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Previously, it has been shown that maximum-entropy models of immune-repertoire sequence can
be used to determine a person’s vaccination status. However, this approach has the drawback of
requiring a computationally intensive method to compute each model’s partition function (Z), the
normalization constant required for calculating the probability that the model will generate a given
sequence. Specifically, the method required generating approximately 1010 sequences via Monte-
Carlo simulations for each model. This is impractical for large numbers of models. Here we propose
an alternative method that requires estimating Z this way for only a few models: it then uses these
expensive estimates to estimate Z more efficiently for the remaining models. We demonstrate that
this new method enables the generation of accurate estimates for 27 models using only three expen-
sive estimates, thereby reducing the computational cost by an order of magnitude. Importantly, this
gain in efficiency is achieved with only minimal impact on classification accuracy. Thus, this new
method enables larger-scale investigations in computational immunology and represents a useful
contribution to energy-based modeling more generally.
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I. INTRODUCTION

Energy-based models (EBMs) generally—and max-
imum entropy (MaxEnt) models particularly—have a
wide range of applications, including in statistical
physics [1–5] (where the major statistical ensembles
all take the form of EBMs), natural language process-
ing [6, 7], finance [8], RNA [9] and protein [10] sequence
motifs, ecology [11–13], modeling flocking behavior in
birds [14], modeling voting behavior [15], describing pat-
terns of activity in neurons [16, 17], modeling disease
outbreaks [18], modeling the environmental preferences
of plant pathogens [19], and modeling immune reper-
toires [20, 21], among many others [22]. As probabilistic
models, EBMs can be used as generative models when
coupled with Monte Carlo sampling methods. When
properly normalized, they can, unlike most types of dis-
criminative models, also be used for Bayesian inference.
In nontrivial settings, however, normalizing EBMs (or
indeed any probabilistic models based on initially un-
normalized probabilities) can be computationally quite
expensive.

In previous work, MaxEnt models were trained on an-
tibody heavy-chain (IGH) and T-cell receptor β-chain
(TRB) repertoires’ third complementary-determining re-
gions (CDR3s), using features based on the physicochem-
ical properties of their constituent amino acids [21]. It
was demonstrated that these models allowed for the clas-
sification of influenza vaccination status among 31 sam-
ples from 14 individuals. However, this classification re-
quired the estimation of partition functions: the normal-
ization constants of the individual probability distribu-
tions. This was done using in-house Monte-Carlo (MC)
based estimation software, which was computationally
expensive. The partition function for a given model is
usually abbreviated as Z.
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To understand the computational difficulty of the
problem, consider a model that represents the distribu-
tion of amino-acid sequences comprising some collection
of proteins, such as TCRs or B-cell receptors (BCRs)
(e.g. IGH). Consider specifically the set of all possible
polypeptide chains 100 amino acids in length, which is
approximately the length of a TRB or IGH variable re-
gion. There are 20100 ≈ 10130 such sequences. Thus
an exact computation of the partition function would in-
volve a sum of 10130 terms. Such a sum is infeasible
with present-day computational resources, even before
considering that we will likely want to normalize many
such models (e.g. one per person per timepoint). In a
few special instances, such as the one-dimensional and
two-dimensional local Ising or Potts models, there are
shortcuts to computing this sum. It is very unlikely such
simplifications will exist in general, however, as the prob-
lem of computing partition functions has been shown to
be #P-hard [23, 24]. Of course in practice, we do not
need an exact result, and methods such as bridge sam-
pling [25–27] exist precisely in order to approximate these
kinds of sums more efficiently. Yet even in these cases, it
may be necessary to generate an enormous Monte Carlo
sample from the model in question. We asked whether
we could improve the efficiency of estimating Z for each
model without sacrificing classification accuracy, using
immune repertoires as a test case.

A. Energy-Based Models

An EBM is a model that assigns an unnormalized prob-
ability Uθ⃗(x) to every potential state x (meaning, in the
context of CDR3 repertoires, every possible amino acid
sequence up to some maximum length) based on a pa-

rameterized energy function E(x, θ⃗ ) according to

Uθ⃗(x) = e−E(x,θ⃗ ). (1)

The models used in this paper are MaxEnt models, in
which the energy takes the form

E(x, θ⃗ ) := Eθ⃗(x) =
∑
i

θifi(x) (2)

for a set of features {fi}. Such models were introduced in
Refs. [4, 5] and are based on distributions long studied in
statistical physics. The name “maximum entropy” comes
from the fact that these models maximize the entropy of
the resulting distribution subject only to constraints on

the moments of the features. The parameters θ⃗ fix these
moments and determine how the distribution is allowed
to vary from the uniform distribution (which corresponds

to θ⃗ = 0⃗ ) [9, 20, 28].
MaxEnt models can be trained using, for example, gra-

dient descent to maximize the likelihood of a training
sample as estimated by the model. Gradients of the log

likelihood turn out to depend only on the feature mo-
ments for the current model, which can be estimated us-
ing Monte Carlo methods, and the sample moments of
the training sample.

B. Estimating Partition Functions

The problem of normalizing an initially unnormalized
probability distribution shows up in a number of con-
texts and has an extensive literature going back several
decades. A review of some of this work may be found
in section 6 of Ref. [29]. In statistical mechanics, such
a normalization constant shows up for the various (mi-
crocanonical, canonical, etc.) thermodynamic ensembles
and is known as the partition function1, a term we shall
use in most of this work, and is usually written Z. Know-
ing the partition function (as a function of the distribu-
tion parameters) allows one to compute all the macro-
scopic physical quantities that characterize the distri-
bution, such as the mean values of the entropy, inter-
nal energy, and magnetization, as well as each of their
fluctuations. In the context of Bayesian inference, the
posterior distribution takes the form of an unnormal-
ized distribution when the distribution of the evidence
is unknown. In a few cases (for example, a multitude
of models in one spatial dimension, or the Ising model
with nearest-neighbor interactions in two dimensions),
the partition functions may be computed analytically,
but in the typical case an exact solution is intractable. In-
deed, the general case has been shown to be #P-hard [24].
As a result, approximation schemes—either analytical or
computational—typically need to be employed.
A large class of computational approximation schemes

rely on Monte-Carlo methods for generating model sam-
ples; these schemes only estimate the ratio of the parti-
tion functions of two models. Alternatively, one can view
them as estimating the partition function of one model
based on the already known partition function of a sec-
ond model. In the present work, we will refer to these as
the target and the teammate, respectively. Such methods
include bridge sampling [25] and the free energy pertur-
bation method [30]—also known as simple importance
sampling (SIS)—among others. The method used previ-
ously for immune repertoires by Arora et al. [21] is also
in this class. Here we focus on estimating the partition
functions themselves (though it should be noted that for
the task of maximum likelihood inference, strictly speak-
ing all that is needed is the ratio of the partition function
of every model to some fixed reference model).

1 Strictly speaking, the partition function in statistical mechanics
should be understood as the function which, for a parameterized
family of distributions, maps parameter values to the correspond-
ing normalization constant, but that is not a distinction we will
make here.
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Given two unnormalized probability distributions
whose densities are given by

Pθ⃗0
(x) ∝ e

−E
θ⃗0

(x)
(3)

and

Pθ⃗(x) ∝ e−E
θ⃗
(x) (4)

the normalization constants of these (unnormalized)
distributions—i.e. the partition functions of these
models—are defined to be

Z(θ⃗ ) =
∑
x

e−E
θ⃗
(x) (5)

and

Z(θ⃗0) =
∑
x

e
−E

θ⃗0
(x)

. (6)

In the following we consider Pθ⃗(x) as the target distribu-
tion and Pθ⃗0

as the teammate.

The free energy perturbation method [29, 31] estimates

Z(θ⃗ ) from Z(θ⃗0) (or alternatively, estimates their ratio)
according to

Z(θ⃗ )

Z(θ⃗0)
=

∑
x e

−E
θ⃗
(x)∑

x e
−E

θ⃗0
(x)

(7)

=
∑
x

e−E
θ⃗
(x)

e
−E

θ⃗0
(x)

e
−E

θ⃗0
(x)∑

x′ e
−E

θ⃗0
(x′)

(8)

=

〈
e
−
(
E

θ⃗
−E

θ⃗0

)〉
θ⃗0

(9)

≈
∑
i

e
−
[
E

θ⃗
(xi)−E

θ⃗0
(xi)

]
, (10)

where {xi} is a Monte Carlo sample drawn from Pθ⃗0
.

This Monte Carlo procedure will typically provide a good
estimate if every region with non-negligible probability
under Pθ⃗ also has non-negligible probability under Pθ⃗0

.

Otherwise, it will tend to do poorly [32]. One way around
this is to consider these distributions as part of a set

of models Pθ⃗λ
, λ ∈ [0, 1], such that the θ⃗λ interpolate

between θ⃗1 := θ⃗ and θ⃗0. One may then estimate [32]

Z(θ⃗ )

Z(θ⃗0)
=

N∏
i=0

Z(θ⃗λi+1
)

Z(θ⃗λi
)

(11)

=

N∏
i=0

〈
e
−
(
E

θ⃗λi+1
−E

θ⃗λi

)〉
θ⃗λi

, (12)

with λi =
i
N for some N > 0. Bridge sampling was in-

troduced in Ref. [25] as the “acceptance ratio method,”
before being rediscovered in Ref. [26], whose authors
coined the term “bridge sampling” [32]. Bridge sam-
pling seeks to cure the weaknesses of the free energy per-
turbation method by using a single intermediate model

Pbridge(x) ∝ e−Ebridge(x). One then estimates

Z(θ⃗ )

Z(θ⃗0)
=

〈
e
−
(
Ebridge−E

θ⃗0

)〉
θ⃗0〈

e−(Ebridge−E
θ⃗)
〉
θ⃗

. (13)

Both of these methods (and others in this general fam-
ily) may not perform well (or alternatively may perform
well only when the samples used to compute moments are
taken to be very large) if the target and teammate dis-
tributions are very different (i.e. there is a large distance
between them, for an appropriate choice of metric).
In the immune-repertoire example in Ref. [21], com-

puting the partition functions required sampling ≥ 1010

amino acid sequences via Markov-chain Monte Carlo
(MCMC) methods. Even on a highly-parallelized high-
performance computing cluster, this requires a day or
more of running time. This severely limits the practical
feasibility of using this technique directly for Bayesian
inference, especially in the case where many such models
need to be normalized. We believe that the main reason
this method is so high-cost is that this teammate distri-
bution is very far from the model distribution. In fact,
it is essentially a uniformly random distribution at each
length, combined with a distribution on lengths that de-
pends on the target. (Immune repertoires include amino-
acid sequences of multiple lengths.) The advantage of
this distribution is that its normalization factor can easily
be calculated exactly. The disadvantage is, it has a much
higher entropy than any of the target models. As such, it
takes an extremely large sample to encounter most of the
states which have a high-probability in the target model.
In fact, many of the target models are much closer to
one-another than they are to their respective teammate
models.
The key observation of this paper is that we can use

this proximity to our advantage. Once the first few mod-
els have been normalized using the expensive but proven
method in [21], those few models can be used as alterna-
tive teammates for the remaining targets. This strategy
can even be used iteratively, with the high-entropy team-
mates used to normalize the first targets, these targets
used as teammates for a second round of targets, this
second round of targets used as teammates for a third
round, and so on. In the rest of this paper we will show
empirically that this method works well, achieving high
classification accuracy while significantly speeding up the
process of (approximately) normalizing a fairly sizeable
batch of IGH and TRB immune-repertoire models.

II. METHODS

A. Data

A total of 19 unique repertoires were studied, sum-
marized in table I. Seventeen of these were IGH and
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Repertoire Type Status Number of Repertoires

TRB

baseline

infected

cancer

4

3

2

IGH

baseline

vaccinated

cancer

4

2

2

Random - 2

TABLE I: Summary of repertoires. For TRB
repertoires, baseline and infected indicate imputed
CMV infection status, whereas for IGH repertoires,
baseline and vaccinated indicate influenza vaccination
status. Additionally, the TRB cancer repertoires are
from breast cancer, whereas the IGH cancer repertoires
are from chronic lymphocytic leukemia.

TRB CDR3 repertoires representing diverse physiological
and pathophysiological states, including infection, vacci-
nation, and cancer, as well as repertoires from subjects
that lacked these conditions. Two were artificial “reper-
toires” of randomized sequences created from TRB reper-
toires (see below). The TRB repertoires included three
from subjects imputed to be positive for cytomegalovirus
(CMV) (“infected”), four imputed to be CMV-negative
(“baseline”) [33], and two from subjects with breast can-
cer (“cancer”) [34]. CMV infection status was imputed as
in [35]. The IGH repertoires similarly include two reper-
toires from subjects who had received an influenza vac-
cine (“vaccinated”) and four from subjects that had not
(“baseline”) [36], as well as two repertoires from subjects
with chronic lymphocytic leukemia (“cancer”—although
in this case the repertoire includes sequences from the
cancerous clone itself, not just sequences elaborated in
response to/in the context of the cancer) [37]. The ran-
dom repertoires were created from TRB repertoires [33]
by preserving the lengths of each sequence but randomiz-
ing the amino acids among all sequences. As such, these
have the same length and single-amino-acid distributions
as their source TRB repertoires, but with all correlations
between different amino acids, or between amino acids
and position in the sequence, randomized away.

B. Models

A total of 29 maximum entropy (MaxEnt) models
were trained as described previously [21]. For reference,
each model was named according to its cell type, dis-
ease state, feature set, and and a number that along
with this other information uniquely identifies the model.
Twenty of these models (one per repertoire, plus a repli-
cate model for one of the random repertoires, as a con-
trol) were trained using a set of features consisting of
lengths, frequencies of single amino acids in both an en-
tire sequence and in the first and last four amino acids

of a sequence (the canonical stems; IGH and TRB pro-
teins adopt stem-loop structures), and sums of pairwise
products of physio-chemical descriptors of amino acids
between different locations (including nearest neighbors,
next-to-nearest neighbors, and opposites (i.e. first with
last, second with second from last, etc.)), and summed
over both the entire sequence and just the first and last
four amino acids, as well as products of physio-chemical
descriptors of four consecutive amino acids. This was
feature set 1. To test a second set of features, nine ad-
ditional MaxEnt models were trained on a subset of the
repertoires: two each on IGH baseline, IGH vaccinated,
and TRB baseline repertoires, as well as three on TRB
infected repertoires. These were trained using a differ-
ent set of features that did not include products of four
physiochemical descriptors, but which did include prod-
ucts between 3rd nearest neighbors. This was feature
set 2. Of these 29 models, two fits failed to converge
and were thus excluded from the remainder of the study.
These were the models trained on the two IGH cancer
repertoires, which as described above come from subjects
with chronic lymphocytic leukemia. As such, the fail-
ure of these models to converge is perhaps unsurprising,
given that these repertoires are dominated by a single
large clone. Conversely, because these repertoires can
be well described by the sequence clone, there is a di-
minished need for a compact generative model (e.g. a
MaxEnt model) to describe them.

C. Partition Function Estimates Using
Non-Repertoire Teammates (Previous Method)

For each model, we first used the previous method [21]
to estimate the partition function for each model. This
method uses the Metropolis-Hastings algorithm to sam-
ple from two distributions, the target distribution (one
of the immune repertoire models) and a teammate dis-
tribution. The teammate distribution was such that the
probability of a sequence depends only on its length.
From each of these samples, we estimated the density

of states of the target distribution: the distributions of
energies, i.e. (unnormalized) negative log probabilities.
We describe the procedure graphically (Fig. 1). For the
target sample (green in Fig. 1), this was done by bin-
ning the energies and counting the number of unique se-
quences in each bin. For the teammate distribution (yel-
low in Fig. 1) each sequence contributed a weight equal
to its (unnormalized) probability in the target distribu-
tion divided by its (normalized) probability in the team-
mate distribution. Energies were then binned with the
same binning as before, with the weight for each sequence
added to the corresponding energy bin. This resulted in
two histograms representing the density of states. The
first of these was estimated based on a sample of 1010

Monte Carlo (MC)-generated sequences from the target
distribution and represents an absolute estimate; that is,
the entries directly estimate the number of unique se-
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Name Repertoire Type Disease State Feature Set Test/Train Converged

Random 1-1 randomers - 1 train yes

Random 1-2 randomers - 1 train yes

Random 1-3 randomers - 1 test yes

TRB b.l. 1-2 TRB baseline 1 train yes

TRB b.l. 1-1 TRB baseline 1 train yes

TRB b.l. 1-3 TRB baseline 1 test yes

TRB b.l. 1-4 TRB baseline 1 test yes

TRB infex 1-3 TRB infected 1 train yes

TRB infex 1-1 TRB infected 1 train yes

TRB infex 1-2 TRB infected 1 test yes

TRB can. 1-1 TRB cancer 1 train yes

TRB can. 1-2 TRB cancer 1 test yes

TRB b.l. 2-1 TRB baseline 2 train yes

TRB b.l. 2-2 TRB baseline 2 test yes

TRB infex 2-3 TRB infected 2 train yes

TRB infex 2-1 TRB infected 2 train yes

TRB infex 2-2 TRB infected 2 test yes

IGH b.l. 1-1 IGH baseline 1 train yes

IGH b.l. 1-4 IGH baseline 1 train yes

IGH b.l. 1-2 IGH baseline 1 test yes

IGH b.l. 1-3 IGH baseline 1 test yes

IGH vax 1-2 IGH vaccinated 1 train yes

IGH vax 1-1 IGH vaccinated 1 test yes

IGH b.l. 2-1 IGH baseline 2 train yes

IGH b.l. 2-2 IGH baseline 2 test yes

IGH vax 2-1 IGH vaccinated 2 train yes

IGH vax 2-2 IGH vaccinated 2 test yes

IGH can. 1-1 IGH cancer 1 train no

IGH can. 1-2 IGH cancer 1 test no

TABLE II: Summary of models. Note that the first and second parts of the name (first only for randomer models)
indicates cell type and disease state, the next part indicates the feature set used, and the last number (along with
the other information) uniquely identifies that model.

quences per bin. The second of these was estimated from
a sample of 1011 MC-generated sequences drawn from
the teammate distribution and represents only a relative
estimate, in that the overall histogram differs from the
(estimated) density of states by an overall multiplicative
constant: a vertical shift in Fig. 1.

We know that scaling the teammate by (the natu-
ral logarithm of) the partition function, lnZ, will make
the absolute probabilities in each bin equal: it will shift
the teammate distribution up or down until the high-
confidence part of this curve coincides with the high-
confidence part of the target distribution. The high-
confidence part of the teammate distribution begins when
bins contain enough sequences; it will fall off to the left
of that (the lowest-energy sequences are unlikely to be
sampled with sufficient density by the teammate’s ran-
dom sampling). Meanwhile, the high-confidence part of
the target distribution is the leftmost part; the distribu-

tion will fall off to the right (higher-energy sequences are
unlikely to be sampled sufficiently densely by sampling
from the target). The magnitude of the shift required
gives the target’s lnZ.
Note this method requires a substantial amount of

computational effort (typically a day or more on an aca-
demic supercomputing cluster) due to the large numbers
of sequences sampled. This large sizes are necessary to
ensure meaningful overlap between the two density-of-
states histograms.

D. Partition Function Estimates with
Immune-Repertoire Teammates (New Method)

Following the bridge-sampling partition function esti-
mates described above, we performed a second analy-
sis using the new method developed for this paper. For
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FIG. 1: Left: the density of states estimates from both
the target and teammate samples for model DCW4o.
Right: the same plot, but with the estimate based on
the teammate sample rescaled (downward arrow in left
panel). The downward shift required to bring the upper
distribution into alignment with the lower distribution
is the lnZ.

each of the 27 models, we computed 26 additional es-
timates using the free energy perturbation method, one
using each of the other 26 models as a teammate. These
estimates were computed using a 300,000-sequence sam-
ple generated from each model using MCMC methods.
These samples were independent of those used to com-
pute the bridge-sampling estimates.

For each of these 702 (= 27 targets × 26 teammates)
free-energy-perturbation estimates, we found an esti-
mated empirical log error, computed as the absolute
value of the difference between the estimate in ques-
tion for the lnZ and that found using the non-immune
repertoire teammate. These error estimates ranged from
0.000281 to 8.81. We then trained a model to pre-
dict when these errors will fall below a threshold, which
we chose, somewhat arbitrarily, to be that there should
be less than a 30% error in the estimated value of Z.
This threshold translated to empirical log errors of up to
ln(1.3) ≈ 0.262. Since partition functions for different
repertoires are observed to differ by many orders of mag-
nitude, a 30% error indicates a quite accurate estimate
of the relevant Z.

To this end, we divided the 27 models into two sets: a
15-model training set and a 12-model validation set. The
details of this split are given in table II. Since each indi-
vidual model is designated as either a training model or
a validation model, target-teammate pairs divide natu-
rally into three sets: a training set, where both the target
and teammate are from the model training set; a valida-
tion set, where both are from the model validation set;
and a “crossover” set, consisting of the remaining mixed
pairs. We trained a random-forest classifier on the train-
ing set, achieving a validation accuracy of 89%. The
input features for this classifier were simple functions of
the model parameters: the root-mean-squared difference
between the bias vectors for five different types of bi-
ases (including two types of first-order bias, two types
of second-order bias, and fourth-order biases), as well as

a binary variable that flagged when one member of the
pair was fit on IGH but the other was fit on TRB. On the
set of all pairs (including validation pairs, training pairs,
and crossover pairs), 75% of pairs classified by the model
as “good” had log errors of 0.215 or lower (< 24%).

The methods described above consider every model as
both a target and a teammate, and require previously-
computed estimates for the partition functions of all
models. However, this was only necessary for the pur-
pose of training the classifier. In the remaining analy-
sis, we simulated the scenario where a seed set of only a
small number of models were initially identified as likely
good teammates for the remaining models. The previous
method outlined above was then used to generate esti-
mates for these few models, and the resulting estimates
allowed us to use those chosen models as teammates for
a second batch of models, which were used as teammates
for a third batch of models, and so on, until all partition
functions had been estimated. Because all but the initial
estimates are computationally inexpensive, this method
is overall much more efficient. (See the description of the
results in section III below.)

We chose the seed set as follows. For each of our 27
models x, we listed each other model y for which x was a
predicted good teammate for y. For each x, and for each
y in the list for x, we then added to x’s list all models
z for which y was also a predicted good teammate for z
(assuming z was not already on the list). We did this
iteratively until we reached a step where no additional
models were added to the lists. The result of this is a list
of “descendants” for each model. We chose the model
with the most descendants as our first model in the seed
set, breaking ties arbitrarily. We call this model a. In
our data, we found that there was no one model that had
every other model as a descendant. Therefore, for all the
models x which were not descendants of a, we listed the
descendants of x which were not descendants of a, and
the one with the most such descendants was chosen as the
second model for the seed set, which we refer to as model
b. We chose a third model for the seed set using a similar
method. The three models chosen for the seed set in this
way were those labeled yY7aq, J3AmH, and O8QGE.
Collectively, these had all other models as descendants.

The seed-set models were assigned their partition func-
tion estimates computed using the previous method. We
then iterated through the remaining models, iterating
through direct descendants of the seed-set models first.
For each model x, we listed the models that had already
been assigned a partition function that were predicted by
the random forest classifier to be good teammates for x.
Using each of those models, we then used free energy per-
turbation to compute a partition function estimate for x.
The median of these estimates was then assigned as the
partition function for x, and x was added to the list of
models that had been assigned partition functions. Both
these assigned partition function estimates and the parti-
tion function estimates computed using the non-immune
repertoire teammate were then used to do maximum like-
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FIG. 2: Differences in log Z estimates using methods (i) and (ii) for each pair (target, teammate) of immune
repertoire models.

lihood inference on sequences.

E. Quality Testing Via Inference on Sequences

For each model, we made an aggregate estimate of
the partition function as follows. First we identified all
other models which were classified by our random-forest
classifier as giving good estimates as teammates for that

model. Our aggregate estimate was then the median of
all of these estimates. We refer to these estimates the
median teammate estimates.

To test if the median teammate estimates were suffi-
ciently accurate, we took 100 samples of 100 sequences
from each model, each selected as an independent sub-
sample of the 300,000-sequence sample used to compute
expectation values in that code. For each of these 2,700
samples (27 models × 100 samples per model) we used
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maximum likelihood to guess which model it originated
from. We did this using both the likelihood estimates
from the bridge-sampled partition functions and the me-
dian teammate partition functions. We then compared
the accuracies of both for identifying the correct source
models, to see if there was any significant diminution in
accuracy resulting from using the median teammate esti-
mate partition functions rather than the bridge sampling
partition functions.

III. RESULTS

We compared the previous method[21] and the new
method for both computational efficiency and perfor-
mance of the resulting Bayesian classification. Figures 3
and 4 show the confusion matrices resulting from classi-
fying 100 Monte-Carlo-generated sequences, both by the
exact repertoire model they were sampled from (Fig. 3),
as well as by sequence type (IGH vs. TRB) and dis-
ease or immunization state (Fig. 4). Comparisons of
Figs. 3a- 3b to Figs. 4a- 4b show that the new method
gives comparable classification performance.

In addition, the new method had a much lower com-
putational cost. Most of the cost came from the MC
generation of sequence samples. Each estimate based
on the non-immune repertoire teammates required about
1010 sequences. In contrast, the estimates using an-
other immune repertoire model as a teammate only used
3× 105 sequences per model, a savings of 99.997%. This
translates to about 107 sequences in total across the 27
models—negligible compared to the previous method. As
such, the computational cost essentially comes down to
the number of more expensive estimates that need to be
generated. In the previous method, each of the 27 esti-
mates were of the expensive type. For the new method,
we required only 3 of the expensive estimates, from which
partition functions for the other 24 models were esti-
mated much more efficiently. As a result, overall the new
method leads to about an order of magnitude savings in
computational cost.

IV. DISCUSSION

EBMs provide a way to summarize complex systems
such as immune repertoires compactly and efficiently,
based on aggregate features that are often human-
interpretable. They also have the advantage of being gen-
erative models, which for immune repertoires means they
can quickly and easily produce arbitrarily many de novo
sequences that are representative of a given repertoire.
Partition function estimation is important in EBMs be-
cause it allows calculation of the absolute probability of
a given state—for example determining which of several
immunological states, such as infection or cancer (each
described by one or more models), a set of sequences is
diagnostically most consistent with [38]. Together with

methods for measuring immunological diversity, EBMs
could become an important part of the diagnostic toolkit
in next-generation immunology [35, 39], provided parti-
tion functions can be estimated efficiently. Here we have
demonstrated a highly-efficient new method for estimat-
ing partition functions that performs as well as a previous
method but much more efficiently, as assessed by correct
classification of immune-repertoire sequences using mod-
els of real-world repertoires.
Although we have demonstrated substantial computa-

tional savings on this set of diverse IGH and TRB reper-
toires from a variety of states of health and disease, it
should be noted that further work is necessary to pre-
cisely define how the computational cost of estimating
partition functions will scale as the number of models re-
quiring paritition-function estimation increases into the
hundreds or thousands. The answer will likely depend in
part on how closely related the models are, since we find
closely related models tend to make good teammates. If
the new method were to scale linearly, as the previous
method does [21], then the advantage would be merely a
(substantial) multiplicative factor. Based on our results,
the new method likely scales sub-linearly, significantly
improving the utility of this method in situations where
many repertoires are modeled, e.g. representing precisely
defined or multifaceted disease states across large clinical
cohorts. Curating a database of previously fitted mod-
els with partition functions computed would maximize
the cost savings of this method, by creating a bank of
potential teammates for use in normalizing new models.
In the new method presented here, after partition func-

tions for the seed models are estimated, additional esti-
mates are found using free energy perturbation, arguably
the simplest of the MCMC-based methods. In the future,
it may be interesting to implement this idea using other
MCMC-based methods, to test more broadly how those
estimates compare in terms of accuracy and computa-
tional cost. It would also be interesting to explore re-
placing the initial teammate used in the old method, for
which probabilities depended only on sequence length,
with a better choice of teammate. A model trained
on the same repertoire as the target of interest, but
with features restricted to contain only couplings between
nearest-neighbor pairs of amino acids2, would be formally
the same as a 20-state 1D Potts model for each length,
and as such the partition function for such a model could
be found exactly using standard methods. This class of
models could provide an improved teammate for the ini-
tial estimate, further reducing the cost to normalize an
entire batch of models.
We conclude with a general note regarding obstacles

to interdisciplinary adoption of EBMs. While the liter-

2 Longer range interactions up to kth nearest neighbors can be in-
cluded by grouping k amino acids into a single variable with 20k

states, though the cost of the exact computation scales exponen-
tially in k.
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(a)

(b)

FIG. 3: (a) Confusion matrices between models using method (i). (b) Confusion matrices between models using
method (ii).
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(a) (b)

FIG. 4: (a) Confusion matrices between model parameter set/cell type/disease state labels using method (i). (b)
Confusion matrices between model parameter set/cell type/disease state labels using method (ii). b.l. = baseline,
vax = vaccinated, infex = infected, can. = cancer, and 1,2 refers to the feature set.

ature on MC methods for computing partition functions
is extensive and goes back decades, it primarily traces
its origins to statistics and statistical physics. Conse-
quently, terminologies and concepts may not be readily
accessible to researchers from diverse fields, including the
biomedical sciences, whom they could otherwise bene-
fit. Therefore, it may be useful to have a review that
introduces these concepts specifically to biomedical re-
searchers. Such a resource would facilitate the dissem-
ination of knowledge, help avoid delays due to reinven-
tion, and encourage the adoption of these powerful com-
putational tools in various research domains. This is es-
pecially as the amount of data available in biology and

related fields continues to increase, bringing ever-more-
complex systems more fully into the realm of scientific
study.
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