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Abstract: Anaplasma phagocytophilum and Borrelia burgdorferi are two tick-borne bacteria that cause
disease in people and animals. For each of these bacteria, there is a complex of closely related
genospecies and/or strains that are genetically distinct and have been shown through both
observational and experimental studies to have different host tropisms. In this review we compare
the known ecologies of these two bacterial complexes in the far western USA and find remarkable
similarities, which will help us understand evolutionary histories and coadaptation among vertebrate
host, tick vector, and bacteria. For both complexes, sensu stricto genospecies (those that infect
humans) share a similar geographic range, are vectored mainly by ticks in the Ixodes ricinus-complex,
utilize mainly white-footed mice (Peromyscus leucopus) as a reservoir in the eastern USA and tree
squirrels in the far west, and tend to be generalists, infecting a wider variety of vertebrate host species.
Other sensu lato genospecies within each complex are generally more specialized, occurring often
in local enzootic cycles within a narrow range of vertebrate hosts and specialized vector species.
We suggest that these similar ecologies may have arisen through utilization of a generalist tick species
as a vector, resulting in a potentially more virulent generalist pathogen that spills over into humans,
vs. utilization of a specialized tick vector on a particular vertebrate host species, promoting microbe
specialization. Such tight host-vector-pathogen coupling could also facilitate high enzootic prevalence
and the evolution of host immune-tolerance and bacterial avirulence.

Keywords: Anaplasma spp.; anaplasmosis; Borrelia spp.; borreliosis; diversity; Lyme disease;
reservoirs; western gray squirrel; woodrat

1. Background

Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, and Borrelia
burgdorferi, the agent of Lyme disease, are obligately tick-transmitted bacterial zoonotic pathogens
with remarkably similar ecologies [1]. Both occur throughout the Holarctic and are maintained and
transmitted by ticks of the Ixodes ricinus subgroup: in each regional epidemiological cycle, the ticks
(I. pacificus in the western USA, I. scapularis in the eastern and central USA, I. ricinus in Europe, and
I. persulcatus in Asia) acquire the infection during their single larval or nymphal feeding on an infected
small mammal, maintain the pathogen through the tick molt, and then transmit the pathogen to an
uninfected host during the next stage as either nymph or adult. When infected nymphs feed on small
mammals, they contribute to enzootic maintenance of the pathogen. There is minimal evidence that
these pathogens can be transmitted transovarially among ticks [2–4].
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However, beyond the apparent simplicity of a single regional bridge vector species is a highly
complex web of numerous less well-studied, often host-specialist and nest-dwelling (nidicolous) ticks
that vary in vector competence for these pathogens; a large diversity of mostly small mammal hosts
variably capable of maintaining the bacteria and interacting with some but not all local tick vectors;
and even a diverse set of bacterial strains and species with different (and usually poorly understood)
host and vector specificity [5].

The name B. burgdorferi sensu lato (Bbsl) has been coined to refer to a clade of related genospecies,
some causing disease consistent with Lyme disease, and others known from ticks and non-human
vertebrates (Note, however, that the term genospecies varies in use, with some authors calling them
genomospecies, some simply species, sometimes strains. We use strain to refer to an organism
identified only tentatively, e.g., via a DNA sequence in a database, and use genospecies (some
authors use “genomospecies”) to include any well-characterized pathogen in either the Bbsl or
A. phagocytophilum sensu lato (Apsl) complexes). Included within Bbsl are the original agents attributed
to Lyme disease, B. burgdorferi sensu stricto (Bbss), and B. bissettii, B. californiensis, B. americana,
B. carolinensis, B. kurtenbachii, and B. mayonii among others.

There are also distinct host-adapted Anaplasma strains but new species designations have rarely
been erected, except for the recent description of A. odocoilei in deer [6]. Several distinct “strains”
have been named AP-Variant 1 and DU1 [7,8]. Unfortunately, in prior studies, strains or species often
were not correctly differentiated for a number of reasons [9,10]. Most importantly, the existence of
distinct genospecies of these bacteria was not documented in the past and new genospecies continue
to be discovered to the present day. Accurate insight into host-pathogen-vector relationships requires
not only accurate differentiation of the genospecies but also extensive field and laboratory studies
to examine the host and vector range and competence. In the absence of a catalogue of which
bacterial genospecies occur in which hosts and ticks, attempts to synthesize studies, draw conclusions
about reservoirs and maintenance or amplification cycles, and understand the global ecology and
evolution of these bacterial complexes may be misguided. However, studies yielding insight into such
differentiation have been performed in only a few systems, and those we include in this paper.

Highly biologically diverse systems offer a rich opportunity to examine the ecology of diseases
where there are numerous intersecting enzootic cycles, which is the case in the western USA. California
has 20 species of ticks in the Ixodes genus, including the known Bbsl vector-competent I. pacificus and
I. spinipalpis and other relatively common small mammal-feeding species such as I. woodi and I. angustus.
Small mammal diversity is high as well [7,11]. Our goals in this study were to compile all published
data from California where genospecies or strain of Anaplasma phagocytophilum and Borrelia burgdorferi
complexes have been differentiated in vertebrates or ticks. By systematically presenting the data, we
aimed to review ecological features of each genospecies, focusing on the west but drawing comparisons
where warranted to other regions and proposing likely epidemiologic cycles. Compiling and analyzing
these data is intended to make reference to the diversity easier for future research projects and serve as
a point from which future research can launch to further identify factors influencing the diversity of
both of these different tick-borne pathogens to particular host and tick species.

2. Introduction to the Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato Complexes

Delineating genetically and ecologically distinct genospecies and evaluating whether there are
ecologically distinct host-vector-environment niches often lag far behind initial molecular detection
and characterization. During early investigations of these tick-borne bacteria, numerous wildlife
and domestic host and tick species were surveyed, but there was little available information on
genetic diversity in the pathogens. In the case of B. burgdorferi, multiple closely related genospecies
were assumed to be a single species. Alternatively, for A. phagocytophilum when the pathogen was
found to be infecting multiple host species, it was not originally recognized to be a single agent
(e.g., E. equi, E. phagocytophila, and the agent of HGE) [12]. As diagnostic and molecular techniques
have progressed from serology (which often lacks specificity) to PCR, RFLP, and direct sequencing,
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to—most recently—MLST and full genome sequencing, we are able to more fully characterize and
understand genetic diversity and postulate the evolutionary events that have led to our present-day
pathogens. Reconciling published reports is thus challenging because older literature may fail to
differentiate among distinct genospecies or use provisional isolate names (e.g., the agent of HGE or
Genomospecies 1), which may later acquire valid scientific names.

There are distinct host-adapted strains of A. phagocytophilum including A. phagocytophilum sensu
stricto (Apss, also known as Ap-ha [8]), which is the strain known to cause disease in people, horses,
dogs and cats [13] (Table 1). Other distinct strains and putative genospecies in the USA have been
named DU1, AP-Variant 1, and WI-1, are associated with distinct wildlife species, and have not been
reported in people. Experimental infection studies with Apss, DU1, and AP-Variant 1 have shown
some restrictions on host specificity [8,14].

In contrast, the Bbsl complex has received more research attention and contains over 18 recognized
or proposed genospecies and several more uncharacterized strains [15] (Table 2). Of those genospecies
that are well supported, the main agents of human Lyme disease are Bbss in North America and BBss,
B. afzelii, and B. garinii in Europe [16]. Other genospecies that have only been detected in sylvatic
cycles among vertebrate hosts and tick vectors in California include B. californiensis, B. americana, and
B. carolinensis [16]. Not yet characterized strains that fall outside of currently identified clades in
California include Genomospecies 2 [17–19], R57-like, and CA690 [20].

3. Tick-Borne Sensu Stricto Strain/Genospecies Ecology

3.1. Reservoir Hosts

Due to obligate parasitism and the absence of transovarial transmission, vertebrate reservoir
species are essential to the persistence of these tick-borne pathogens. In the eastern USA, the primary
reservoir for both Apss and Bbss is the white-footed mouse (Peromyscus leucopus) [21–25], an r-selected
species with a fast life-history pace that is abundant in many habitat types including those that have
been disturbed. There are other competent hosts, such as the eastern chipmunk (Tamias striatus) for
Apss [25], but because the primary reservoir is well suited for the pathogens and vectors, abundant,
and broadly distributed geographically, the white-footed mouse per se is sufficient to maintain both
pathogens. In California, the reservoir for both pathogens was originally thought to be the dusky-footed
woodrat (Neotoma fuscipes) due to high infection prevalence [9,10,26]. As genetic testing became more
advanced and strains were accurately identified, it became clear that the dusky-footed woodrat was
in fact commonly infected with closely related strains that are not known to infect people, described
below. Woodrats and Peromyscus spp. are relatively rarely infected with Bbss in most areas studied [27].
Rather, studies have shown a prevalence of Bbss in tree squirrels, primarily the native western gray
squirrel (Sciurus griseus), as high as 50%–80% [20,27–29]. Reservoir competence studies have revealed
that squirrels are sufficiently chronically infected that they maintain the pathogens in nature [29,30].
However, even though squirrels may have higher prevalence, less reservoir-competent species such as
mice may be more abundant, amplifying their contribution to the overall infection risk.

The findings of one recent study stand out in contrast to earlier findings supporting western
gray squirrels as reservoirs, although data are difficult to integrate because that study in two enzootic
sites in Marin County did not include squirrels [31,32]. Of almost 700 woodrats and over 1000 deer
mice (P. maniculatus) sampled (Table 2), Bbss prevalence was 13% and 6%, respectively, from which
the authors suggested that these species might serve as reservoirs, even though much higher PCR
prevalence (>50%) was typical in squirrels in sites where squirrels were tested, suggesting that if they
had tested squirrels in Marin, a very high prevalence might have been found. These data reflect an
important bias in much of the data available to date: woodrats and deer mice are much easier to trap
and sample than western gray squirrels and so many more woodrats have been included in various
studies than western gray squirrels [29,33].
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Table 1. List of strains within the Anaplasma phagocytophilum sensu lato complex in California, their
distribution, host and vector range, and number of times each has been documented.

Strain Counties Species (Host or Vector/Host) 1 Number of
Occurrences 2 References

Sensu stricto

Alameda, El Dorado,
Humboldt, Placer,

Napa, Marin,
Mendocino, Santa Cruz,

Shasta, Yolo

Ursus americanus 18

[7,13,34,35]

Equus caballus 10
Canis lupus familiaris 6

Sciurus griseus 4
Tamias sonomae 2
T. ochrogenys 2

Tamiasciurus douglasii 2
S. carolinensis 2

Urocyon cinereoargenteus 1
Ixodes pacificus/flag 4

I. pacificus/Neotoma fuscipes 1

DU1 Humboldt, Mendocino,
Santa Cruz

N. fuscipes 28

[7,13,34,35]

U. americanus 8
T. ochrogenys 4

S. griseus 1
I. spinipalpis/N. fuscipes 3
I. angustus/N. fuscipes 1

I. woodi/N. fuscipes 1
I. ochotonae/Peromyscus sp. 1

I. pacificus/T. ochrogenys 1
I. pacificus/Homo sapiens 1

WI-1 Mendocino, Mono,
Tehama

Odocoileus hemionus 16 [36–38]Lipoptena depressa/O. hemionus 10
1 For tick species that were collected either by flag or from a vertebrate host, this is denoted after the tick species
name; 2 Number of occurrences refers to the number of molecular detections of the strain in tissue from an
individual host or vector.

Birds are thought to participate in local enzootic maintenance of Bbss as well as the transport of
infected ticks [39,40]. In a recent study of over 600 birds and 50 species collected by mist netting in
Mendocino County, Bbss was detected in the blood of 10 bird species, all in the order Passeriformes.
Golden-crowned sparrows (Zonotrichia atricapilla) had the highest prevalence of Bbss (28.6%) and the
authors suggested this species could be a reservoir [41]. Juvenile I. pacificus were collected from the
birds in this study with a Bbss infection prevalence of 13% of 284 ticks. Ground-foraging behavior was
most predictive of larval infestation, as has been shown previously [39,40,42].

Table 2. List of genospecies within the Borrelia burgdorferi sensu lato complex in California, their
distribution, host and vector range, and number of times each has been documented.

Genospecies Counties Species (Host or
Vector/Host) 1

Number of
Occurrences 2 References

B. burgdorferi

Alameda, Butte, Contra
Costa, El Dorado,

Humboldt, Lake, Los
Angeles, Marin,

Mendocino, Napa,
Placer, Plumas,

Sacramento, San Mateo,
Santa Clara, Santa Cruz,

Shasta, Sonoma,
Tehama, Trinity

Neotoma fuscipes 95

[17,20,27–29,41,43–50] 3

Peromyscus maniculatus 59
Sciurus griseus 38

S. niger 19
Birds 14

Tamias senex 4
Tamiasciurus douglasii 2

T. ochrogenys 2
P. boylii 2
P. trueii 2

Dipodomys californicus 1
S. carolinensis 1

Didelphis virginiana 1
Odocoileus hemionus 1
Ixodes pacificus/flag 1095
I. pacificus/S. griseus 25

I. pacificus/birds 3
Dermacentor occidentalis/flag 2

I. auritulus/flag 1
I. spinipalpis/flag 1

I. jellisoni/flag 1
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Table 2. Cont.

Genospecies Counties Species (Host or
Vector/Host) 1

Number of
Occurrences 2 References

B. bissettii

Alameda, Contra Costa,
Del Norte, Humboldt,

Mendocino, San
Bernardino, San Luis

Obispo

N. fuscipes 72

[15,20,27,29,41,43,48,49,51–54] 2

Birds 17
P. boylii 10

O. hemionus 8
P. trueii 7

P. maniculatus 5
T. siskiyou 4
N. lepida 3
R. rattus 3

M. californicus 2
T. douglasii 1

I. pacificus/flag 49
I. spinipalpis/flag 12
I. pacificus/bird 5

I. pacificus/S. griseus 3
I. spinipalpis/N. fuscipes 2

I. jellisoni/flag 1
I. auritulus/flag 1

B. californiensis Alameda, Mendocino

D. californicus 19

[15,20,48]

O. hemionus 3
I. jellisoni/D. californicus 1

I. spinipalpis/D. californicus 1
I. pacificus/D. californicus 1

I. pacificus/flag 1

B. americana
Alameda, El Dorado,
Los Angeles, Orange

I. pacificus/flag 4 [17,20,55]

B. carolinensis Inyo I. minor/Microtus californicus 1 [56]
1 For tick species that were collected either by flag or from a vertebrate host, this is denoted after the tick species
name; 2 Number of occurrences refers to the number of molecular detections of the genospecies in tissue from
an individual host or vector; 3 Supplemented with unpublished data from Foley and Roy, UC Davis.

As for the more commonly studied Bbss, the small mammals thought to be the reservoirs of Apss
are tree squirrels and chipmunks [30,33]. Rejmanek et al. [7] first showed that the A. phagocytophilum
strain infecting tree squirrels and chipmunks was most similar to that infecting humans, dogs, and
horses and distinct from the strain infecting woodrats, known as DU1. Thus far, Apss has been
detected in western gray squirrels, Douglas squirrels (Tamiasciurus douglasii), eastern gray squirrels
(S. carolinensis), and the chipmunks T. ochrogenys and T. sonomae (Table 1) [7,34,35]. Apss has also been
detected in 18 black bears (Ursus americanus) and a gray fox (Urocyon cinereoargenteus) in Humboldt
County, but these are likely dead-end hosts if they experience short-duration infection and limited
infestation by juvenile I. pacificus ticks [34,35,57]. The significance of incidental findings of Bbss-positive
Virginia opossum (Didelphis virginiana) and black-tailed deer (Odocoileus hemionus columbianus) is
unknown [28,48].

3.2. Clinical Disease

Symptoms of Apss infection in people, horses, dogs, and cats are typically mild to moderate, acute
in onset, and self-limiting, with some cases likely going undiagnosed [24,58–60]. Clinical signs can
include fever, lethargy, inappetance, and muscle pain. Apss can sometimes cause severe to fatal disease
due to secondary complications such as acute respiratory distress syndrome, organ failure, sepsis,
myocarditis, and hemorrhage (especially in immune-compromised individuals) [24,61,62]. The facts
that infection with Apss may be relatively short-lived and that many clinical hosts experience bites from
adult more frequently than nymphal ticks tend to reduce the likelihood that these hosts participate
in pathogen maintenance cycles, although one study did show chronic infection in experimentally
infected dogs [63].

In contrast to Apss, Bbss can cause more chronic disease in people with joint, cardiac, and
neurologic complications, especially when treatment is not initiated early, though it is rarely
fatal [64]. As with people, dogs can become persistently infected and suffer from prolonged clinical
signs [65]. Additionally in dogs, there is a syndrome called Lyme nephritis, which is rare and fatal.
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The pathogenesis of this syndrome is poorly understood but thought to represent an immune-mediated
reaction to the Borrelia organism which leads to kidney failure [66]. Lyme disease in horses and cats
can be asymptomatic or be associated with a variety of clinical signs, which are similar to those seen in
people and dogs including fever, lethargy, lameness, and neurologic signs [66,67].

3.3. Vectors

The main vector for both Apss and Bbss in the western USA is I. pacificus, a generalist tick known
to feed on a wide variety of both small and large vertebrate hosts including domestic animals and
people, making it an ideal bridge vector [68,69]. Like all I. ricinus-complex ticks, I. pacificus has three
host-feeding stages. It feeds primarily on small mammals and lizards during its immature stages and
larger mammal species as an adult [57]. It tends to be a host-generalist tick, willing to feed on any of
the dozens of species it encounters. It quests on the ground or in open vegetation, ascending grass
stems or bushes daily during questing season to seek hosts. It takes refuge in leaf litter if a host is not
found or, once fed, while waiting through a molt or laying eggs.

In California, Apss has exclusively been detected in I. pacificus, although only two studies have
attempted to differentiate genospecies among ticks in the western USA (Table 1) [13,36]. Documented
prevalences of Bbss in I. pacificus in California generally range from <1% to 5%, although prevalences
as high as 8%–10% have been found in some “hotspot” areas in Marin, Sonoma, and Mendocino
Counties [31,44,46,47]. There have been rare descriptions of Bbss in I. auritulus, I. spinipalpis, I. jellisoni,
and Dermacentor occidentalis (Table 2), though the latter tick has been shown to be incapable of
transmitting the pathogen either transovarially or to a vertebrate host [70]. Bbss has been detected in an
I. angustus in the northwestern USA and British Columbia [71–73], and this tick species was removed
from the eyelid of a three-year-old girl in Washington State who developed an erythematous rash
23 days later and six months later had an elevated serum titer to B. burgdorferi by IFA [74]. I. angustus
has been experimentally shown to be vector-competent for Bbss using deer mice as a host model [75]
and does occasionally feed on people [57], so it may play a small role as a bridge vector, likely where
other more competent vectors are less common.

In much of California, the western gray squirrel and lizards appear to be the preferred hosts of
juvenile I. pacificus. One study showed that western fence lizards (Sceloporus occidentalis) and southern
alligator lizards (Elgaria multicarinata) may host up to 90% of juvenile I. pacificus (Casher 2002). Despite
increasing the carrying capacity for I. pacificus, lizards may reduce the force of infection of Bbss and
possibly Apss in California by a zooprophylactic effect, by diverting questing juvenile I. pacificus from
reservoir competent hosts and failing to succumb to infection. This is evidenced by PCR surveys of
lizards failing to show any significant Apss infection [76]. In addition, experimental studies showed
that western fence lizards did not become infected with Apss [76] and their blood was borreliacidal,
clearing Borrelia infections in the ticks that were feeding on them [77]. Through this mechanism,
lizards may ultimately decrease the density of infected nymphs and therefore risk of disease to people,
even though one study’s results did not support this hypothesis [78]. This contrasts, however, with Bbsl
in Europe, where B. lusitaniae is reservoired by lizards [79].

4. Ecology of Other Sensu Lato Strains/Genospecies

4.1. Anaplasma Phagocytophilum Sensu Lato

In North America, three strains that are distinctly different from Apss have been documented:
strain DU1 in small mammals, WI-1 in deer, and the AP-Variant 1 also in deer. The Apsl strain DU1
was originally detected in a woodrat from Mendocino County in coastal northern California [7]. It is
found in woodrats throughout northern and central California and is genetically distinct from Apss
in 23S-5S intergenic spacer, ank, and groESL markers. DU1 has occasionally been detected in black
bears, redwood chipmunks, and western gray squirrels (Table 1) [7,13,34,35]. It has also been detected
in an I. ochotonae that was attached to a deer mouse, an I. woodi and an I. angustus that were attached
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to woodrats, and two I. pacificus, one that was attached to a redwood chipmunk and one that was
found on a person [13]. Experimental infection studies confirmed that DU1 did not infect horses,
a proxy for clinical hosts including humans [14]. A plausible theory is that this pathogen circulates in
primary enzootic cycles involving the dusky-footed woodrat and the nidicolous tick I. spinipalpis with
spillover into chipmunks and other tick species, although, thus far, few studies have been performed
that provide sequence data or have looked specifically for this strain.

First detected in white-tailed deer (Odocoileus virginianus) in Wisconsin, DNA of the WI-1 strain of
Apsl was found in D. albipictus in Minnesota, which appeared to be capable of transovarial transmission
of the bacterium [80]. A genetically similar or identical strain was also detected in black-tailed deer and
keds (Lipoptena depressa) in Mendocino, Mono, and Tehama Counties in California [36]. D. albipictus
is a specialist tick on cervids and may be the primary vector for this Apsl strain, although it is not
a tick that feeds on humans and is infrequently collected and tested for human pathogens. Vector
competence for Apsl has not been assessed in keds, which are flies that lose their wings once they
alight on a deer, whose blood they feed on and become obligate parasites [81].

A well-characterized strain of Apsl that also appears to have an ungulate-tropism, designated
AP-Variant 1, has not been found to date in California. This strain has been found in the eastern USA
in white-tailed deer and I. scapularis ticks [8]. Experiments confirmed that it is unable to infect rodents
but did infect goats; it was inferred that AP-Variant 1 is unlikely to be able to infect humans [82,83].
An interesting question is whether this strain could infect cattle. The strain was reported as present
in a black-tailed deer in Mendocino County [37], but re-examination of the DNA sequence from that
case with the more comprehensive database available now in GenBank indicated that the deer was
actually infected with the strain WI-1 (Stephenson, unpub. data). It is not known whether I. pacificus
is an incompetent vector, the strain is not present in California, or whether it is uncommon and not
yet discovered. Other Anaplasma genospecies that have been detected in the western USA after being
initially mislabeled as A. phagocytophilum include A. ovis, A. bovis, and A. odocoilei [36,37]. Figure 1
depicts the proposed epidemiologic cycles of the A. phagocytophilum sensu lato complex in California
based on the currently available compiled data.Vet. Sci. 2016, 3, 26 8 of 17 
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4.2. Borrelia Burgdorferi Sensu Lato

Figure 2 depicts the proposed epidemiologic cycles of the B. burgdorferi sensu lato complex in
California based on the currently available compiled data. B. carolinensis is a Bbsl genospecies not
known to affect humans, mainly found in the southeastern USA, where it has been detected in
cotton mice (P. gossypinus), eastern woodrats (N. floridana), and a single I. minor [84]. I. minor is
abundant in the southeastern USA and feeds primarily on small rodents and ground-feeding birds [85].
The nomenclature of this tick has been controversial but its first, poorly substantiated record was
from Guatemala and it is listed as part of the tick fauna in Panama [86,87]. Recently, Foley et al. [56]
described an enzootic cycle of B. carolinensis in the Mojave Desert, California, involving I. minor and
the endangered Amargosa vole (Microtus californicus scirpensis), which are geographically isolated in
small marshes in the desert. Further evaluation of this tick indicates that it is subtly morphologically
distinct from southeastern I. minor, and may constitute a not previously identified species [88]. A likely
route for its introduction into the Mojave Desert is via migratory birds.

Borrelia americana was first isolated from an I. pacificus collected from California in 1993, although
at that time it was described as “genomospecies 1” [89]. Since then it has been detected mainly in
I. minor, the eastern towhee (Pipilo erythrophthalmus), and the Carolina wren (Thryothorus ludovicianus)
from South Carolina [89]. Passerine migration may account for the spread not only of I. minor but also
B. americana. In fact, in 2016 Scott and Foley [90] reported the first finding of B. americana in Canada in
an I. auritulus from a resident bird in Ontario, further suggesting expansion of this Borrelia genospecies
into the New World. An alternative explanation may be that B. americana has been present in largely
overlooked ecologies and is only now being detected. I. auritulus typically infests birds, while I. minor
is a tick of birds and small mammals, neither of which typically bite humans. However, spillover into
an ecology featuring I. pacificus could put humans and other clinically affected hosts at risk. At least
one study has detected B. americana in the blood of two ill patients, but the role that this species plays
in disease is still unclear [91].
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As of 2016, B. californiensis has only been detected in Mendocino County in coastal northern
California, where it mainly infects the California kangaroo rat (Dipodomys californicus) and its specialist
tick I. jellisoni [89]. It was also detected in two black-tailed deer, an I. pacificus and I. spinipalpis that were
attached to kangaroo rats, and a flagged I. pacificus [15,43,48]. B. californiensis has not been associated
with human cases of Lyme disease [15].

Unlike most genospecies of Bbsl, B. bissettii has characteristics similar to Bbss in that it has a
broader vertebrate host range, utilizes generalist vectors in the I. ricinus complex, and is found on
multiple continents (both North America and Europe). B. bissettii has been implicated in several
cases of Lyme disease in eastern Europe with B. bissettii DNA detected in human patients with
symptoms typical of Lyme disease including erythematous rash, fatigue, joint pain, and both cardiac
and neurologic abnormalities [92–94] and in the cerebrospinal fluid of a German patient with no history
of travel [95]. In California, B. bissettii has been detected in the sera of residents of Mendocino County,
an area with high prevalence of Bbss, but was not associated with clinical illness [96].

Borrelia bissettii circulates within at least two restricted, local enzootic host-vector cycles [15].
Although the B. bissettii type strain DN127 was first isolated from an I. pacificus, subsequent research
showed that it was maintained enzootically in nidicolous I. spinipalpis and woodrats in California
and Colorado [43]. This same tick-host couplet maintains the Apsl strain DU1 in California and an
un-genotyped A. phagocytophilum strain in an area of Colorado where neither I. pacificus nor I. scapularis
bridge vectors are present [97]. As for Bbss, B. bissettii was isolated from several bird species as well as
the juvenile stages of I. pacificus that were attached to birds [41]. However, the prevalence of B. bissettii
in ticks from birds was much lower than Bbss, and the role of birds as a possible reservoir for B. bissettii
is not resolved. B. bissettii has most commonly been detected in the tick I. pacificus, though this may
be due to biased sampling as I. pacificus is the most commonly flagged Ixodes sp. tick in California.
B. bissettii has also been detected several times in I. spinipalpis that were collected both by flagging and
attached to vertebrate hosts as well as once each from an I. jellisoni and I. auritulus (Table 2). Altogether,
the data suggest that I. spinipalpis may be the main vector responsible for enzootic maintenance and
I. pacificus may contribute to enzootic transmission and as a potential bridge vector to people.

The best characterized but not yet named Bbsl strain in California is “Genomospecies 2”.
Genomospecies 2 has been detected by PCR and sequencing only in California, initially in an
I. spinipalpis tick collected from a black-tailed jackrabbit (Lepus californicus) in Mendocino County
sometime between 1984 and 1989 [89], later (1993) detected in an I. pacificus individual flagged in Kern
County, likely in the Sierra Nevada foothills [17], and most recently (between 2009 and 2012) in an
I. pacificus flagged in Alameda County [20]. This is a broad geographical distribution that encompasses
relatively moist low-altitude coastal mountains, across the dry Central Valley, which is generally
inhospitable to many Ixodes spp. ticks, to the Sierra Nevada foothills hundreds of kilometers to the
southeast of the coast. Genomospecies 2 has thus far not been detected in any vertebrate species.

5. Discussion

In California, with its rich diversity in habitat types, plants, animals, and other biological taxa, it is
not surprising that there should be high diversity in tick-borne bacteria and in ecological transmission
cycles. Here we review the available data where pathogen genospecies have been identified in
California and find multiple important generalities. For both pathogens, sensu stricto genospecies
tend to have a broader host range including people, utilizing mainly tree squirrels and chipmunks as
reservoirs compared with other sensu lato genospecies. Both Apss and Bbss have a broad geographic
range occurring in both the Old and New Worlds, utilizing white-footed mice as reservoirs in the
eastern and midwestern USA. In California, the primary “bridge vector” for both Bbss and Apss is
I. pacificus, although sensu stricto genospecies are occasionally detected in a variety of other Ixodes spp.
ticks. In contrast, most other sensu lato genospecies tend to have narrower host ranges but are found in
a larger diversity of Ixodes spp. ticks, including I. pacificus, though at much lower prevalence than the
sensu stricto strain. Other sensu lato strains often occur in local or more geographically restricted areas.
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In the west, both Bbsl and Apsl complexes appear to have local enzootic cycles between woodrats
and the nidicolous tick I. spinipalpis. This probably reflects the tight ecological relationship of woodrat
ticks (I. spinipalpis and I. woodi, although tick-borne pathogens have been detected more in I. spinipalpis),
which in many areas have a nidicolous habit: when not on the animal, they reside primarily in nest
cups within woodrat stick or underground houses. Especially for the territorial dusky-footed woodrat,
each house is defended by a single woodrat individual and whether or not all houses in an area are
occupied varies seasonally and annually [98]. Nest occupation improves tick survival but also limits
access to hosts, although various Peromyscus spp. will sometimes invade woodrat houses and become
infested [98]. Within such a relationship, pathogens may become specialized to their hosts and this
may manifest in the evolution of avirulence by the pathogen or the woodrat immune system becoming
more tolerant, allowing for chronic infection. This may extend the vector’s window of transmission
and increase the prevalence (and success) of the pathogen in the population. An example of this
phenomenon is that the OspC genes of B. afzelii and B. garinii appear to be optimized for their respective
typical hosts, only inducing strong immunity in the host typical of the opposite pathogen, and resulting
in virtually no intermediate genotypes when the two pathogens coinfect [99]. We have also noted that
woodrats show remarkably high PCR prevalence in some areas without being seropositive, a possible
indicator of failing to mount strong immune responses to infection likely because woodrat-tick-borne
bacterial coevolution has now resulted in these bacteria functioning more as commensals than parasites
for this host species [100].

California has a higher diversity of Sciuridae—tree squirrels and chipmunks—than any place in
the world. The five tree squirrel species in California include the widely distributed and large-bodied
western gray squirrel, its two non-native but similar competitors, the eastern gray and fox squirrels
(S. carolinensis and S. niger), and the smaller Douglas and northern flying squirrels, which occur in deep
forests in the northern and eastern parts of the state. The relatively long-lived western gray squirrel is
a reservoir of both Apss and Bbss in part because it is an important host for the juvenile stages of the
cosmopolitan I. pacificus [57]. Notably, while I. pacificus is a broadly distributed and locally abundant
vector-competent tick that preferentially feeds on reservoir-incompetent reptiles in larval and nymphal
stages, some immature individuals feed on small mammals or birds but may be outcompeted by
more specialized tick-species in some cases [68]. The sciurid specialist tick species I. hearlei is rarely
encountered in California, potentially leaving an open niche that I. pacificus has filled [57,101]. In sites
where comparative tick infestation has been assessed, the I. pacificus load is more than four times higher
on squirrels than in woodrats and almost 15 times higher than Peromyscus spp. [40]. Tree squirrels
could encounter I. pacificus on the ground or tree trunks, which have proven to have high loads of
questing nymphal ticks [102]. In light of the high numbers of Apss and Bbss in western gray squirrels
in many areas, where infections in woodrats and deer mice may be an order of magnitude lower or
undetectable, the most probable explanation for the finding in Swei et al. 2011, that woodrats and deer
mice could be “reservoirs” is that infection rates in squirrels would likely have been even higher had
they been trapped and tested [31,32].

While western gray squirrels have been clearly shown to be reservoir-competent for Bbss using
experimental infections [29], this has not been done for Apss in part because of the considerable
difficulty in capturing and keeping this species in captivity. Doing such a study would offer valuable
opportunities to assess immune impacts of both tick infestation and pathogen infection in this species
as well. In contrast, however, reservoir competence for Apss has been documented in one of the species
of chipmunk known to have very high infection prevalence, the redwood chipmunk [30], as well as the
eastern gray squirrel [25]. Interestingly, although I. angustus is abundant on Allen’s (T. senex), redwood,
and Siskiyou (T. siskiyou) chipmunks in northern coastal sites where Apss is found, this tick is quite
rarely found infected with the pathogen [103]. Nevertheless, it is known to occasionally bite humans,
has also been shown to carry Bbss, and was implicated in a human case of Lyme disease [74].

Despite the many similarities between the ecologies of these two tick-borne pathogens, there are
also differences. Borreliosis tends to cause chronic infections in both humans and animals, especially
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when untreated, compared to anaplasmosis. For enzootic cycles this likely means that reservoir species,
once infected, are infectious to vectors for the rest of their life. In contrast, Apss is generally acute and
self-limiting in most clinical hosts and often transient in reservoirs [26,30], although one study in dogs
did document persistent infection until the end of the study (60 days) without the administration of
antibiotics [63]. Very limited data are available on the relative persistence of infection among various
Apsl genospecies.

Another difference is that enzootic cycles within the Bbsl complex tended to associate with
rodent and sometimes bird species, with only Bbss, B. bissettii, and B. californiensis being detected in
deer [48]. In the Apsl complex, although DU1 is a rodent-adapted strain, WI-1 and Ap-Variant 1 are
both ungulate-adapted, as are the majority of strains in Europe [104]. In addition, A. ovis, A. odocoilei,
and A. marginale, all closely related species, are ungulate-adapted as well [6]. The main vector of Bbsl
to birds is likely I. pacificus, and in fact the main genospecies in birds is typically Bbss, also reported
from I. auritulus and I. spinipalpis, which bite birds as well [57]. However, these same ground-foraging
birds are exposed to ticks carrying Apss but there is limited evidence suggesting birds as reservoirs for
Apsl [42]. Further studies are needed to account for these differences, but a preliminary hypothesis
could rely on original ancestral genospecies, if the Anaplasma genus was originally an ungulate
pathogen, while Borrelia may have expanded from early relationships with rodents.

Important limitations in the data must be addressed in order to continue to understand their
ecologies. Now that it is clear that there are distinct genospecies of both pathogens, older studies
where the genospecies was not identified may be difficult to interpret. The studies included in this
review employed different methodology to study these pathogens, making it hard to synthesize the
data. I. pacificus is largely overrepresented in the data in part because, as the vector mainly responsible
for transmission to people, it is of highest public health interest. Additionally, this is the most likely
Ixodes spp. to collect by flagging. Other species of ticks are generally collected from trapped vertebrate
hosts, which requires greater effort than flagging and is biased by the vertebrate species being targeted.
Some small mammal species, such as woodrats and deer mice, are very easy to trap, which leads
to their over-representation in the data, especially when compared to tree squirrels. For some hosts,
vectors, and bacterial genospecies, competence studies have not been performed. There is a strong
emphasis on data from particular geographical locations, either because active researchers focused
their attention on particular sites or these sites appeared to be “hotspots” for infection, for example
Hopland Field Station and Hendy Woods State Park in Mendocino County. Valuable data could
be compiled if larger, systematic surveys were conducted of more species, over wider and possibly
randomly selected areas, and if data were reported not mostly as case reports but more as systematic
prevalence estimates.

A rich microbial flora embedded within rich tick and host fauna impacts prospects for pathogens
to enhance or reduce other pathogens’ forces of infection and the likelihood that coinfection might
change clinical impacts on hosts. In multiple regions, coinfection of Bbsl and Apsl in ticks is more
common than expected by chance [105]. However, the order in which exposure to different pathogens
or genospecies occurs may impact the outcome. Genospecies that use nidicolous hosts are more likely
to be the first that their specialist hosts encounter and, while these hosts may tolerate coadapted
genospecies, they might respond differently when subsequently challenged with a new genospecies
such as a sensu stricto genospecies in a generalist tick. Using nidicolous ticks may lead to a higher
prevalence of the coadapted genospecies in a host species, at the expense of the generalist genospecies.
The availability of multiple nidicolous tick-specialist host dyads in a biodiverse system ensures
polymorphic niches that genospecies can occupy and helps support the biodiversity in bacterial
pathogens. A similar pattern is seen in England, where a deer—I. ricinus cycle maintains a genetically
distinct subpopulation of A. phagocytophilum, which overlaps a separate cycle involving field voles
(Microtus agrestis), I. trianguliceps, and a variant pathogen strain [106,107], as well as in rodent and
insectivore cycles in Europe and Asia [108–110]. In contrast, the fact that both B. burgdorferi and
A. phagocytophilum in the eastern USA are primarily transmitted by one of the most common and most
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cosmopolitan ticks (I. scapularis) and reservoired by a widespread rodent with notably fast life history
may serve to diminish pathogen diversity.

Systematically distinguishing ecologically and epidemiologically relevant genospecies is essential
in future research and disease surveillance and control. A better understanding of what underlying
ecological and evolutionary drivers influence such diverse pathogen persistence will allow public
health workers and biologists to better predict different disease patterns in time and space.
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