.2, 1.0].
doi:10.1371/journal.pone.0149899.g001

reconstructed images comprised a 256 x 256 square of pixels. The size of each pixel was 0.1
mm x 0.1 mm. Each projection datum along an X-ray through the sectional image was calcu-
lated as the intersection length of an X-ray with a pixel.

For four ADM-based algorithms, the parameters of ADM framework were the same in the
experiments:y and A, were set to 256 and 64, respectively; 7 was set to 1.3. As the image is
piecewise constant in most areas, for the TGV-ADM and TGpV-ADM methods, o, 1, and 4,
were set to 1, 2, and 64, respectively. For the TpV-ADM and TGpV-ADM algorithms, p was
set to 0.9. Considering the absence of noise from the projection data, we set e to 0. The number
of iterations for each reconstruction was 600.

The images reconstructed from the four methods in the noise-free cases are shown in Fig 2.
All methods could recover image well from sparse projections in visual inspection. To visualize
the difference in detail, horizontal profiles of the resulting images (Fig 3) are drawn across the
52th row, that is, from the 100th column to the 150th column. As one can see, the images

20000

(b) TV-ADM (c) TpV-ADM (d) TGV-ADM (e) TGpV-ADM

Fig 2. Image reconstruction of the Moby phantom from noise-free projection dataset. Results of the (a) FBP, (b) TV-ADM, (c) TpV-ADM, (d) TGV-ADM,
and (e) TGpV-ADM minimization methods. Display window is [0.2, 1.0].

doi:10.1371/journal.pone.0149899.9002
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Fig 3. Horizontal profiles (52th row) in the reconstruction results of the Moby phantom from noise-free projection dataset. Results of the (a)
TV-ADM, (b) TpV-ADM, (c) TGV-ADM, and (d) TGpV-ADM minimization methods.

doi:10.1371/journal.pone.0149899.g003

obtained by use of the TV-ADM and TpV-ADM algorithms are reasonably accurate with only
small distortions, and the TGpV-ADM method can produce more closely matching results.
Table 1 lists the RMSE, PSNR, and NRMSD measures of the images reconstructed by differ-
ent algorithms with 600 iterations. From Table 1, it finds that the TGpV-ADM algorithm also
outperforms other counterparts when using objective evaluation metrics.

Table 1. Evaluations of the results reconstructed by different methods from noise-free projection
dataset in digital Moby phantom studies.

PLOS ONE | DOI:10.1371/journal.pone.0149899 February 22, 2016

RMSE PSNR NRMSD
TV-ADM 2.7626e-03 51.1737 7.0661e-03
TpV-ADM 1.6702e-03 55.5448 4.2719e-03
TGV-ADM 1.2492e-03 58.0675 3.1951e-03
TGpV-ADM 9.9026e-04 60.0850 2.5329e-03
doi:10.1371/journal.pone.0149899.t001
12/28
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Noisy cases

To check the capability of the proposed algorithm further, we carried out the experiments to
reconstruct images from noisy projections. Noise is generated using a Poisson model [47]:

1k

o A
plk i) = e, 2= Nesp(—p), (36)

where N, is the incident X-ray intensity, p denotes the normalized projections in real space,
and p denotes the normalized projections with added Poisson noise. k indexes the pixels in the
projection data.

Admissible reconstruction needs more projections than noiseless cases because of inconsis-
tencies in the data. Thus, the imaging configuration was the same with the noise-free group
except the projection acquisition. The total view number of the experiment was 90.

In this section, three cases with different noisy levels were considered. The initial numbers of
photons N, were set to 5x10°, 2x10°, and 5x10” for noisy case 1, 2, and 3, respectively. For noisy
case 1 and 2, the parameter ¢ of ADM framework in the four algorithms was set to 64, and for
noisy case 3, y was set to 32. The parameter A, was set to 16. T was set to 1.3. For the TGV-ADM
and TGpV-ADM methods, o, 01, and A; were set to 1, 2, and 16, respectively. For the TpV-ADM
and TGpV-ADM algorithms, p was set to 0.9. As the noise levels of images in three cases were dif-
ferent, the numbers of iterations in three cases were set to 200, 180, and 160, respectively.

The images reconstructed by FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM
methods from three different groups of noisy projections are shown in Fig 4. The profiles of

FBP TV-ADM TpV-ADM TGV-ADM TGpV-ADM

Noisy Case 1

Noisy Case 2

Noisy Case 3

Fig 4. Image reconstruction of the Moby phantom from noisy projection dataset. Rows from the top to the bottom are the reconstructed results from
three groups of projections with different noise levels. The photon number N, of noisy case 1, 2, 3 are 5x10°, 2x10°, and 5x10°, respectively. From left to
right in each row, results of the FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM methods are presented.

doi:10.1371/journal.pone.0149899.9004
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Fig 5. Horizontal profiles (52th row) in the reconstruction results of the Moby phantom from the first group of noisy projection dataset (N, = 5x106).
Results of the (a) TV-ADM, (b) TpV-ADM, (c) TGV-ADM, and (d) TGpV-ADM minimization methods.

doi:10.1371/journal.pone.0149899.9005

these images along the 52th horizontal rows of three different noisy cases are indicated in Figs
5, 6 and 7, respectively. The profiles show that the TGV-ADM and TGpV-ADM reconstruc-
tions contain a little deviation from the original phantom and the TV-ADM and TpV-ADM
reconstruction have some distortions which are evident in the shown profile plots. Interest-
ingly, the gains from the TGpV-ADM method are more noticeable compared with those from
the TGV-ADM method.

The RMSE, PSNR and NRMSD of the reconstructions from the different methods was cal-
culated, and the calculation results are listed in Table 2. The quantitative results from the pro-
posed TGpV-ADM algorithm showed better results than that from other algorithms in terms
of the three measures, which agrees with the findings in Table 1.

To further assess the performance evaluations of image quality reconstructed by different
algorithms, we performed the tests of statistical significance using 60 phases of the Moby phan-
tom. The statistical mean values of performance evaluations of the images reconstructed by

PLOS ONE | DOI:10.1371/journal.pone.0149899 February 22, 2016
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Fig 6. Horizontal profiles (52th row) in the reconstruction results of the Moby phantom from the second group of noisy projection dataset (N, =
2x106). Results of the (a) TV-ADM, (b) TpV-ADM, (c) TGV-ADM, and (d) TGpV-ADM minimization methods.

doi:10.1371/journal.pone.0149899.g006

different algorithms with 600 iterations from noise-free projections are summarized in Table 3.
The corresponding F-test and t-test analysis results are summarized in Table 4. Similarly, for
the three groups of experiments that the images reconstructed from noisy projections, the sta-
tistical mean values of performance evaluations are summarized in Tables 5, 6 and 7, respec-
tively. The corresponding F-test and t-test analysis results are summarized in Tables 8, 9 and
10, respectively.

In the noise-free case, noisy case 1 and noisy case 2, there are significant differences in
the values of RMSE, PSNR, and NRMSD between other algorithms and TGpV-ADM algo-
rithm (p<0.0001). The values of RMSE and NRMSD by TGpV-ADM algorithm are signifi-
cantly lower than that of other three algorithms. Meanwhile, the values of PSNR by
TGpV-ADM algorithm is higher than that of TV-ADM, TpV-ADM, and TGV-ADM algo-
rithms. In the noisy case 3, there are significant differences in the values of RMSE, PSNR,
and NRMSD between TV-ADM, TGV-ADM algorithms and TGpV-ADM algorithm

PLOS ONE | DOI:10.1371/journal.pone.0149899 February 22, 2016
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Fig 7. Horizontal profiles (52th row) in the reconstruction results of the Moby phantom from the third group of noisy projection dataset (N, =
5x10°). Results of the (a) TV-ADM, (b) TpV-ADM, (c) TGV-ADM, and (d) TGpV-ADM minimization methods.

doi:10.1371/journal.pone.0149899.g007

(p<0.0001). There are obvious statistical differences between TGpV-ADM and TpV-ADM
in RMSE (p = 0.0006<0.05), PSNR (P = 0.0008<0.05), NRMSD (P = 0.0008<0.05).

The average computation time of TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM
methods are listed in Table 11. The average computation time of TGV-ADM, TGpV-ADM are

Table 2. Evaluations of the results reconstructed by different methods from noisy projection dataset in digital Moby phantom studies.

Noisy Case 1 Noisy Case 2 Noisy Case 3

RMSE PSNR NRMSD RMSE PSNR NRMSD RMSE PSNR NRMSD
TV-ADM 8.0938e-03 41.8370 2.0702e-02 9.8109e-03 40.1658 2.5094e-02 1.2874e-02 37.8058 3.2929e-02
TpV-ADM 6.7564e-03 43.4057 1.7281e-02 8.7009e-03 41.2087 2.2255e-02 1.2572e-02 38.0118 3.2157e-02
TGV-ADM 6.3849e-03 43.8969 1.6331e-02 8.9127e-03 40.9998 2.2797e-02 1.2617e-02 37.9808 3.2272e-02
TGpV-ADM 5.9849¢e-03 44.4589 1.5308e-02 8.9127e-03 42.1914 1.9874e-02 1.1918e-02 38.4758 3.0484e-02
doi:10.1371/journal.pone.0149899.t002
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Table 3. Summary of statistical analysis results of performance evaluations of the images reconstructed by different methods from noise-free pro-
jection dataset in digital Moby phantom studies.

TV-ADM(A) TpV-ADM(B) TGV-ADM(C) TGpV-ADM(D)
RMSE 0.002635+0.0001233 0.0016600.00009580 0.001437+0.0006592 0.001008+0.0001160
PSNR 51.5836+0.4064 55.5951+0.5002 56.8491+2.8072 59.9290+0.8252
NRMSD 0.006679+0.0003628 0.004215+0.0002162 0.003599+0.001689 0.002507+0.0002994

doi:10.1371/journal.pone.0149899.t003

Table 4. Summary of F-test and t-test analysis results of performance evaluations of image quality between different algorithms in noise-free case
in digital Moby phantom studies.

pr-value p-value

Avs.D Bvs.D Cvs.D Avs.D Bvs.D Cvs.D
RMSE 0.639 0.145 <0.001 <0.0001 <0.0001 <0.0001
PSNR <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001
NRMSD 0.143 0.014 <0.001 <0.0001 <0.0001 <0.0001

doi:10.1371/journal.pone.0149899.1004

Table 5. Summary of statistical analysis results of performance evaluations of the images reconstructed by different methods in noisy case 1 (N,
=5x10°) for 60 phases of the Moby phantom.

TV-ADM(A) TpV-ADM(B) TGV-ADM(C) TGpV-ADM(D)
RMSE 0.007859:0.0006082 0.006772+0.0003184 0.006354+0.0003444 0.005946+0.0003335
PSNR 42.0922+0.6599 43.3856+0.4083 43.9396+0.4773 44.5155:0.4913
NRMSD 0.01969+0.001544 0.0169140.0008381 0.01572+0.0009133 0.01497+0.0008090

doi:10.1371/journal.pone.0149899.t005

Table 6. Summary of statistical analysis results of performance evaluations of the images reconstructed by different methods in noisy case 2 (N,
= 2x10°) for 60 phases of the Moby phantom.

TV-ADM(A) TpV-ADM(B) TGV-ADM(C) TGpV-ADM(D)
RMSE 0.009484+0.0006237 0.008490+0.0003828 0.008340+0.0003960 0.007749+0.0004074
PSNR 40.4603+0.5687 41.4216£0.3912 41.5769+0.4101 42.2145+0.4597
NRMSD 0.02386+0.001628 0.02118+0.001036 0.02103£0.001095 0.01939+0.0009966

doi:10.1371/journal.pone.0149899.t006

Table 7. Summary of statistical analysis results of performance evaluations of the images reconstructed by different methods in noisy case 3 (N,
=5x10°) for 60 phases of the Moby phantom.

TV-ADM(A) TpV-ADM(B) TGV-ADM(C) TGpV-ADM(D)
RMSE 0.01251+0.0009569 0.01191+0.0008555 0.01244+0.0005268 0.01168+0.0005963
PSNR 38.0536+0.6548 38.4822+0.6115 38.1025+0.3675 38.6497+0.4514
NRMSD 0.03154+0.002434 0.03012+0.002141 0.03140£0.001540 0.02919+0.001592

doi:10.1371/journal.pone.0149899.1007

Table 8. Summary of F-test and t-test analysis results of performance evaluations of image quality between different algorithms in noisy case 1
(No = 5x10°) for 60 phases of the Moby phantom.

pe-value p-value

Avs.D Bvs.D Cvs.D Avs.D Bvs.D Cvs.D
RMSE <0.001 0.723 0.806 <0.0001 <0.0001 <0.0001
PSNR <0.001 0.158 0.825 <0.0001 <0.0001 <0.0001
NRMSD <0.001 0.787 0.354 <0.0001 <0.0001 <0.0001

doi:10.1371/journal.pone.0149899.t008
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Table 9. Summary of F-test and t-test analysis results of performance evaluations of image quality between different algorithms in noisy case 2
(No = 2x10°) for 60 phases of the Moby phantom.

pe-value p-value

Avs.D Bvs.D Cvs.D Avs.D Bvs.D Cvs.D
RMSE 0.001 0.635 0.828 <0.0001 <0.0001 <0.0001
PSNR 0.105 0.218 0.383 <0.0001 <0.0001 <0.0001
NRMSD <0.001 0.769 0.472 <0.0001 <0.0001 <0.0001

doi:10.1371/journal.pone.0149899.t009

Table 10. Summary of F-test and t-test analysis results of performance evaluations of image quality between different algorithms in noisy case 3
(No = 5x10°) for 60 phases of the Moby phantom.

pe-value p-value

Avs.D Bvs.D Cvs.D Avs.D Bvs.D Cvs.D
RMSE <0.001 0.006 0.344 <0.0001 0.0006 <0.0001
PSNR 0.005 0.021 0.117 <0.0001 0.0008 <0.0001
NRMSD 0.001 0.024 0.800 <0.0001 0.0008 <0.0001

doi:10.1371/journal.pone.0149899.1010

Table 11. Running time (in CPU seconds) of different methods in digital Moby phantom studies.

TV-ADM TpV-ADM TGV-ADM TGpV-ADM
Noise-free Cases 38.285 41.418 48.136 51.462
Noisy Case 1 22.336 23.864 26.032 28.105
Noisy Case 2 19.766 20.916 22.126 23.621
Noisy Case 3 16.882 17.452 18.860 19.692

doi:10.1371/journal.pone.0149899.t011

longer than TV-ADM and TpV-ADM, which are due to the extra computation that takes by
the subminimization problem of second derivatives. Compared with original TGV-ADM
method, TGpV-ADM requires only a small increase in time computation.

Digital CS-phantom study

To demonstrate and validate our new method for the objects with piecewise polynomial fea-
ture, a digital CS-phantom [48-49] designed for compressed sensing MRI reconstruction was
used to simulate the few-view projection data. The phantom image is composed of four quad-
rants: Quadrant I contains a large diagonal ramp and low-contrast squares; Quadrant II con-
tains 16 low-contrast circles; Quadrant IIT contains a large quadratic hole and four Gaussian
bumps; and Quadrant IV contains line pairs and concentric circles with a range of spacing.
This phantom is not sparse under a gradient transformation and could provide features ame-
nable for real anatomical studying. For reference, the typical CS-phantom is shown in Fig 8 (or
S2 Fig).

Noise-free cases

In this simulation, the imaging configurations were same with the noise-free group in digital
Moby phantom studies. For four ADM-based algorithms, the parameters of ADM framework
were the same in the experiments: 4 and A, were set to 512 and 64, respectively; 7 was set to
1.3. For the TGV-ADM and TGpV-ADM methods, oy, o; and 4, were set to 1, 1, and 64,

PLOS ONE | DOI:10.1371/journal.pone.0149899 February 22, 2016 18/28
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Fig 8. Digital CS-phantom used in simulation study. Display window is [0.1, 0.6].
doi:10.1371/journal.pone.0149899.g008

respectively. For the TpV-ADM and TGpV-ADM algorithms, p was set to 0.7. Considering the
absence of noise from the projection data, we set e to 0. The number of iterations for each
reconstruction was 800.

The images reconstructed from the four methods in the noise-free cases are shown in Fig 9.
To reveal texture details, the zoomed region of interest (ROI) images of Quadrant I and

(a) FBP (b) TV-ADM (c) TpV-ADM (d) TGV-ADM (e) TGpV-ADM

Fig 9. Image reconstruction of the CS-phantom from noise-free projection dataset. Results of the (a) FBP, (b)TV-ADM, (c) TpV-ADM, (d) TGV-ADM,
and (e) TGpV-ADM minimization methods. Display window is [0.1, 0.6].

doi:10.1371/journal.pone.0149899.9g009
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Fig 10. Reconstructed ROIs of Quadrant | from noise-free projection dataset. From left to right are (a) original image, results of the (b) TV-ADM, (c)
TpV-ADM, (d) TGV-ADM, and (e) TGpV-ADM minimization methods. Display window is [0.2, 0.55].

doi:10.1371/journal.pone.0149899.g010

Quadrant IV are shown in Figs 10 and 11, respectively. TV-ADM and TpV-ADM reconstruc-
tions have many blocky artifacts in smoothly varying image regions, especially in the region of
diagonal ramp in Fig 10. The TGV-ADM and TGpV-ADM methods efficiently avoid the stair-
case effect. Compared with the TV-ADM, TpV-ADM, and TGV-ADM methods, the
TGpV-ADM method can obtain more accurate images and show better recovery of details and
subtle lesions.

To further demonstrate the superiority of TGpV-ADM algorithm, the RMSE of the recon-
structions from the different methods was calculated, and the calculation results are shown in
Fig 12. The TGpV-ADM algorithm could converge to a steady status and is obviously more
accurate and effective over the other methods. The RMSE, PSNR and NRMSD of each recon-
struction method are listed in Table 12. Compared with other methods, TGpV-ADM method
can visibly obtain more accurate images.

Noisy cases

In the simulation of noisy cases, the noise level Ny was set to 1x10°. Meanwhile, the parameters
should also be correspondingly adjusted.e was set to 10~>. The parameter settings of ADM
framework in the four algorithms were listed as follows: ¢ and A, were set to 64 and 32, respec-
tively, and 7 was set to 1.3. For the TGV-ADM and TGpV-ADM methods, oy, @;, and 1, were
setto 1, 1, and 32, respectively. For the TpV and TGpV algorithms, p was set to 0.9. The num-
ber of iterations for each reconstruction was 150.

Fig 13 shows the images reconstructed using the different methods, and the corresponding
zoomed ROIs are shown in Figs 14 and 15. TGpV-ADM method still provides relatively better
results than the other three methods in the noisy cases. To assess the performance of the pro-
posed method quantitatively, the corresponding RMSE of the reconstructions is calculated and

Fig 11. Reconstructed ROIs of Quadrant IV from noise-free projection dataset. From left to right are (a) original image, results of the (b) TV-ADM, (c)
TpV-ADM, (d) TGV-ADM, and (e) TGpV-ADM minimization methods. Display window is [0.2, 0.55].

doi:10.1371/journal.pone.0149899.g011
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Fig 12. Root mean squared errors as a function of iterations for different methods in the noise-free
case.

doi:10.1371/journal.pone.0149899.9012

plotted in Fig 16. The RMSE, PSNR and NRMSD of each reconstruction method in noisy case
are listed in Table 13. The proposed TGpV-ADM method successfully minimized the objective
functions and effectively improved the image quality for noisy data.

The average computation time of TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM
methods for digital CS-phantom studies are listed in Table 14. The table shows that the time
consumption of TGpV-ADM method is slightly larger than that of the other methods. The
present algorithm can preserve a good balance between performance and computation.

Real data study

To demonstrate further the potential capability of the proposed method, we performed a radio-
logical anthropomorphic head phantom (Chengdu Dosimetric Phantom, CPET Co. Ltd,
Chengdu, China) [50] study from real data for clinical use. The phantom is shown in S3 Fig

Table 12. Evaluations of the results reconstructed by different methods from noise-free projection
dataset in digital CS-phantom studies.

RMSE PSNR NRMSD
TV-ADM 1.0883e-02 39.2649 2.9532e-02
TpV-ADM 7.7744e-03 42.1866 2.1096e-02
TGV-ADM 5.6228e-03 45.0009 1.5258e-02
TGpV-ADM 2.8992e-03 50.7543 7.8672e-03

doi:10.1371/journal.pone.0149899.t012
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(a) FBP (b) TV-ADM (c) TpV-ADM (d) TGV-ADM (6) TGpV-ADM

Fig 13. Image reconstruction of the CS-phantom from noisy projection dataset. Results of the (a) FBP, (b)TV-ADM, (c) TpV-ADM, (d) TGV-ADM, and
(e) TGpV-ADM minimization methods. Display window is [0.1, 0.6].

doi:10.1371/journal.pone.0149899.g013

Fig 14. Reconstructed ROIs of Quadrant | from noisy projection dataset. From left to right are (a) original image, results of the (b) TV-ADM, (c)
TpV-ADM, (d) TGV-ADM, and (e) TGpV-ADM minimization methods. Display window is [0.2, 0.55].

doi:10.1371/journal.pone.0149899.9014

and the specification of it is described in ICRU Report 48 [51]. In this study, CT projection
data were acquired using a CT scanner mainly comprising an X-ray source (Hawkeye130, Tha-
les, France) and a flat-panel detector (Varian 4030E, USA). The tube voltage is set to 100 kVp.
The x-ray tube current was set at 200 pA and the duration of x-ray pulse at each projection
view was 180 ms during the acquisition. The central slice of the sinogram data was extracted
for 2D investigation and was modeled with 820 bins on a 1D detector for 2D image reconstruc-
tion. The associated imaging parameters of the CT scanner were as follows: (1) 360 projection
views were acquired evenly for a 360° rotation on a circular orbit, (2) the distance from the
detector to the X-ray source was 1610 mm, (3) the distance from the rotation center to the
source was 678 mm, and (4) the space of each detector bin was 0.508 mm. All of the

e ain I
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e e

Fig 15. Reconstructed ROIs of Quadrant IV from noisy projection dataset. From left to right are (a) original image, results of the (b) TV-ADM, (c)
TpV-ADM, (d) TGV-ADM, and (e) TGpV-ADM minimization methods. Display window is [0.2, 0.55].

doi:10.1371/journal.pone.0149899.9015
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Fig 16. Root mean squared errors as a function of iterations for different methods in the noisy case.

doi:10.1371/journal.pone.0149899.g016

reconstructed images comprised a 300 x 300 square of pixels. The size of each pixel was 0.585
mm x 0.585 mm. We evenly extracted a 120- and 180-view projection from the sinogram data
for illustration purposes.

In the experiment, the algorithm parameters of all ADM frameworks were set to y = 32,

Ao =16,and 7= 1.3. e was set to 10~. For the TGV-ADM and TGpV-ADM methods, oy, a1,
and A, were set to 1, 1, and 16, respectively. For the TpV and TGpV algorithms, p was set to
0.9. The number of iterations for each reconstruction was 100.

The reconstructed image results for the different methods from 120-, 180-, and 360-view
projections are shown in Fig 17. The corresponding zoomed-in ROIs are shown in Fig 18. The
TV-ADM and TpV-ADM methods have more patchy artifacts than the other two methods,
and some details are oversmoothed in the reconstruction images. TGpV-ADM method exhib-
its remarkable advantages over the other methods in terms of detail preservation. Meanwhile,

Table 13. Evaluations of the results reconstructed by different methods from noisy projection dataset
in digital CS-phantom studies.

RMSE PSNR NRMSD
TV-ADM 2.0898e-02 33.6504 5.6366€e-02
TpV-ADM 1.7254e-02 35.2623 4.6819e-02
TGV-ADM 1.3351e-02 37.4896 3.6229e-02
TGpV-ADM 1.0521e-02 39.5590 2.8549e-02

doi:10.1371/journal.pone.0149899.t013
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Table 14. Running time (in CPU seconds) of different methods in digital CS-phantom studies.

TV-ADM TpV-ADM TGV-ADM TGpV-ADM
Noise-free Cases 47.459 51.473 60.153 62.952
Noisy Cases 16.375 16.882 16.791 17.157

doi:10.1371/journal.pone.0149899.1014

the results further suggest that compared with the other three methods, the TGpV-ADM
method can achieve a more outstanding capability in dose reduction.

Discussion

TV-based CT image reconstruction that employs the image gradient sparsity can reduce the X-
ray sampling rate and remove the unwanted artifacts but may cause unfavorable oversmooth-
ing and staircase effects under the piecewise constant assumption. TGV (a generalization of
TV) involves high-order derivatives and is suited to regularize range images. The original TGV
is based on an /;-norm expression. We introduced a TGpV model that considers the ,-norm
and then developed an optimization-based reconstruction algorithm to extract additional spar-
sity information from the original TGV.

Compared with the other methods, the proposed TGpV-ADM method shows better image
reconstruction results in both smoothly varying regions and sharp edges. Furthermore, the
proposed method is robust to noise and shows much faster convergence than the other

FBP TV-ADM TpV-ADM TGV-ADM TGpV-ADM

120-view

180-view

360-view

Fig 17. Images reconstructed using the FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM methods from 120-, 180-, and 360-view projections,
respectively. Rows from the top to the bottom are the reconstructed results from 120-, 180-, and 360-view projections, respectively. From left to right in each
row, results of the FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM methods are presented. Display window is [0.005, 0.0525] mm~".

doi:10.1371/journal.pone.0149899.9017
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FBP TV-ADM TpV-ADM TGV-ADM TGpV-ADM

120-view

180-view

360-view

Fig 18. Zoomed-in views of images reconstructed using the FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM methods from 120-, 180-, and

360-view projections, respectively. Rows from the top to the bottom are the reconstructed results from 120-, 180-, and 360-view projections, respectively.

From left to right in each row, results of the FBP, TV-ADM, TpV-ADM, TGV-ADM, and TGpV-ADM methods are presented. Display window is [0.005, 0.0525]
-1

mm

doi:10.1371/journal.pone.0149899.9018

methods. There is small difference between the time consumption of the TGpV-ADM and
TGV-ADM methods. On the one hand, with the increase of projection data, the proportion of
projection/back-projection procedure will increase simultaneously. On the other hand, as the
effective access to realizing high-performance computation of the subminimization problems
by FFTs, the presented algorithm can keep a good and stable performance of balancing the
accuracy and efficiency with the increase in computational scale.

Multiple parameter settings are likely to be involved in any reconstruction design and can
significantly influence reconstruction results. Reconstruction under different parameter set-
tings is likely to yield different levels of image quality. In the study, even when p = 0.9, which is
very close to p = 1.0, the gains from the TGpV-ADM method are outstanding compared with
those from the TGV-ADM method. To guide an adequate adaptation of the image reconstruc-
tion task, reconstructions using different parameters are given in S2 Appendix. Although we
cannot provide the “best” selection strategy, the suggested metrics employing TGpV minimiza-
tion allows high-quality image recovery with sparse projection data and suggests a clinically
useful potential for radiation dose reduction.

The framework and metrics are only considered for the 2D fan-beam cases. We hope to
extend the model to cone-beam CT and to investigate effective graphics processing unit-based
implementation to gain significant improvement with minimal computational cost. Addressing
this question is one of our future research focuses.
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Conclusion

In this paper, we present a TGpV regularization model to adaptively preserve the edge infor-
mation while avoiding the staircase effect for few-view CT image reconstruction. The new
model is solved by splitting variables with an efficient alternating minimization scheme. All of
the subproblems have efficient solutions after using generalized p-shrinkage mappings and
partial Fourier transform. Experimental results show that the proposed TGpV-ADM method
can reconstruct sharp edges accurately and smoothly varying image regions from insufficient
data. In particular, the proposed method shows considerable advantages over the standard
TGV-ADM and TpV-ADM algorithms.

Supporting Information

S1 Appendix. Implementations of TV-ADM, TpV-ADM, and TGV-ADM algorithms.
(DOC)

S$2 Appendix. Experimental results with different parameters.
(DOC)

S1 Fig. A typical Moby phantom used in the simulation study. Display window is [0, 1].
(TIF)

S2 Fig. A typical CS-phantom used in the simulation study. Display window is [0, 1].
(TIF)

$3 Fig. An anthropomorphic head phantom used in the real data study.
(TIF)
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