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ABSTRACT The microbiota-gut-brain axis is a bidirectional communication system
that is poorly understood. Alzheimer’s disease (AD), the most common cause of de-
mentia, has long been associated with bacterial infections and inflammation-causing
immunosenescence. Recent studies examining the intestinal microbiota of AD pa-
tients revealed that their microbiome differs from that of subjects without dementia.
In this work, we prospectively enrolled 108 nursing home elders and followed each
for up to 5 months, collecting longitudinal stool samples from which we performed
metagenomic sequencing and in vitro T84 intestinal epithelial cell functional assays
for P-glycoprotein (P-gp) expression, a critical mediator of intestinal homeostasis.
Our analysis identified clinical parameters as well as numerous microbial taxa and
functional genes that act as predictors of AD dementia in comparison to elders
without dementia or with other dementia types. We further demonstrate that stool
samples from elders with AD can induce lower P-gp expression levels in vitro those
samples from elders without dementia or with other dementia types. We also paired
functional studies with machine learning approaches to identify bacterial species dif-
ferentiating the microbiome of AD elders from that of elders without dementia,
which in turn are accurate predictors of the loss of dysregulation of the P-gp path-
way. We observed that the microbiome of AD elders shows a lower proportion and
prevalence of bacteria with the potential to synthesize butyrate, as well as higher abun-
dances of taxa that are known to cause proinflammatory states. Therefore, a potential
nexus between the intestinal microbiome and AD is the modulation of intestinal ho-
meostasis by increases in inflammatory, and decreases in anti-inflammatory, microbial
metabolism.

IMPORTANCE Studies of the intestinal microbiome and AD have demonstrated as-
sociations with microbiome composition at the genus level among matched cohorts.
We move this body of literature forward by more deeply investigating microbiome
composition via metagenomics and by comparing AD patients against those without
dementia and with other dementia types. We also exploit machine learning ap-
proaches that combine both metagenomic and clinical data. Finally, our functional
studies using stool samples from elders demonstrate how the c microbiome of AD
elders can affect intestinal health via dysregulation of the P-glycoprotein pathway.
P-glycoprotein dysregulation contributes directly to inflammatory disorders of the in-
testine. Since AD has been long thought to be linked to chronic bacterial infections
as a possible etiology, our findings therefore fill a gap in knowledge in the field of
AD research by identifying a nexus between the microbiome, loss of intestinal ho-
meostasis, and inflammation that may underlie this neurodegenerative disorder.
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The concept of the “gut-brain axis,” which originated from behavioral studies in
microbiome-reconstituted mice, has advanced current research supporting the

concept that the microbiome may be responsible for some of the most devastating
neurodegenerative disorders, including Alzheimer’s disease (AD) (1). This is further
underscored by observations linking AD pathogenesis to chronic bacterial infections as
a possible etiology (2, 3). Recent studies have investigated this connection, identifying
significant changes in the proportion of certain microbiome taxa in AD patients (4, 5),
and have correlated microbiota composition with levels of AD biomarkers in cerebro-
spinal fluid (4). Moreover, increased proportions of proinflammatory and reduced
proportions of anti-inflammatory bacteria in the intestine are associated with systemic
inflammatory states in patients with cognitive impairment and brain amyloidosis (6).
Thus, a current tenet supports the idea that AD pathogenesis is not only closely related
to the imbalance of the gut microbiome but may also originate in the gut (3, 7, 8).

The healthy human intestine involves a dynamic balance between the host immune
response, the large population of resident bacteria, and the thin epithelial layer that
separates them. Dysregulation of this balance can have serious consequences that may
drive a variety of pathological conditions. The intestinal epithelia therefore serve as a
physical barrier to microbial penetration and provide a sentinel system to warn immune
cells of pathogen exposure or injury. This places them in an ideal position to regulate
the balance between pro- and anti-inflammatory states. Previously, we characterized a
balanced system at the intestinal mucosal surface in which eukaryotic ABC transporters
and their efflux products play a fundamental role in immunomodulation (9, 10). This
dynamic balance operates between homeostatic pathways that suppress immune
responses to commensal bacteria (the P-glycoprotein [P-gp]/endocannabinoid axis)
and inflammatory pathways that activate responses to pathogens or aberrant signals
(multidrug-resistant protein 2 [MRP2]/hepoxilin A3) and can be unhinged by a dysbiotic
microbiome (9). Dysregulation of this critical balance contributes directly to inflamma-
tory disorders of the intestine. To understand more deeply how specific intestinal
bacterial taxa associate with AD and the extent to which such taxa alter the balance of
intestinal epithelial homeostasis, we explored the microbiome composition of nursing
home (NH) elders with AD, no dementia, or other dementia types.

RESULTS
Elders with dementia have increased frailty and malnutrition scores. One

hundred eight NH elders were prospectively enrolled and followed for up to 5 months.
Longitudinal stool samples, taken one time each month for a total of 300 samples, were
collected. Of the 108 elders, 51 (47.2%) had no dementia, while 24 elders (22.2%) had
AD and 33 elders (30.6%) had other dementia types. Of note, elders who were exposed
to antimicrobials, had changes in medications, or required hospitalization during the
study period were excluded from this study. A greater proportion of elders with AD or
other dementia types were taking atypical antipsychotics and presented with higher
malnutrition and frailty scores than did those with no dementia (Table 1). This is
consistent with prior studies documenting that frailty and malnutrition are related to
dementia (11–14). Strong associations have been shown among both frail and prefrail
elders with a poorer cognitive status (15), and frailty has been linked to the level of AD
pathology found on postmortem examination (12). Malnutrition is a common problem
among NH elders, with upwards of 33% suffering from this condition (16). Among AD
elders, the most malnourished display decreased cognitive and functional capacities
(11).

We also noted a decreased prevalence of proton pump inhibitor (PPI) use among
both dementia types. Besides atypical antipsychotics, other medications known to
affect the microbiome did not differ among the three groups, including the proportion
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of elders with polypharmacy. Additionally, we did not note any significant difference in
age, sex, or medical histories among these groups. The majority of elders with Alzhei-
mer’s type dementia had moderate/severe symptoms defined by clinical dementia
rating (CDR) scores of 2 to 3 (mean CDR score, 2.12; standard deviation [SD], 0.33), while
elders with other dementia types had less severe symptoms (mean CDR score, 1.88; SD,
0.95; P � 0.026).

Microbiome composition differs by dementia type. We evaluated the beta diversity
of the intestinal microbiome between elders without dementia, with AD, and with other
dementia types, using Jaccard distances as a measure of species-level community
dissimilarity visualized using t-distributed stochastic neighbor embedding (tSNE)
(Fig. 1). Elders with AD cluster away from those without dementia. Individuals with
other dementia diagnoses are clustered with both cohorts. Moreover, Jaccard distances
between samples from individuals with AD were more similar than those from indi-
viduals with no dementia or other dementia types (permutational multivariate analysis
of variance [PERMANOVA], Jaccard distance P � 0.001).

Differences in the relative abundances of bacterial genera for elders with no
dementia versus AD and other dementia types were characterized via generalized
linear mixed models. Specifically, after using Kraken to map reads to a k-mer database
of bacterial NCBI genomes (17) and estimating the relative abundances of each species
with Bracken (18), we determined the relative abundances at the genus level. Beta-
regression mixed-effect modeling was then used to predict the proportion of each
genus as a function of the fixed effects of dementia status, age, malnutrition, frailty, and
medications, including those we previously showed to significantly affect microbiome
composition (19–21) (Table 1) and considering the individual elder as random effect.
After adjusting for these clinical covariates, several genera were found to be signifi-
cantly associated with AD (Fig. 2). When setting no dementia as the baseline, increased
proportions of Bacteroides spp. (P � 0.031), Alistipes spp. (P � 0.001), Odoribacter spp.
(P � 0.001), and Barnesiella spp. (P � 0.023) and decreased proportions of Lachnoclos-
tridium spp. (P � 0.048) were present in AD elders, while increased proportions of
Odoribacter spp. (P � 0.025) and Barnesiella spp. (P � 0.024) and decreased propor-
tions of Eubacterium spp. (P � 0.001), Roseburia spp. (P � 0.034), Lachnoclostridium
spp. (P � 0.048), and Collinsella spp. (P � 0.001) were seen in elders with other
dementia types. Other studies, based on 16S rRNA sequencing, have found similar

TABLE 1 Clinical data by dementia type

Patient characteristica

Data by dementia type

P valueNo dementia Alzheimer’s disease Other dementia

Age (mean [SD]) (yr) 83.0 (10.2) 84.7 (8.1) 87.9 (7.9) 0.06
Age category (mean [SD])b 2.3 (1.0) 2.5 (0.8) 2.8 (0.8) 0.41
Male 8 (15.7) 4 (16.7) 6 (18.2) 0.96
Diabetic 11 (21.6) 5 (20.8) 9 (27.3) 0.80
Immunosuppressed 3 (5.9) 1 (4.2) 0 (0.0) 0.38
Malignancy 6 (11.8) 2 (8.3) 3 (9.1) 0.87
CKD 15 (29.4) 9 (49.5) 10 (30.3) 0.77
CCI score (mean [SD]) 1.65 (1.7) 1.38 (1.2) 1.58 (1.6) 0.79

Medications
PPI 16 (31.4) 1 (4.2) 6 (18.2) 0.024
Statin 11 (21.6) 4 (16.7) 8 (24.2) 0.79
Antipsychotic 0 (0.0) 4 (16.7) 2 (6.1) 0.013
Polypharmacy 34 (66.7) 14 (58.3) 22 (66.7) 0.75

Clinical scores
Malnutrition (mean [SD]) 1.7 (0.7) 2.3 (0.6) 2.3 (0.6) �0.0001
Frailty (mean [SD]) 2.9 (1.0) 3.4 (0.7) 3.7 (0.6) 0.003

aData are presented as the number (%), unless otherwise specified. CKD, chronic kidney disease; CCI,
Charlson comorbidity index.

bThe age categories are as follows: category 1, 65 to 74 years; category 2, 75 to 84 years; category 3, 85 to 94
years; and category 4, �95 years.
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associations and also reported increases in Bacteroides spp. and Alistipes spp. (4), as well
as decreased proportions of Roseburia spp. (5) in AD patients, consistent with what we
report above. Differences in the other genera reported here are likely due to different
methodologies applied, as we used shotgun metagenomics and mixed modeling rather
than 16S rRNA and subject matching based only on age and sex. We have previously
reported the importance of frailty and malnutrition on microbiome composition (19).
There is also a growing awareness of medication effects on the intestinal microbiota

FIG 1 Microbiome diversity differs between Alzheimer’s disease elders and those with no dementia or
other types of dementia. Stool samples from elders were sequenced via shotgun metagenomics. Samples
were profiled for microbial species relative abundances by mapping reads to a NCBI bacterial genomes
k-mer database with Kraken and by reconstructing the resulting relative abundance profile at the species
levels with Bracken. Beta diversity was explored using Jaccard distances by t-distributed stochastic
neighbor embedding (tSNE) for a measure of community species dissimilarity among samples collected
from individuals without dementia (blue triangles), with Alzheimer’s disease (red circles), and with other
dementia types (yellow squares). Each group is displayed with ellipses with a 95% confidence interval.

FIG 2 After adjusting for relative clinical covariates, microbiome composition differs at the genus level among elders with Alzheimer’s disease, no dementia,
and other dementia types. We performed generalized mixed-effect modeling regression to predict genus-level proportions as a function of age, malnutrition,
frailty, medications, and dementia state (no/other/AD). Patient ID was used as random effect to account for the repeated nature of our samples. Genera with
greater than 0.1% mean relative abundance were significantly associated with Alzheimer’s disease (AD) or other dementia types (Other) in comparison to elders
without dementia (NO). Only genera with a P value of �0.05 are presented, with relative abundance on the y axis.
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(21, 22). We believe that including these key clinical variables is important when
analyzing microbiome associations with disease outcomes.

Accurate classification of AD individuals compared to those without dementia
using metagenomic and clinical measures. To identify taxonomic and clinical cova-
riates that optimally differentiate AD elders from those with no dementia or other
dementia types, two separate random forest classification algorithms were imple-
mented (23, 24). The matrix of predictors included in each of the models consisted of
species level, taxonomic relative abundances, and clinical measures. To account for the
time dependence of our data, we performed 30 trials of the random forest classification
algorithm, in which we randomly selected one sample per individual. A leave-one-out
cross-validation approach was used, in which we trained the forest in n � 1 individuals
and used the model to predict the membership of the left-out individual. The analysis
was repeated 100 times using different random seeds. We averaged out-of-bag (OOB)
error across the 30 � 100 trials and ranked predictors (taxa and clinical factors) with
respect to their importance in classification according to their respective mean de-
creased accuracy distribution.

Our analysis identified two clinical parameters, increasing frailty and malnutrition, as
predictors of AD dementia, as well as numerous microbial taxa with known association
to inflammatory and neurological disorders (Fig. 3, and summarized in Table S1 in the
supplemental material). Specifically, AD elders were characterized by lower proportions
of key butyrate-producing species, such as members of the Butyrivibrio (B. hungatei and
B. proteoclasticus) and Eubacterium (E. eligens, E. hallii, and E. rectale) genera, as well as
Clostridium sp. strain SY8519, Roseburia hominis, and Faecalibacterium prausnitzii. Met-
agenomic analysis of metabolic pathways also indicates a similar pattern, in that elders
without dementia have an increase in butyrate-coding genes from four separate
butyrate biosynthetic pathways present in all bacteria in comparison to AD elders
(Fig. S1).

Remarkably, AD elders had increased proportions of specific bacterial species that
have associations with neurological disorders (including AD). These include Odoribacter
splanchnicus, a bacterial species with genes that have been associated with the
Alzheimer’s pathway (25). Other bacterial species identified as predictors of AD demen-
tia include taxa known to cause inflammatory states, such as Bacteroides vulgatus
(Fig. 3). This species has recently been identified as influencing neuroinflammatory
signaling (26) and also has been associated with autism (27) and autoimmune diabetes
(28, 29). AD elders were also depleted in Adlercreutzia equolifaciens, an equol-producing
bacterium, which has beneficial effects in reducing experimental cutaneous inflamma-
tion in mice (30, 31) and the loss of which has been associated with the neurodegen-
erative disorder multiple sclerosis (32). Human pathogens Klebsiella pneumoniae, Bac-
teroides fragilis, and Eggerthella lenta were also shown to be increased in relative
abundance in our AD elders (Fig. 3).

Accurate classification of AD versus other dementia types using only meta-
genomic measures. We applied random forest classification to discriminate AD elders
from elders with other types of dementia (Fig. 4). Interestingly, no clinical variables
emerged in the top 30 discriminating variables from this random forest analysis.
Analogous to the AD versus no-dementia class comparison (Fig. 3), AD elders associ-
ated with enriched proportions of previously described dysbiotic bacteria, such as O.
splanchnicus, E. lenta, and K. pneumoniae, and with decreased proportions of butyrate-
producing B. hungatei, Blautia hansenii, E. eligens, R. hominis, Ruminococcus bicirculans,
and F. prausnitzii (Fig. 4 and summarized in Table S2). Similarly, Bacteroides dorei,
another bacterium with known association to autoimmune conditions and type 1
diabetes (29), is enriched in AD compared to both no-dementia and to other dementia
type elders (Fig. 3C and 4C). Surprisingly, compared to elders with AD, elders with other
dementia types had higher proportions of some opportunistic pathogens, including
Ralstonia pickettii and Ralstonia mannitolilytica (33, 34), as well as B. fragilis, the most
commonly isolated anaerobic pathogen (35). Our analysis also identified other species
from genera that have been recently reported to have lower (Bifidobacterium bifidum)
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FIG 3 Microbiome species composition, combined with frailty and malnutrition, accurately classify individuals as having Alzheimer’s disease versus no
dementia. Random forest classification was performed according to Alzheimer’s disease versus no dementia (AD versus NO) by selecting at random one sample
per individual (30 trials per run), from 100 starting random seeds, and building 3,000 decision trees per trial. (A) Out-of-bag (OOB) prediction error as a function
of the number of decision trees run for elders without dementia (NO, blue) or with Alzheimer’s disease (AD, red). (B) Ranking of forest predictors based on
average variable importance (e.g., mean decreased accuracy) across the 30 � 100 random trials. The top 30 important features discriminating the AD and NO
dementia are reported. (C) Relative abundances for each species selected or scoring number for frailty and malnutrition clinical variables are reported with mean
(thick bar) and up to minimum and maximum values for elders without dementia (NO, blue) or with Alzheimer’s disease (AD, red). In panel B, species are ordered
based on importance.
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FIG 4 Microbiome species composition accurately classify individuals as having Alzheimer’s disease versus other dementia types. Random forest classification
was also performed according to Alzheimer’s disease versus no other dementia diagnosis (AD versus other) by selecting at random one sample per individual
(30 trials per run), from 100 starting random seeds, and building 3,000 decision trees per trial. (A) Out-of-bag (OOB) prediction error as a function of the number
of decision trees run for elders without dementia (other, yellow) or with Alzheimer’s disease (AD, red). (B) Ranking of forest predictors based on average variable
importance (e.g., mean decreased accuracy) across the 30 � 100 random trials. The top 30 important features discriminating AD and other dementia are
reported. (C) Relative abundances for each species selected by the model are reported with mean (thick bar) and up to minimum and maximum values (dots)
for elders with other dementia types (other, yellow) or with Alzheimer’s disease (AD, red). In panel B, species are ordered based on importance.
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or higher (Prevotella denticola and Akkermansia muciniphila) proportions among AD
patients (5).

Microbiome of AD elders modulates intestinal homeostasis through P-glycoprotein
regulation. Our observed taxonomy associations in elders with AD may represent a
proinflammatory microbiome that contributes to the inflammation-causing immunose-
nescence and is thought to be associated with the development of AD. To examine the
notion that the microbiota from AD elders alone can differentially promote an inflam-
matory state, perhaps altering intestinal epithelial homeostasis, we tested stool samples
for their ability to modulate the P-gp/endocannabinoid (homeostasis)-MRP2/HXA3

(inflammatory) axis (9, 36). For this analysis, polarized T84 intestinal epithelial cell
monolayers were incubated in the presence of stool supernatants, followed by quan-
tification of P-gp and MRP2 protein expression (36, 37). Stool supernatants from AD
elders induced a significantly lower expression of functional P-gp than did supernatants
from elders with no dementia or other dementia types (Fig. 5A, P � 0.017). MRP2
expression was higher in response to stool supernatants from AD elders, but this
observation did not reach significance (Fig. 5B).

Taxonomic predictors of AD can also accurately predict in vitro P-gp expres-
sion. We next sought to determine if taxonomic predictors of AD could also predict the
P-gp response. Applying an approach we have used to decouple the effect of a
consortium of gut bacteria on an anti-inflammatory phenotype (38), we built random
forest regression models in which we predicted the experimentally measured P-gp
expression as a function of the relative bacterial abundances. Our model selected only
the top 30 important species for AD prediction as covariates; the other model consid-

FIG 5 Intestinal microbiome of elders with Alzheimer’s disease induce significantly lower P-glycoprotein
expression from intestinal epithelia cells, reflecting a higher level of inflammatory potential at the
epithelial cell surface. (A and B) Supernatants were collected from stool samples from 9 randomly
selected elders from each dementia classification group and incubated on T84 epithelial cells for 12 h
prior to relative quantitation of P-gp by flow cytometry (A) or MRP2 by Western blotting (B). (A)
P-glycoprotein expression was induced significantly less in samples from elders with Alzheimer’s disease
(AD, yellow) than from those without dementia (none, gray) or with other dementia types (other, blue).
Normalized P-glycoprotein (P-gp) expression is expressed on the y axis. (B) MRP2 did not show a
significant difference in expression levels. ***, P � 0.05.
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ered all species profiled in the elder microbiomes (see Fig. 3B). Comparison mean
squared error (MSE) as a function of the number of generated trees reveals that there
is no difference in MSE between the two models (Fig. 6A), indicating that AD-predicting
taxa are sufficient to predict the microbiome-dependent effect on P-gp function. A
limited subset of taxa significantly contribute to the regression in both models and thus
are likely to be major drivers of loss of intestinal homeostasis (Fig. 6B and C). As seen
in our analysis of elder samples, several of the taxa that predict the microbiome-
dependent effect on P-gp function are butyrate-producing organisms, which are higher
in proportion among the no-dementia patients that induce higher P-gp expression. We
then examined the metabolic pathways involved and noted a similar pattern, identi-
fying five of the butyrate-coding enzyme genes that also significantly positively corre-
late with the measured P-gp induction (Fig. S2).

DISCUSSION

Our results advance an understanding of how the intestinal microbiome affects the
gut-brain axis in the context of AD. Species-level differences were explored between
elders with AD, no dementia, and other dementia types and were combined with key
clinical variables including frailty, malnutrition, and medication exposures common
among the elderly and known to influence the microbiome composition. This study
identified a dysbiotic pattern seen among AD elders in comparison to those without
dementia or with other dementia types. This pattern is composed of reductions in key
butyrate-producing anti-inflammatory species with increases in species known to have
associations with either neurological disorders via inflammation or to other colonic
inflammatory states.

AD elders were characterized by lower proportions of key butyrate-producing
species, such as members of the Butyrivibrio (B. hungatei and B. proteoclasticus) and
Eubacterium (E. eligens, E. hallii, and E. rectale) genera, as well as species Clostridium sp.
SY8519, R. hominis, and F. prausnitzii. AD elders also had diminished butyrate enzyme-
encoding genes than did elders without dementia. Butyrate is an essential metabolite
in the human colon. It is the preferred energy source for the colonic epithelial cells, and
it contributes to the gut barrier maintenance; also, it has both immunomodulatory
and anti-inflammatory properties (39). We infer that lower proportions of butyrate-
producing species would lead to a proinflammatory colonic epithelial state.

Elders with AD had increased proportions of bacterial species identified in our
analysis that have previously been shown to associate with AD. These include O.

FIG 6 Dysbiotic microbiome species from elders with Alzheimer’s disease can accurately predict in vitro P-glycoprotein expression levels. Random forest
regression analysis was performed to predict P-glycoprotein expression as a function of the bacterial relative abundances obtained from whole-genome
sequencing of elders with Alzheimer’s disease and without any dementia. (A) A side-by-side comparison of the two models’ mean squared error (MSE) as a
function of the number of generated trees demonstrates no difference between the MSE of the model obtained by training using only the top 30 features
discriminating AD and no dementia (see Fig. 3, green line) and a model obtained by using information of all the available species (purple lines). The regression
was performed in both cases starting from 500 different initial random seeds. (B) Variables with positive importance (and hence significantly contributing to
the regression) resulted to be only a limited subset of taxa that differentiate Alzheimer’s disease from no-dementia individuals. (C) Species selected by the
regression model are predicted to either induce or repress P-glycoprotein expression levels. Observations are colored according to dementia status (AD, red;
no, blue).

Alzheimer’s Microbiome and P-gp Pathway Dysregulation ®

May/June 2019 Volume 10 Issue 3 e00632-19 mbio.asm.org 9

https://mbio.asm.org


splanchnicus, a bacterial species with genes that have been associated with the Alzhei-
mer’s pathway (25) and the relative abundance of Odoribacter spp. that has been shown
to be increased in transgenic AD mice (40). Additionally, O. splanchnicus has also been
previously linked to other neurological disorders, specifically autism (41). The human
pathogens K. pneumoniae, B. fragilis, and E. lenta all have previous known associations
to AD and were seen in increased relative abundances in our AD elders. Klebsiella spp.
are commensal bacteria capable of assembling extracellular amyloids, the release of
which can induce cytotoxicity similar to pathological A� in AD patients (42). B. fragilis
has known AD associations through its production of lipopolysaccharide (43), and E.
lenta is a significant human pathogen that is often associated with serious gastric
pathology (44). Our model also robustly identified a representative species of the
sulfate-reducing Desulfovibrio genus (D. fairfieldensis) to be a high-importance predictor
that is enriched in the AD cohort. An increased proportion of sulfate-reducing bacteria
has been observed in multiple dysbiotic and colitogenic states (45, 46). Other species
with decreased proportions have been seen in other diseases, such as F. prausnitzii with
Parkinson’s disease (47) and R. hominis in patients with Crohn’s disease and ulcerative
colitis (48, 49).

Uniquely, our study goes on to demonstrate that stool samples from elders with AD
can induce lower P-gp expression levels than seen with samples from elders with either
no dementia or other types of dementia. A loss of P-gp expression or a reduction in its
function correlates with inflammation in the gastrointestinal tract in mice and humans
(9). Reciprocally, clinical evidence indicates that the MRP2 pathway is activated in
chronic intestinal inflammation (36). In fact, we are able to demonstrate that the taxa
that differentiate the AD microbiome of elders from those without dementia can also
predict P-gp expression levels in both of these groups. The top species identified here
in predicting P-gp expression include, once again, key butyrate producers, such as
members of the Eubacterium, Clostridium, and Butyrivibrio genera, as well as key
butyrate-encoding enzyme pathways. Other species, such as Bacteroides dorei and
Akkermansia glycaniphila, have been associated with gut inflammation and autoim-
mune diabetes (28), and Adlercreutzia equolifaciens, a beneficial microbiota member
known to reduce epithelium inflammation (30, 31). Taken together, the microbial taxon
members found to best predict the observed P-gp expression are all known to
influence colonic inflammation in other pathological states.

In summary, we demonstrate that the microbiome patterns among elders with AD
are similar, represented by lower relative abundances of butyrate-producing species
and higher relative abundances of taxa known to cause proinflammatory states com-
pared to those with either no dementia or other dementia types. Importantly, this work
is an important advance to bridge previous microbiome association studies with AD
toward causality by showing how the AD microbiome observed can potentially ad-
versely affect intestinal epithelial homeostasis via dysregulation of the P-gp pathway.
Our study supports the conclusion that the relationship between the intestinal micro-
biome and an altered epithelial homeostasis is a means by which the microbiome
impacts this devastating neurodegenerative disorder.

MATERIALS AND METHODS
Study setting and population. This prospective cohort study was approved by the institutional

review board at the University of Massachusetts Medical School. This cohort is of NH elders �65 years of
age who lived in one of four NH facilities located in central Massachusetts. We approached elders across
all sites who had been living at that facility for �1 month and did not have any diarrheal illness or
antimicrobial exposure within the preceding 4 weeks. No elders suffered from dysphagia or had a
feeding tube. Any elders with antimicrobial exposure or a diarrheal illness during the conduct of the
study were excluded from this analysis.

Data collection. We conducted baseline and end-of-study medical record abstraction for factors
associated with key study outcomes. These factors included, but were not limited to, age, nutritional
status, comorbidities, use of proton pump inhibitors, and frailty (50). Determination of the diagnosis of
Alzheimer’s disease dementia or other dementia was made by querying the facility medical record and
confirmed by the facility treating physician. Dementia severity was determined by the study staff using
the clinical dementia rating (CDR) scoring system. The CDR is a widely used semiobjective instrument for
staging dementia severity (51, 52) that has been previously used in reporting gut-brain axis associations
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among Alzheimer’s disease patients (4). Elders with a CDR score of 0 or 0.5 were categorized as no
dementia, 1 as mild dementia, and 2 or 3 as moderate/severe dementia. We obtained age, sex, and
medical history from the NH record. Both daily and as-needed medications were obtained from the
facility’s medical record. Polypharmacy was defined using the most commonly reported definition of five
or more daily medications (53). Polypharmacy has been shown to represent a determinant of gut
microbiota composition independent of specific drug classes and has detrimental clinical consequences
(54). We categorized elders based off the continuous age variable into 4 age categories for analysis, as
follows: category 1, 65 to 74 years; category 2, 75 to 84 years; category 3, 85 to 94 years; and category
4, �95 years of age. Frailty was categorized according to the validated and widely utilized Canadian
Study of Health and Aging’s (CSHA) 7-point Clinical Frailty Scale (55). This has been previously validated
in demonstrating signatures of frailty in the gut microbiota (19, 56, 57). We assessed nutritional status
using the Mini Nutritional Assessment (MNA) tool (58–60). Elders were categorized as normal, at risk, or
malnourished based on the MNA survey administered to the elders by trained research staff or the nurse
caring for the elder if mentally impaired. All elders were enrolled for a total of 5 months in which we
monitored for any changes to their care.

Sample collection and processing. We collected stool samples longitudinally once a month for up
to 4 months from each elder. DNA was extracted from samples using the PowerMag soil DNA isolation
kit on an epMotion 5075 TMX liquid handling workstation, according to manufacturer protocols (Mo Bio
Laboratories catalog no. 27100-4-EP). Sequencing libraries were constructed using the Nextera XT DNA
library prep kit (Illumina, Inc. catalog no. FC-131-1096) and sequenced on a NextSeq 500 sequencing
system as 2 � 150-bp paired-end reads.

Sequence processing and analysis. Shotgun metagenomic reads were first trimmed and filtered of
host contamination using Trimmomatic (61) and Bowtie2 (62) as part of the KneadData pipeline
(https://bitbucket.org/biobakery/kneaddata). Reads were then profiled for microbial species relative
abundances by mapping them to a NCBI bacterial genomes k-mer database with Kraken (17) and by
reconstructing the resulting relative abundance profile at the species level with Bracken (18). Normalized
taxonomic abundances were then used for downstream statistical analysis in R (see below). To determine
the abundance of enzymes coding for butyrate production, we mapped host-decontaminated shotgun
metagenomic reads to a database of butyrate reference protein sequences (63) using ShortBRED (64).

Data analysis. We performed t-distributed stochastic neighbor embedding to first determine
sample similarity with respect to dementia conditions. Permutational multivariate analysis of variance
(PERMANOVA) was performed to evaluate inter- versus intraindividual variability in bacterial proportion.
To determine genera with significant differences among groups, we used a beta-regression model with
zero inflation to predict genus proportion as a function of clinical covariates, including age, frailty,
malnutrition score, medications, and dementia state (no/other/AD). To account for the repeated sam-
pling nature, we used generalized linear mixed models using the R package glmmTMB. We reported in
our analysis genera with a P value associated with the dementia state smaller than 0.05.

For the random forest classification according to dementia status, we selected at random one sample
per individual and built 3,000 decision trees. This operation was repeated 30 times and using 100
different random seeds. Bacteria were ranked based on the associated mean decreased accuracy
distribution across the 30 trials. Bacteria that were ranked in the top 30 important in at least 90% of the
100 seed iterations were considered discriminatory. For the butyrate enzyme differential abundance
analysis, we used linear-mixed effect modeling with elder identification (ID) as a random effect.
Spearman’s correlation was used to correlate the abundance of butyrate enzymes with P-gp expression.

Cell culture. T84 intestinal epithelial cells at passages 50 to 79 (ATCC) were grown in a 1:1 mixture
of Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F-12 nutrient mixture (Thermo Fisher
Scientific) supplemented with 14 mM NaHCO3, 15 mM HEPES buffer (pH 7.5), 100 units/ml penicillin-
streptomycin, and 5% heat-inactivated fetal bovine serum (FBS). Cells were maintained at 37°C and 5%
CO2. Monolayers were grown on collagen-coated tissue culture-treated 6-well plates (Costar) and used
6 to 8 days after plating. Prior to incubation with fecal supernatants, cells were serum starved for 1 h in
serum-free T84 growth medium.

Fecal supernatant preparation. Human fecal supernatants were prepared as previously described
(65, 66). Fecal samples freshly voided and stored at �80°C were weighed and resuspended in serum-free
growth medium to 0.25 g/ml (wt/vol). Samples were homogenized with gentle vortexing and manual
grounding with a sterile pipet tip, followed by centrifugation at 10,000 � g for 15 min. The supernatant
was sterile-filtered through a 0.22-�m polyethersulfone (PES) filter and diluted 10-fold in serum-free T84
growth medium before adding to the surface of T84 monolayers. Cells were incubated with fecal
supernatants for 12 h at 37°C and 5% CO2.

P-glycoprotein detection by flow cytometry. Cells were washed with phosphate-buffered saline
(PBS) and then lifted with 0.25% trypsin-EDTA (Gibco) for 15 min at 37°C. Cells were washed and set to
0.5E6 cells/ml/sample in cold 1� stain buffer (PBS plus 3% FBS plus 1 mM EDTA). Cells were incubated
for 30 min in 100 �l stain buffer containing an antigen-presenting cell (APC) anti-human P-gp UIC2 clone
(BioLegend catalog no. 348607), or isotype control APC mouse IgG2a(�) (BioLegend catalog no. 400221).
Cells were washed and resuspended in 4=,6-diamidino-2-phenylindole (DAPI; Thermo) for live/dead
differentiation. Cell suspensions were filtered through 40-�m nylon mesh prior to data collection on a
MACSQuant10 flow cytometer (Miltenyi Biotec). Data were analyzed using the FlowJo software (Tree
Star). The geometric mean of the APC� population was computed for each sample and normalized to an
untreated medium control sample.

MRP2 detection by Western blotting. Cell monolayers were lysed in 1� lysis buffer (20 mM Tris [pH
7.5], 120 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 1� protease inhibitor
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cocktail [Roche]). Lysates were centrifuged at 12,000 rpm for 5 min at 4°C. Supernatants were normalized
for protein concentration, separated by SDS-PAGE gels under reducing conditions, and transferred to
nitrocellulose membranes. After 1 h of incubation in PBS-based blocking buffer (Li-Cor), blots were
incubated overnight with primary antibodies anti-MRP2 (catalog no. Ab3373; Abcam) at a 1:100 dilution
or anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH; catalog no. MAB374; Millipore) at a
1:40,000 dilution. After washing with PBST (PBS plus 0.1% Tween), membranes were incubated for 1 h in
the secondary antibody IRDye 800CW goat anti-mouse IgG (Li-Cor) at a 1:5,000 dilution (MRP2) or
1:40,000 dilution (GAPDH). Membranes were scanned using an Odyssey infrared imaging system (Li-Cor).
Densitometry analysis was performed using Image Studio Lite version 5.2. Densitometry values for MRP2
were normalized to internal loading control GAPDH.

To predict in vitro P-gp induction from microbial proportions and test that AD versus no-dementia
discriminatory microbes are responsible for the observed P-gp profiling, we built a random forest
regression model. We again used 3,000 trees and 500 different initial random number seeds. The
proportion of bacteria resulting to have positive contribution to the MSE were plotted against the P-gp
levels in the corresponding samples. One sample t test between for the MSE of the model built with
preselecting AD versus no classifying features and a model built using all the microbial taxa were
performed to test the null of no difference in prediction accuracy.

Ethics approval. This prospective cohort study was approved by the institutional review board (IRB)
at the University of Massachusetts Medical School (docket H00010892).

Data availability. The data sets and code will be made available to the scientific community for
further analysis upon written request to John P. Haran.
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8. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David
E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V,
Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P,
Stecher B, Amit I, Prinz M. 2015. Host microbiota constantly control
maturation and function of microglia in the CNS. Nat Neurosci 18:
965–977. https://doi.org/10.1038/nn.4030.

Haran et al. ®

May/June 2019 Volume 10 Issue 3 e00632-19 mbio.asm.org 12

https://doi.org/10.1128/mBio.00632-19
https://doi.org/10.1128/mBio.00632-19
https://doi.org/10.1007/s12035-018-1188-4
https://doi.org/10.3233/JAD-140621
https://doi.org/10.3233/JAD-140621
https://doi.org/10.1002/ana.24901
https://doi.org/10.1038/s41598-017-13601-y
https://doi.org/10.3233/JAD-180176
https://doi.org/10.1016/j.neurobiolaging.2016.08.019
https://doi.org/10.3389/fmed.2018.00061
https://doi.org/10.1038/nn.4030
https://mbio.asm.org


9. Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C, Demma
Z, Foley SE, Faherty CS, Llanos-Chea A, Olive AJ, Mrsny RJ, McCormick BA.
2018. Intestinal P-glycoprotein exports endocannabinoids to prevent
inflammation and maintain homeostasis. J Clin Invest 128:4044 – 4056.
https://doi.org/10.1172/JCI96817.

10. Mrsny RJ, Gewirtz AT, Siccardi D, Savidge T, Hurley BP, Madara JL,
McCormick BA. 2004. Identification of hepoxilin A3 in inflammatory
events: a required role in neutrophil migration across intestinal epithelia.
Proc Natl Acad Sci U S A 101:7421–7426. https://doi.org/10.1073/pnas
.0400832101.

11. Guerin O, Soto ME, Brocker P, Robert PH, Benoit M, Vellas B, REAL.FR
Study Group. 2005. Nutritional status assessment during Alzheimer’s
disease: results after one year (the REAL French Study Group). J Nutr
Health Aging 9:81– 84.

12. Buchman AS, Schneider JA, Leurgans S, Bennett DA. 2008. Physical frailty in
older persons is associated with Alzheimer disease pathology. Neurology
71:499–504. https://doi.org/10.1212/01.wnl.0000324864.81179.6a.

13. Buchman AS, Boyle PA, Wilson RS, Tang Y, Bennett DA. 2007. Frailty is
associated with incident Alzheimer’s disease and cognitive decline in
the elderly. Psychosom Med 69:483– 489. https://doi.org/10.1097/psy
.0b013e318068de1d.

14. Meijers JM, Schols JM, Halfens RJ. 2014. Malnutrition in care home
residents with dementia. J Nutr Health Aging 18:595– 600. https://doi
.org/10.1007/s12603-014-0006-6.

15. Boulos C, Salameh P, Barberger-Gateau P. 2016. Malnutrition and frailty
in community dwelling older adults living in a rural setting. Clin Nutr
35:138 –143. https://doi.org/10.1016/j.clnu.2015.01.008.

16. Suominen M, Muurinen S, Routasalo P, Soini H, Suur-Uski I, Peiponen A,
Finne-Soveri H, Pitkala KH. 2005. Malnutrition and associated factors
among aged residents in all nursing homes in Helsinki. Eur J Clin Nutr
59:578 –583. https://doi.org/10.1038/sj.ejcn.1602111.

17. Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol 15:R46. https://doi
.org/10.1186/gb-2014-15-3-r46.

18. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating
species abundance in metagenomics data. PeerJ Comput Sci 3:e104.
https://doi.org/10.7717/peerj-cs.104.

19. Haran JP, Bucci V, Dutta P, Ward D, McCormick B. 2018. The nursing
home elder microbiome stability and associations with age, frailty,
nutrition, and physical location. J Med Microbiol 67:40 –51. https://doi
.org/10.1099/jmm.0.000640.

20. Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC,
Wang HH, Abrams JA. 2015. Proton pump inhibitors alter specific taxa in
the human gastrointestinal microbiome: a crossover trial. Gastroenter-
ology 149:883– 885.e9. https://doi.org/10.1053/j.gastro.2015.06.043.

21. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE,
Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR, Bork P, Typas A.
2018. Extensive impact of non-antibiotic drugs on human gut bacteria.
Nature 555:623– 628. https://doi.org/10.1038/nature25979.

22. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D,
Costea PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N,
Pevsner-Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T,
Lotan-Pompan M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C,
Zhernakova A, Elinav E, Segal E. 2018. Environment dominates over host
genetics in shaping human gut microbiota. Nature 555:210 –215. https://
doi.org/10.1038/nature25973.

23. Campbell C, Dikiy S, Bhattarai SK, Chinen T, Matheis F, Calafiore M, Hoyos
B, Hanash A, Mucida D, Bucci V, Rudensky AY. 2018. Extrathymically
generated regulatory t cells establish a niche for intestinal border-
dwelling bacteria and affect physiologic metabolite balance. Immunity
48:1245–1257.e9. https://doi.org/10.1016/j.immuni.2018.04.013.

24. Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher
A, Bean JM, Bucci V, Glickman MS. 2017. Antibiotic treatment for tuber-
culosis induces a profound dysbiosis of the microbiome that persists
long after therapy is completed. Sci Rep 7:10767. https://doi.org/10
.1038/s41598-017-10346-6.

25. Kanehisa Laboratories. 2018. Alzheimer disease - reference pathway �
Odoribacter splanchnicus. https://www.kegg.jp/kegg-bin/show_pathway
?category�Odoribacter%20splanchnicus&category_type�species&mapno
�05010.

26. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y,
Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze
W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. 2011. The anxiolytic
effect of Bifidobacterium longum NCC3001 involves vagal pathways

for gut-brain communication. Neurogastroenterol Motil 23:1132–1139.
https://doi.org/10.1111/j.1365-2982.2011.01796.x.

27. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague
M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen
P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H,
Haake DA, Manning P, Kaul A. 2002. Gastrointestinal microflora studies in
late-onset autism. Clin Infect Dis 35:S6 –S16. https://doi.org/10.1086/
341914.

28. Aaron L. 2017. The anti-neo-epitopes tissue and microbial transglutami-
nases are new reliable serological markers in celiac disease diagnosis. J
Clin & Cellular Immunol 8(6 Suppl):18. https://doi.org/10.4172/2155
-9899-C1-041.

29. Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemp-
painen KM, Drew JC, Schatz D, Atkinson MA, Kolaczkowski B, Ilonen J,
Knip M, Toppari J, Nurminen N, Hyoty H, Veijola R, Simell T, Mykkanen J,
Simell O, Triplett EW. 2014. Bacteroides dorei dominates gut microbiome
prior to autoimmunity in Finnish children at high risk for type 1 diabetes.
Front Microbiol 5:678. https://doi.org/10.3389/fmicb.2014.00678.

30. Bandara M, Arun SJ, Allanson M, Widyarini S, Chai Z, Reeve VE. 2010.
Topical isoflavonoids reduce experimental cutaneous inflammation in
mice. Immunol Cell Biol 88:727–733. https://doi.org/10.1038/icb.2010.26.

31. O’Callaghan A, van Sinderen D. 2016. Bifidobacteria and their role as
members of the human gut microbiota. Front Microbiol 7:925. https://
doi.org/10.3389/fmicb.2016.00925.

32. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, Luckey DH,
Marietta EV, Jeraldo PR, Chen X, Weinshenker BG, Rodriguez M, Kantarci
OH, Nelson H, Murray JA, Mangalam AK. 2016. Multiple sclerosis patients
have a distinct gut microbiota compared to healthy controls. Sci Rep
6:28484. https://doi.org/10.1038/srep28484.

33. Ryan MP, Pembroke JT, Adley CC. 2006. Ralstonia pickettii: a persistent
gram-negative nosocomial infectious organism. J Hosp Infect 62:278–284.
https://doi.org/10.1016/j.jhin.2005.08.015.

34. Lim CTS, Lee SE. 2017. A rare case of Ralstonia mannitolilytica infection
in an end stage renal patient on maintenance dialysis during municipal
water contamination. Pak J Med Sci 33:1047–1049. https://doi.org/10
.12669/pjms.334.13112.

35. Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty.
Clin Microbiol Rev 20:593– 621. https://doi.org/10.1128/CMR.00008-07.

36. Pazos M, Siccardi D, Mumy KL, Bien JD, Louie S, Shi HN, Gronert K, Mrsny
RJ, McCormick BA. 2008. Multi-drug resistance transporter 2 regulates
mucosal inflammation by facilitating the synthesis of hepoxilin A3.
J Immunol 181:8044 – 8052. https://doi.org/10.4049/jimmunol.181.11
.8044.

37. McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL. 1993.
Salmonella typhimurium attachment to human intestinal epithelial
monolayers: transcellular signalling to subepithelial neutrophils. J Cell
Biol 123:895–907. https://doi.org/10.1083/jcb.123.4.895.

38. Stein RR, Tanoue T, Szabady RL, Bhattarai SK, Olle B, Norman JM, Suda W,
Oshima K, Hattori M, Gerber GK, Sander C, Honda K, Bucci V. 2018.
Computer-guided design of optimal microbial consortia for immune
system modulation. Elife 7:e30916. https://doi.org/10.7554/eLife.30916.

39. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and
butyrate-producing colon bacteria: importance and strategies for their
stimulation in the human gut. Front Microbiol 7:979. https://doi.org/10
.3389/fmicb.2016.00979.

40. Shen L, Liu L, Ji HF. 2017. Alzheimer’s disease histological and behavioral
manifestations in transgenic mice correlate with specific gut micro-
biome state J Alzheimers Dis 56:385–390. https://doi.org/10.3233/JAD
-160884.

41. De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. 2015.
Autism spectrum disorders and intestinal microbiota. Gut Microbes
6:207–213. https://doi.org/10.1080/19490976.2015.1035855.

42. Friedland RP, Chapman MR. 2017. The role of microbial amyloid in
neurodegeneration. PLoS Pathog 13:e1006654. https://doi.org/10.1371/
journal.ppat.1006654.

43. Lukiw WJ. 2016. Bacteroides fragilis lipopolysaccharide and inflamma-
tory signaling in Alzheimer’s disease. Front Microbiol 7:1544.

44. Gardiner BJ, Tai AY, Kotsanas D, Francis MJ, Roberts SA, Ballard SA,
Junckerstorff RK, Korman TM. 2015. Clinical and microbiological charac-
teristics of Eggerthella lenta bacteremia. J Clin Microbiol 53:626 – 635.
https://doi.org/10.1128/JCM.02926-14.

45. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang
C, Li M, Sun L, Xue Z, Wang J, Feng J, Yan F, Zhao N, Liu J, Long W, Zhao
L. 2014. A gut microbiota-targeted dietary intervention for amelioration

Alzheimer’s Microbiome and P-gp Pathway Dysregulation ®

May/June 2019 Volume 10 Issue 3 e00632-19 mbio.asm.org 13

https://doi.org/10.1172/JCI96817
https://doi.org/10.1073/pnas.0400832101
https://doi.org/10.1073/pnas.0400832101
https://doi.org/10.1212/01.wnl.0000324864.81179.6a
https://doi.org/10.1097/psy.0b013e318068de1d
https://doi.org/10.1097/psy.0b013e318068de1d
https://doi.org/10.1007/s12603-014-0006-6
https://doi.org/10.1007/s12603-014-0006-6
https://doi.org/10.1016/j.clnu.2015.01.008
https://doi.org/10.1038/sj.ejcn.1602111
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1099/jmm.0.000640
https://doi.org/10.1099/jmm.0.000640
https://doi.org/10.1053/j.gastro.2015.06.043
https://doi.org/10.1038/nature25979
https://doi.org/10.1038/nature25973
https://doi.org/10.1038/nature25973
https://doi.org/10.1016/j.immuni.2018.04.013
https://doi.org/10.1038/s41598-017-10346-6
https://doi.org/10.1038/s41598-017-10346-6
https://www.kegg.jp/kegg-bin/show_pathway?category=Odoribacter%20splanchnicus&category_type=species&mapno=05010
https://www.kegg.jp/kegg-bin/show_pathway?category=Odoribacter%20splanchnicus&category_type=species&mapno=05010
https://www.kegg.jp/kegg-bin/show_pathway?category=Odoribacter%20splanchnicus&category_type=species&mapno=05010
https://doi.org/10.1111/j.1365-2982.2011.01796.x
https://doi.org/10.1086/341914
https://doi.org/10.1086/341914
https://doi.org/10.4172/2155-9899-C1-041
https://doi.org/10.4172/2155-9899-C1-041
https://doi.org/10.3389/fmicb.2014.00678
https://doi.org/10.1038/icb.2010.26
https://doi.org/10.3389/fmicb.2016.00925
https://doi.org/10.3389/fmicb.2016.00925
https://doi.org/10.1038/srep28484
https://doi.org/10.1016/j.jhin.2005.08.015
https://doi.org/10.12669/pjms.334.13112
https://doi.org/10.12669/pjms.334.13112
https://doi.org/10.1128/CMR.00008-07
https://doi.org/10.4049/jimmunol.181.11.8044
https://doi.org/10.4049/jimmunol.181.11.8044
https://doi.org/10.1083/jcb.123.4.895
https://doi.org/10.7554/eLife.30916
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.3233/JAD-160884
https://doi.org/10.3233/JAD-160884
https://doi.org/10.1080/19490976.2015.1035855
https://doi.org/10.1371/journal.ppat.1006654
https://doi.org/10.1371/journal.ppat.1006654
https://doi.org/10.1128/JCM.02926-14
https://mbio.asm.org


of chronic inflammation underlying metabolic syndrome. FEMS Micro-
biol Ecol 87:357–367. https://doi.org/10.1111/1574-6941.12228.

46. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M,
Gallini CA, Beal C, van Hylckama-Vlieg JE, Ballal SA, Morgan XC, Glickman
JN, Gevers D, Huttenhower C, Garrett WS. 2014. Gut microbiome com-
position and function in experimental colitis during active disease and
treatment-induced remission. ISME J 8:1403–1417. https://doi.org/10
.1038/ismej.2014.3.

47. Houser MC, Tansey MG. 2017. The gut-brain axis: is intestinal inflamma-
tion a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons
Dis 3:3. https://doi.org/10.1038/s41531-016-0002-0.

48. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W,
Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD,
Luo C, Gonzalez A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J,
Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester
F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier
RJ. 2014. The treatment-naive microbiome in new-onset Crohn’s disease.
Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02
.005.

49. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet
V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J,
Rutgeerts P, Vermeire S. 2014. A decrease of the butyrate-producing
species Roseburia hominis and Faecalibacterium prausnitzii defines dys-
biosis in patients with ulcerative colitis. Gut 63:1275–1283. https://doi
.org/10.1136/gutjnl-2013-304833.

50. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S,
Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF,
Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sin-
deren D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP,
Shanahan F, Hill C, Ross RP, O’Toole PW. 2012. Gut microbiota compo-
sition correlates with diet and health in the elderly. Nature 488:178 –184.
https://doi.org/10.1038/nature11319.

51. Tractenberg RE, Schafer K, Morris JC. 2001. Interobserver disagreements
on clinical dementia rating assessment: interpretation and implications.
Alzheimer Dis Assoc Disord 15:115–161.

52. Morris JC. 1993. The Clinical Dementia Rating (CDR): current version and
scoring rules. Neurology 43:2412–2414. https://doi.org/10.1212/WNL.43
.11.2412-a.

53. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. 2017. What is polyp-
harmacy? A systematic review of definitions. BMC Geriatr 17:230. https://
doi.org/10.1186/s12877-017-0621-2.

54. Ticinesi A, Milani C, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA,
Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Maggio M,
Ventura M, Meschi T. 2017. Gut microbiota composition is associated
with polypharmacy in elderly hospitalized patients. Sci Rep 7:11102.
https://doi.org/10.1038/s41598-017-10734-y.

55. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I,
Mitnitski A. 2005. A global clinical measure of fitness and frailty in elderly
people. CMAJ 173:489 – 495. https://doi.org/10.1503/cmaj.050051.

56. Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O’Toole PW,
Spector TD, Steves CJ. 2016. Signatures of early frailty in the gut microbiota.
Genome Med 8:8. https://doi.org/10.1186/s13073-016-0262-7.

57. Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L,
Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Maggio M,
Lauretani F, De Vos W, van Sinderen D, Meschi T, Ventura M. 2016. Gut
microbiota composition and Clostridium difficile infection in hospital-
ized elderly individuals: a metagenomic study. Sci Rep 6:25945. https://
doi.org/10.1038/srep25945.

58. Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Bruno Vellas B. 2001. Screening
for undernutrition in geriatric practice: developing the short-form Mini-
Nutritional Assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 56A:
M366 –M372.

59. Saarela RK, Lindroos E, Soini H, Hiltunen K, Muurinen S, Suominen MH,
Pitkala KH. 2016. Dentition, nutritional status and adequacy of dietary
intake among older residents in assisted living facilities. Gerodontology
33:225–232. https://doi.org/10.1111/ger.12144.

60. Guigoz Y. 2006. The Mini Nutritional Assessment (MNA) review of the
literature–what does it tell us? J Nutr Health Aging 10:485– 487.

61. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30:2114 –2120. https://doi.org/10
.1093/bioinformatics/btu170.

62. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bow-
tie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.

63. Onrust L, Ducatelle R, Van Driessche K, De Maesschalck C, Vermeulen K,
Haesebrouck F, Eeckhaut V, Van Immerseel F. 2015. Steering endoge-
nous butyrate production in the intestinal tract of broilers as a tool to
improve gut health. Front Vet Sci 2:75. https://doi.org/10.3389/fvets
.2015.00075.

64. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C.
2015. High-specificity targeted functional profiling in microbial commu-
nities with ShortBRED. PLoS Comput Biol 11:e1004557. https://doi.org/
10.1371/journal.pcbi.1004557.

65. Monleón D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B. 2009.
Metabolite profiling of fecal water extracts from human colorectal can-
cer. NMR Biomed 22:342–348. https://doi.org/10.1002/nbm.1345.

66. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson
ID, Wang Y. 2007. Rapid and noninvasive metabonomic characterization
of inflammatory bowel disease. J Proteome Res 6:546 –551. https://doi
.org/10.1021/pr060470d.

67. Vital M, Howe AC, Tiedje JM. 2007. Revealing the bacterial butyrate
synthesis pathways by analyzing (meta)genomic data. mBio 5:e00889-14.
https://doi.org/10.1128/mBio.00889-14.

Haran et al. ®

May/June 2019 Volume 10 Issue 3 e00632-19 mbio.asm.org 14

https://doi.org/10.1111/1574-6941.12228
https://doi.org/10.1038/ismej.2014.3
https://doi.org/10.1038/ismej.2014.3
https://doi.org/10.1038/s41531-016-0002-0
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1038/nature11319
https://doi.org/10.1212/WNL.43.11.2412-a
https://doi.org/10.1212/WNL.43.11.2412-a
https://doi.org/10.1186/s12877-017-0621-2
https://doi.org/10.1186/s12877-017-0621-2
https://doi.org/10.1038/s41598-017-10734-y
https://doi.org/10.1503/cmaj.050051
https://doi.org/10.1186/s13073-016-0262-7
https://doi.org/10.1038/srep25945
https://doi.org/10.1038/srep25945
https://doi.org/10.1111/ger.12144
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.3389/fvets.2015.00075
https://doi.org/10.3389/fvets.2015.00075
https://doi.org/10.1371/journal.pcbi.1004557
https://doi.org/10.1371/journal.pcbi.1004557
https://doi.org/10.1002/nbm.1345
https://doi.org/10.1021/pr060470d
https://doi.org/10.1021/pr060470d
https://doi.org/10.1128/mBio.00889-14
https://mbio.asm.org

	RESULTS
	Elders with dementia have increased frailty and malnutrition scores. 
	Microbiome composition differs by dementia type. 
	Accurate classification of AD individuals compared to those without dementia using metagenomic and clinical measures. 
	Accurate classification of AD versus other dementia types using only metagenomic measures. 
	Microbiome of AD elders modulates intestinal homeostasis through P-glycoprotein regulation. 
	Taxonomic predictors of AD can also accurately predict in vitro P-gp expression. 

	DISCUSSION
	MATERIALS AND METHODS
	Study setting and population. 
	Data collection. 
	Sample collection and processing. 
	Sequence processing and analysis. 
	Data analysis. 
	Cell culture. 
	Fecal supernatant preparation. 
	P-glycoprotein detection by flow cytometry. 
	MRP2 detection by Western blotting. 
	Ethics approval. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

