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Abstract: This study reports a new stacking method for assembling a 3-D microprobe 
array. To date, 3-D array structures have usually been assembled with vertical spacers, 
snap fasteners and a supporting platform. Such methods have achieved 3-D structures but 
suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, 
low structure strength and large implantable opening. By applying the proposed stacking 
method, the previous techniques could be replaced by 2-D wire bonding. In this way, 
supporting platforms with slots and vertical spacers were no longer needed. Furthermore, 
ASIC chips can be substituted for the spacers in the stacked arrays to achieve system 
integration, design flexibility and volume usage efficiency. To avoid overflow of the 
adhesive fluid during assembly, an anti-overflow design which made use of capillary 
action force was applied in the stacking method as well. Moreover, presented stacking 
procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without 
requiring other specially made assembly tools. To summarize, the advantages of the 
proposed stacking method for 3-D array assembly include simplified assembly process, 
high structure strength, smaller opening area and integration ability with active circuits. 
This stacking assembly technique allows an alternative method to create 3-D structures 
from planar components. 
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1. Introduction 
 
In recent years, advance micromachined/assembled micro probe arrays with electrical 

stimulation/recording ability have come to play an essential role in exploring central neural systems. 
Simultaneous observation of a larger number of cell activities has become the general requirement to 
understand the nervous system [1]. Advances in neuroscience and neuroprosthetics now require 
microelectrode arrays that are able to access numerous neurons simultaneously with high spatial 
resolution [2]. Recording of the extracellular action potentials has been accomplished by surgically 
implanting neural probes into the target neurons of interest, which resulted from neural activities [3]. 
Probes that could insert a large number of recording sites into neural tissues with minimal tissue 
damage are therefore needed. Also, the design of the probe arrays should be optimized for an 
experimental purpose that an electrode diameter of a few micrometers could support single-unit 
recording [4]. 

The traditional micro probes, which are made from insulated metal wires and glass micropipettes, 
cannot provide simultaneously multi-channel recording. The main reason is that the traditional devices 
function as only a single site on a single probe shaft. Some previous studies have improved the 
problem by thin-film lithography-based micromachining techniques since 1960s. 

High-density probe arrays yielded insights into the organization and function of the neural  
system [5]. Silicon [6], glass [7], polymer [8] and sapphire [9] substrates have been employed as  
thin-film electrode probe planks. The thin-film silicon micro probe was developed many years ago for 
neuroscience and neural prostheses [10]. It has also been widely characterized electrically [11] and 
mechanically [12] for probe scaling [13], insertion force [14], tissue strain [15] and chronic brain 
responses [16]. The studies mentioned above provide detailed multi-channel recordings along a single 
plane, but lacked of full cell activity information in 3-D space [17]. 

To access the full cell activity that originates in the target tissue, three dimensional microprobe 
arrays are strongly required with precisely controlled dimensions and front-end circuitry compatibility. 
In other words, to achieve detailed studies of neural networks and implementation of neural prostheses, 
we need to access three-dimensional volumes of tissue with three-dimensional distributed recording 
sites. In modern neural system researches, 3D microprobe array allows the recording and mapping of 
the neural signal network and interconnections among the 3D brain structure. The recording and 
mapping would be impossible to achieve by using 2-D planar arrays [17]. 

Currents methods of fabricating three-dimensional microprobe array structures can be summarized  
as follows: 

(1) Silicon bulk etched microprobe array 
(2) polymer-constructed array 
(3) Creating 3-D arrays by the assembling of 2-D parts 

For the silicon bulk etched out-of-plane microprobe arrays, every probe shaft in the array only 
functions as a single recording site [18]. The total number of the recording sites was limited when high 
recording density and number are strongly required as in recent research. Moreover, when the silicon 
bulk etched array was integrated with active circuitries or interconnection boards [19], the minimal 
opening for implantation increased. Polymer-constructed arrays utilized various polymer materials to 
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support the 3-D structure [20], but they suffered from process incompatibility with CMOS circuitry. 
Creating 3-D arrays by the assembly of 2-D parts is now the most popular method to construct a 3-D 
structure [2,21-25]. The 2-D parts usually include 2-D arrays, vertical spacers and supporting platform. 
The supporting platform acts as a substrate, and the vertical spacers are erected on the supporting 
platform by tethers, joints and snap fasteners. The spacers fixed the 2-D arrays vertically on the 
supporting platform, and made the probe shafts pass through the holes of the supporting platform. The 
full 3-D structure is therefore like a PC motherboard. Additionally, active circuitry for signal 
processing can be designed and fabricated in the back-end of the 2-D arrays to achieve system 
integration. A unique handling method was developed in [24] for a dual-side, ultra-thin silicon 
substrate process to fabricate thin probe shafts without using doping etching stop technique. Moreover, 
stacked probes and PCBs by anisotropic conductive film create the connection for the dual-side wire 
routing and 3D structure. Therefore, each side of probe can be wired out separately. An alternative 
solution provided in [25] integrated the silicon probe with flexible ribbon cables by using thermosonic 
bonded gold bump. Also, a platform with bays and gold clips is designed to connect with probes, 
which results in an impressive 3D device. The comparison of three-dimensional microprobe arrays 
with some major design parameters is shown in Table 1. However, the studies mentioned above 
neglect the importance of smaller opening for surgery implantation. Smaller opening of skull can 
reduce the implantation damage to the subject, prevent the rise of brain pressure, and decrease the 
infection probability of the wound. 

Although previous work creating 3-D arrays by assembly of 2-D arrays successfully achieves high 
electrode density by packaging active probes onto the supporting platform with some micromechanical 
packaging technique, some problems still exist. First, previous approaches that use 2-D silicon probes 
to form full 3-D arrays required complex schemes for assembling submillimeter parts [22]. The main 
problem of such techniques is that the parts (spacers and supporting platform) were all assembled in 
orthogonal planes. Thus, perpendicular connectors for interconnections between orthogonal planes 
were required for signal transmission. Ultrasonic bonding [22] and vertical snap fasteners [2] have 
been proposed for perpendicular transfer pads, but they suffered from complex assembly steps and 
precise alignment equipment for 3-D assembly. For example, precise alignment was required to make 
probe shafts pass through holes of the supporting platform and steady the probe onto the vertical 
spacers without damage during the assembly process. Second, the probe arrays were fixed only by the 
perpendicular bonding pads and the tenons. Low structure strength can cause stability problem in 
implantation. Third, the rooms between the spacers and the 2-D probes were wasted. The volume of  
a 3-D structure increases rapidly when increasing the number of 2-D probes. 

To improve the problems described above, this work reports a new stacking method for  
fabricating 3-D neural probe arrays. In this study, the 3-D orthogonal interconnection was replaced 
with 2-D wire bonding by the present stacking method, and the perpendicular bonding and snap 
fasteners which were used in previous work were no longer needed. Compared to previous work, this 
new stacking method can also provide reliable structure strength. ASIC chips can be substituted for 
spacers to increase the system integration and volume usage efficiency as well. Additionally, an anti-
overflow design based on the capillary principle was exploited to avoid gel overflow onto proximate 
bonding pad during 3-D array assembly. 
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Table 1. Comparison of three-dimensional microprobe arrays with some major design parameters. 

Reference [18,19] [26-28] [20] [2,21-23] [25] [24] 

Substrate Si Epoxy, Polyimide Polyimide/Nickel Si Si Si 
Dimension 3D 3D 3D 3D 3D 3D 

3D method 
Bulk silicon etching,  

out of plane 
Molded tooling/ 

hand made 
Bulk silicon etching, 

out of plane 
Slots, platform,  
vertical spacer 

Stacking with PCB Platform with bays 

Electrode material Al Tungsten/SiC Al/Ti Ir Au Au 

Electronics compatibility
Yes (by Stacking &  

Wire-bonding) 
No No 

Yes (Embedded in  
back-end/platform) 

-- -- 

Number of electrode per 
shaft/Number of shaft/ 
Number of total sites 

1/100/100 or 1/16/16 1/33/33 or 1/16/16 3/6/18 
4/16/64 or 4/128/512 or 

8/32/256 
8/3/24 5/16/80 

Shaft length (mm) 1.5 3–5 1.2 1.2, 2.5, 3.3 5 2 
Shaft width (um) 90 50, 90, 120 160 40, 50, 144 90 -- 

Shaft thickness (um) 90 50, 90, 120 26 12–100 50 100 
Shaft spacing (um) 400 250, 400, 450 450 200, 256 90 -- 
Electrode size (um2) -- -- 400 81, 100, 1000 100 -- 

Electrode spacing (um) -- -- 200 24, 400 30 -- 
Back-end size (mm2) 6.35 × 6.35 -- -- 5.7 × 4 -- ~5 × 5 

Minimal opening required 
for implantation (mm2) 

>6.35 × 6.35–1.56 × 1.56 >3.3 × 1.05, 1.56 × 1.56 >1.9 × 2 >2.5 × 4.8, 5.7 × 4 -- >5 × 5 

Structure strength High Medium to high Low Low Medium  Medium 

Remarks 
Dicing saw defined probe 

array 
3D structure by epoxy 

supporting 
Magnetic batch 

assembly 
Ultra-sonic for wiring and 

Low profile structure 
Anisotropic conductive 

film is used 
Thermosonic bonding 

with ribbon cable  
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2. Design and Method 
 

A new stacking method to produce three-dimensional neural probe arrays is presented in this work. 
This method creates 3-D probe arrays by assembling 2-D arrays and spacers layer by layer, as shown 
in Figure 1(A). For a 4 × 4 3-D array, four 2-D arrays (gray color) with four probes in each array and 
three spacers (yellow color) were required. Compared to exising three-dimensional neural probe 
designs, the present stacking method improved the inconvenient assembly steps which include 
orthogonal assembly and perpendicular connection techniques. In the stacking method, the shapes of 
each 2-D arrays were carefully designed so they can be wire-bonded individually with different height 
levels. Spacers with an anti-overflow mechanism were also proposed in this paper. The present  
anti-overflow mechanism can also be realized on 2-D arrays if active circuit chips are used as spacers. 
Also, the thickness of the spacer determined the spacing between two 2-D arrays. Each planar 2-D 
array, electrode sites, interconnect routing and bonding pads were located in the same plane. The 
bonding pads were arranged on the different sides of four 2-D probe arrays for wire bonding. 
Therefore, each 2-D array can be wire-bonded individually and the 3-D perpendicular bonding pads 
used in previous work are no longer needed. 

Figure 1. (A) The schematic of stacking a 4 × 4 3-D microprobe array. (B) Spacers can be 
replaced by silicon substrates with signal processing circuitry for lower fabrication cost, 
customized design request and increases the volume usage efficiency. 
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By replacing spacers with active signal processing circuitry chips, the function of the 3-D neural 
probe array can be enhanced. For example, as shown in Figure 1(B), active circuit chips can be 
employed as spacers for signal processing proposes. In Figure 1(B), Spacern with active circuitry is 
bonded onto Arrayn+1 by the flip-chip technique, and then Arrayn is stacked onto Spacern by adhesion 
gel. Thus, the 3-D neural probe array can be integrated with circuits by the present stacking method. 
Additionally, in IC manufacture, larger area means higher cost. When the active circuitry is fabricated 
with probe shafts in the back-end of the 2-D array, larger wafer areas are required. In the stacking 
design, spacers with circuitry and 2-D arrays were fabricated individually. Therefore, the stacking 
method can reduce the cost for circuitry integration and increase the design flexibility when 
modification of probes/circuitries is required for different applications. Besides, comparing with 
previous work, the volume usage efficiency was increased because there were no waste rooms between 
arrays and spacers. In short, the advantages of using active circuit chips as spacers include reducing 
the cost of circuitry integration, increasing the flexibility of the design and increasing the volume  
usage efficiency. 
 
3. Fabrication of 2-D Probe Arrays and Spacers with Anti-Overflow Mechanism 
 

The fabrication steps of the 2-D array are briefly described as follows: (1) 250 μm-thick silicon 
wafer was used, and 3 μm-thick polyimide (PI) was spin-coated on the front side of the wafer for 
electrical isolation. (2) 1 μm-thick Cr/Au layer was electroformed and patterned for wire interconnects 
on the probe shaft. (3) 3 μm-thick layer polyimide (PI) was spin-coated for the interconnect 
encapsulation. (4) Electrode sites and wire-bonding pads were defined by DRIE. (5) 3 μm-thick Au 
was electroformed as electrode site and bonding pad material. Notably, the Au layer was somewhat 
over-electroformed to ensure that the electrode was in contact with the neural tissue while 
implantation. (6) The final shape of 2-D probe array was defined and released by DRIE. 

The spacers were simply defined on the 250 μm-thick silicon wafer by DRIE. For different 
application requirements, the thickness of the 2-D arrays and spacers could be modified by using 
thinner wafer. However, the yield minimal wafer thickness is currently not less than 100 μm due to the 
accessible process limitation. 

When the stacking method is used to construct the 3-D neural probe arrays, the overflow adhesion 
gel or glue between the stacking layers may cover the proximate bonding pads and make them 
ineffective. Using less gel may reduce the overflow problem, but reduce the adherent strength. To 
solve the overflow problem of the gel, an anti-flow mechanism design was applied in the  
stacking method.  

The anti-overflow mechanism was accomplished by creating a through-silicon-via around the edges 
of the spacers. It uses capillary action force to prevent the gel from overflowing to the bonding pads. 
The mechanism functions in the following condition: when the stacking process starts, the combined 
parts compress the adhesion gel and force it to flow around. The flowing glue will fill the via by 
capillary action as it passes the via. Therefore, there is no redundant glue covering the proximate 
bonding pads. 

The radius of the via was one of the major design parameter in preventing overflow. The formula is 
given by the well-known capillary action principle [29] with definition of the liquid-air surface 
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tension, contact angle, density of the liquid, acceleration due to gravity, the height of the liquid column 
and the radius of the via. In this case, the maximal height of the liquid column is the thickness of the 
spacer (250 μm), and the liquid-air surface tension is 0.033 N/m [30], contact angle is 70° [31], density  
is 2,000 kg/m3 and gravity acceleration is 9.8 m/s2. The capillary action principle gives the radius of 
the via a theoretical result of 4,600 μm, which was even larger than the size of the spacer. In fact, there 
is some limitations should be put into consideration. For instance, the limited volume of glue, the 
viscosity of glue, the friction force between glue-substrate interface and the capillary force in the 
narrow gap between two parts will make the liquid column never reach the expected height. The final 
via radius was experimentally set as 250 μm to enhance the filing of the via with glue. 

Figure 2 shows the assembly parts successfully manufactured by the fabrication steps as described 
above. Figure 2(A) presents the fabricated parts for 3-D assembly on a one cent coin. Figure 2(B) 
displays the probe tip and electrode sites. Each 2-D probe array consisted of four shafts of 6 mm  
length, 100 μm width and the space between shafts was 110 μm. Four electrode sites were lined up on 
the tip along the shaft, separated by 50 μm, and the first electrode is 70 μm from the shaft tip. The 
circular electrode had a diameter of 20 μm and the square bonding pad had sides of length 80 μm. The 
tapered tip angle was around 23°. The circular via on spacers for the anti-overflow mechanism can be 
observed in the picture. 

Figure 2. Microphotographs of fabricated 2-D arrays. (A) Fabricated parts on a one cent 
coin. (B) Probe tip and electrode sites. The tapered tip angle is about 23°. 

 
 
4. 3-D Probe Array Assembly 
 

After the assembly parts were successfully fabricated, a flip-chip bonder (FINETECH Inc., USA) 
and thermosetting polymer (EA2151, LIONTONG Inc., TAIWAN) were used to complete the 3-D 
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neural probe array assembly process. Convenient flip-chip technology was employed to accomplish 
alignment, pressurization and heating process, while the thermosetting polymer (glue) provided 
adhesive layer between two stacked components (array and spacer). The thermosetting glue was 
solidified at 185 °C in 180 s with an adhesive strength of 150–180 kg/cm3. The detailed steps to 
manufacture a 4 × 4 3-D neural probe array (as shown in Figure 1) using the tools as described above 
were as follows:  

1. Array4 was fixed on the vacuum holder of the flip-chip bonder.  
2. Second, adhesion gel was deposited onto the Array4 by a micro injector (MICRO FAB TECH. 

Inc., USA).  
3. Spacer3 was picked by the flip-chip bonder head and aligned with the 2-D array by an  

optical microscope.  
4. Then, Array4 & Spacer3 were bonded together in a pressurizing and heating condition provided 

by the flip-chip head.  
5. After the first bonding process finished, the flip-chip head was released from the Spacer3, and 

then adhesion gel was deposited onto Spacer3 by the micro injector.  
6. Next, Array3 was picked, aligned and bonded to the Spacer3 again.  
7. Repeating the bonding process 1 to 6, we accomplished the 4 × 4 3-D neural probe array.  

The maximal placement accuracy of the flip-chip was 0.5 μm in a single bonding step. Thus, the 
total miss-alignment error can be neglected. Moreover, the average assembly time for a 4 × 4 3-D 
microprobe array by manual alignment was approximately 35 minutes (including heat curing time). In 
the present study, we applied about 0.26 μL of gel between spacers and arrays. The appropriate 
amount of the adhesion get combined the stacking well without spilling to the proximate pads. 

Figures 3(A)–(G) illustrate how the anti-overflow mechanism functions in the practical assembly 
process. The details are displayed as follows: (A) the fabricated 2-D array (Arrayn) was fixed on the 
flip-chip holder (not shown). (B) A drop of thermosetting polymer was deposited onto the 2-D probe 
array and the spacer (Spacern) was picked by the flip-chip bonder head and aligned. (C) Start  
bonding—the aligned spacer was moved downward and controlled by the flip-chip bonder head. After 
the spacer came into contact with the glue drop, the drop spread in random directions because it was 
squeezed by the spacer. (D) The spacer was moved continuously downward, and the glue filled the via 
by capillary force when it flowed past the via. (E) The spacer came into contact with the 2-D array. 
The gel bump occurred on the top of the via because the pressure from bonding. (F) The flip-chip 
bonding head was removed. (G) The assembly process was completed following thermal solidification 
of the thermosetting glue. The gel bump over the via rapidly receded after heat curing.  
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Figure 3. The proposed assembly anti-flow mechanism process and related practical photographs. 

 
 
After applying the steps described in Figure 3, we successfully assembled 3-D microprobe arrays, 

as shown in Figure 4. Figure 4(A) displays stacked 3-D microprobe array was mounted and  
wire-boned onto a pre-designed PCB (~600 μm in thickness). Figure 4(B) shows a close view  
of 4 × 4 shafts. Figure 4(C) presents the electrodes sites at the shaft tip. Figure 4(D) illustrates the 
cantilever shaft structure. Figure 4(E) shows the pad for wire bonding (without wire-bonding). The 
electrode sites on the probe shafts were over-electroformed to ensure that the electrode can come into 
contact with neural tissue during implantation. Figure 4(A) also shows that the 3-D signal transmission 
was achieved by 2-D wire-bonding with four level of bonding pads (Array1, Array2, Array3 and Array4) 
in a 4 × 4 3-D arrays. 
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Figure 4. The photographs of successfully assembled 3-D microprobe array. (A) The  
wire-bonded result of 3-D microprobe array. Four different bonding levels were marked. 
(B) Close view of 4 × 4 shafts. (C) The electrodes sites located at the shaft tip. (D) The 
cantilever shaft structure. (E) Pad for wire bonding. 

 
 
5. Characterization of 3-D Probe Array 
 

Electrode impedance spectroscopy (EIS) was used to evaluate the fabricated stacked 3-D probe 
arrays. The impedance characterization of 3-D neural probe array in the electrode-electrolyte interface 
is of utmost importance in impedance-based biosensing and neuroprotheses [32]. When the electrode 
sites come into contact with tissue, an electrode-tissue interface impedance was established. The  
electrode-tissue interface impedance and the amplifier input impedance act as a voltage divider when a 
neural signal passes through the electrode into the front-end amplifier. Hence, high electrode-tissue 
interface impedance will cause signal attenuation and induce considerable thermal noise in weak raw 
signal recording.  

The final assembled array was characterized in physiologic saline solution (0.9% NaCl) at room 
temperature using a multi-frequency LCR meter (Wayne Kerr LCR meter 4235). Figure 5 presents the 
measured impedance of the electrodes (n = 16) on the microprobe. The in-vitro impedance  
was 463 ± 107 kΩ and the phase was −33 degree at 1 kHz. 
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Figure 5. The electrode impedance spectroscopy of fabricated microprobe array in 
physiologic saline solution. Means and standard deviations are given (n = 16). 

 
 
6. Neural Recording 
 

To demonstrate the practical function, the fabricated 3-D neural probe array was implanted into an 
anesthetized rat. Figure 6(A) shows the photograph of a stacked 3-D microprobe array that was 
inserted into the brain of an anesthetized rat by a manual 3-axis moving stage (not shown in the figure). 
The screw on the skull was adopted as a reference for measurement. The opening in the skull was  
about 2 mm by 3 mm. Figure 6(B) shows the photomicrograph of the implantation section. The figure 
was modified by superimposing a lesion marker, an implantation track, and overlaying a scaled image 
of the microprobe array. One lesion marker arrowhead (red) was used to identify the location of the 
outermost recording site, in relation to the field CA1 of the hippocampus. Figure 6(C) presents neural 
signals from the 16-channel microprobe array, acquired with a Multi-Channel Acquisition Processor 
(MAP, Plexon Inc., USA). During recordings, electrical signals were passed from the headstage to an 
amplifier through a band-passed filtered (spike preamp filter: 450–5 kHz, gain: 15,000–20,000) and 
sampled at 40 kHz per channel. 
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Figure 6. (A) Photograph of a stacked 3-D microprobe array inserted into the brain of an 
anesthetized rat. (B) The in situ location of microprobe array was shown in the 
photomicrograph Nissl-stained coronal section. (C) The 16-channel neural activities 
simultaneously recorded from CA1 in of hippocampus. 

 
 
7. Discussion 
 

The minimal opening is the area that must be resected, including skull and dura, to fully place an 
implantable device onto the brain. A smaller skull opening can reduce the implantation damage such as 
the rise of intracranial pressure, and the probability of wound infection. In previous work, the opening 
area was never less than the supporting platform [22,23] to make sure all the probes were completely 
inserted into tissue. Therefore, the minimal surgical opening area was defined by the supporting 
platform in this case. Additionally, the supporting platform area was significantly increased when 
ASIC chips were mounted onto the platform for system integration [2]. In the proposed stacking 
method, the system integration will not increase the opening area because it can be accomplished by 
replacing spacers with ASIC chips. The opening area of present 3-D probe array depends only on the 
probe array dimension. The minimum opening area of the stacked 3-D probe array is less  
than 1.75 mm × 1 mm, which can be readily shrunk by using thinner and narrow shafts.  

Previous work may also induce additional tissue damage in the bottom of the platform as well. The 
interlocking structures, including tethers and joints, can cause the protrusion and damage to the tissue 
underneath [2]. For the stacked 3-D array, only probe array will be in contact with the target tissue.  

The strength of the assembled structure is also an important issue in implantable device. Compared 
with the proposed 3D array, structures with tethers and joints used in previous work may not provide 
reliable strength to fix the probes on the platform during implantation [2,22]. The thermosetting 
polymer in the stacked 3-D array provided an adhesive strength of 150–180 kg/cm3 after curing. Thus, 
sufficiently structural strength was guaranteed in the present design. 



Sensors 2010, 10              
 

 

4250

In summary, compared with previous 3-D array studies, the advantages of using the stacking 
method for constructing 3-D arrays include easier assembly processes, stronger structure strength, 
smaller opening area and less damage to the tissue surrounding the implanting region. ASIC chips can 
be substituted for spacers to achieve system integration without increasing device size as well. The 
stacking method can therefore increase the design flexibility and enhance the volume usage efficiency. 
 
8. Conclusions 
 

In this work, a new assembly method was applied to design a 3-D neural probe array. The 
fabrication and test results were also presented. The proposed stacking method can replace the vertical 
interconnections used in previous work with 2-D wire bonding. In this way, the supporting platform 
with slots and vertical spacers was no longer needed. To avoid the fluid overflow during assembly, an 
anti-overflow design which made use of capillary action force was applied in the stacking method as 
well. Furthermore, ASIC chips can also be substituted for the spacers in the stacked arrays to achieve 
system integration, design flexibility and volume usage efficiency. The time for manually assembling  
a 4 × 4 3-D microprobe array was approximately 35 minutes. Compared with previous 3-D array 
studies, the advantages of using the stacking method for constructing 3-D arrays include easier 
assembly processes, stronger structure strength, smaller opening area and less damage to the tissue 
surrounding the implanting region. Practical in-vivo neural spike recordings also demonstrated the 
functionality of the proposed neural probe array. 
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