
RESEARCH ARTICLE

Discovery and characterization of variance

QTLs in human induced pluripotent stem cells

Abhishek K. SarkarID
1☯*, Po-Yuan Tung1☯, John D. BlischakID

1, Jonathan E. Burnett1,

Yang I. LiID
1,2, Matthew Stephens1,3, Yoav Gilad1,2*

1 Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America,

2 Department of Medicine, University of Chicago, Chicago, Illinois, United States of America, 3 Department of

Statistics, University of Chicago, Chicago, Illinois, United States of America

☯ These authors contributed equally to this work.

* aksarkar@uchicago.edu (AKS); gilad@uchicago.edu (YG)

Abstract

Quantification of gene expression levels at the single cell level has revealed that gene

expression can vary substantially even across a population of homogeneous cells. How-

ever, it is currently unclear what genomic features control variation in gene expression lev-

els, and whether common genetic variants may impact gene expression variation. Here, we

take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs).

To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent

stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of

95 cells per individual and a total of 5,447 single cells, and identified 235 mean expression

QTLs (eQTLs) at 10% FDR, of which 79% replicate in bulk RNA-seq data from the same

individuals. We further identified 5 vQTLs at 10% FDR, but demonstrate that these can also

be explained as effects on mean expression. Our study suggests that dispersion QTLs

(dQTLs) which could alter the variance of expression independently of the mean can have

larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 4,015

individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs.

These results will guide the design of future studies on understanding the genetic control of

gene expression variance.

Author summary

Common genetic variation can alter the level of average gene expression in human tissues,

and through changes in gene expression have downstream consequences on cell function,

human development, and human disease. However, human tissues are composed of many

cells, each with its own level of gene expression. With advances in single cell sequencing

technologies, we can now go beyond simply measuring the average level of gene expres-

sion in a tissue sample and directly measure cell-to-cell variance in gene expression. We

hypothesized that genetic variation could also alter gene expression variance, potentially

revealing new insights into human development and disease. To test this hypothesis, we

used single cell RNA sequencing to directly measure gene expression variance in multiple
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individuals, and then associated the gene expression variance with genetic variation in

those same individuals. Our results suggest that effects on gene expression variance are

smaller than effects on mean expression, relative to how much the phenotypes vary

between individuals, and will require much larger studies than previously thought to

detect.

Introduction

Robustness, or the ability to maintain a stable phenotype despite genetic mutations and envi-

ronmental perturbations, is an important property of many key biological processes, such as

those underlying embryogenesis and development [1, 2]. Conversely, evolvability, or the ability

to generate heritable phenotypic variation, is a fundamental requirement of evolutionary pro-

cesses [3]. A long-standing question in genetics, therefore, is how the balance between these

two seemingly opposite processes has been fine-tuned [4].

To make progress in understanding the balance between robustness and evolvability, we

need to characterize the mechanisms that underlie robustness. Robustness can arise through a

number of different mechanisms: for example, redundancy of regulatory elements or feedback

loops in regulatory circuits. In these different scenarios, we hypothesize evolvability could be

maintained through different selective pressures. If we are able to characterize gene-specific

robustness to expression variability, we can begin to ask about the balance between natural

selection of gene function and the ability to maintain evolvability.

In model organisms, robustness and evolvability can be studied using experimental evolu-

tion approaches. These approaches typically quantify robustness as the change in trait varia-

tion after applying an experimental perturbation [5, 6]. However, in such experiments the

phenotypic outcomes, rather than the underlying mechanisms of robustness, are measured.

Moreover, experimental evolution studies have almost always considered population-average

measurements of phenotypes using entire organisms, tissues, or cell cultures, with few excep-

tions [7, 8]. To truly understand how robustness and evolvability are established and encoded

in the genome, we need to consider phenotypic variation across individual cells [9], and con-

nect it to genetic variation, an approach termed “noise genetics” [10].

Using the yeast Saccharomyces cerevisiae as a model system, studies have shown that hetero-

geneity in the expression of certain genes across cells is highly heritable and placed under

complex genetic control, suggesting that the level of noise in gene regulation may also differ

between individuals of multicellular organisms depending on their genetic background [11].

Follow-up studies further demonstrated that gene expression noise mediated by promoter var-

iants can provide a fitness benefit at times of environmental stress in yeast, highlighting the

direct role of genetically controlled stochastic cell-cell variation in evolutionary robustness

[12]. However, the genetic and molecular circuits that lead to robustness remain largely

uncharacterized in mammals.

Here, we take an unbiased, genome-wide approach to identify quantitative trait loci associ-

ated with gene expression variance across cells (vQTLs). We study human induced pluripotent

stem cells (iPSCs), which offer a homogeneous population of cells allowing a relatively simple

statistical model. Investigating iPSCs also provides the possibility to study gene expression var-

iance across cells during differentiation in follow-up studies. To directly measure the mean

and variance of gene expression within cell populations as phenotypes, we generated single cell

RNA-seq (scRNA-seq) data from cells derived from multiple individuals.

Variance QTL mapping in iPSCs
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Results

Sample collection and quality control

Using the Fluidigm C1 platform, we isolated and collected scRNA-seq from 7,585 single cells

from iPSC lines of 54 Yoruba in Ibadan, Nigeria (YRI) individuals. We used unique molecular

identifiers (UMIs) to tag RNA molecules and account for amplification bias in the single cell

data [13]. To estimate technical confounding effects without requiring separate technical repli-

cates, we used a mixed-individual plate study design (Fig 1A). The key idea of this approach is

that having observations from the same individual under different confounding effects and

observations from different individuals under the same confounding effect allows us to distin-

guish the two sources of variation [14].

Fig 1. Study design and quality control. (A) We used a mixed-individual plate design to be able to distinguish technical effects from biological effects

of interest, and used a zero-inflated negative binomial model to fit the distribution of the data, accounting for technical confounders. (B) Proportion of

variance explained (PVE; top) and a heatmap of the correlations between the top 10 principal components of gene expression and observed technical

covariates (bottom). (C) Dependence of the distribution of gene expression against gene detection rate (proportion of genes with at least one molecule

detected) for each sample. Each vertical slice is a single cell (according to the gene detection rate). For each cell, there are 5 points, corresponding to the

(0, 0.25, 0.5, 0.75, 1) quantiles of non-zero log CPM values observed for that cell. (D) PVE and correlation between principal components and observed

covariates after correcting for gene detection rate.

https://doi.org/10.1371/journal.pgen.1008045.g001
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We excluded data from one individual (NA18498) with evidence of contamination, then fil-

tered poor quality samples as previously described [14]. After quality control, we analyzed the

expression of 9,957 protein-coding genes in a median of 95 cells per individual in 53 individu-

als (total of 5,597 cells; S1 Fig).

To ensure that our measurements are comparable across samples, we first sought to assess

the impact of observed technical variation on the data and to identify unobserved technical

confounders. To this end, we performed principal components analysis (PCA) on the matrix

of log counts per million (log CPM).

We found that across samples, the loading on the top principal component (PC) was corre-

lated with gene detection rate (the proportion of genes with at least one molecule detected),

but not with the biological variable of interest (individual) or the expected technical confound-

ers (batch and C1 chip; Fig 1B). Indeed, as previously reported [15], the entire distribution of

observed log CPM (over all genes) varies across samples, and appears to be associated with the

gene detection rate (Fig 1C). After accounting for gene detection rate (Methods), the top PCs

were correlated with individual, batch, and C1 chip, as expected (Fig 1D).

Estimating gene expression mean and variance

We developed a method to estimate the mean and variance of gene expression across cells for

each gene in each individual (Fig 1A; Methods, S1 Text). Briefly, for each individual and each

gene, our method uses maximum likelihood to fit a zero-inflated negative binomial distribu-

tion (ZINB) to the observed UMI counts across cells, and derives the mean and variance of

gene expression from the estimated model parameters. When fitting the ZINB model the

method controls for technical confounders (e.g. C1 chip) and library size, and when deriving

the mean and variance it accounts for Poisson measurement noise in the UMI counts [16, 17].

These desirable, and arguably crucial features would not be achieved by directly computing

the sample mean and variance of either the UMI counts or log CPM.

To evaluate the accuracy of the method, we first simulated data from the model and com-

pared the estimated parameters, as well as the derived mean and variance, to the true values

used to generate the data. We fixed the number of cells and number of molecules detected

per cell to the median of those values in our observed data, and varied the ZINB parameters.

Assuming that mean expression is high enough, we found the method produces accurate esti-

mates of the underlying negative binomial parameters, but not the zero inflation parameter

(S2 Fig). Despite not accurately estimating the zero inflation parameter, the method still pro-

duces accurate estimates of the derived mean and variance for genes that are expressed at

intermediate to high levels.

Next, we tested for goodness of fit on each simulated data set (Methods). The key idea

underlying the test is that if the data are truly distributed according to some cumulative distri-

bution function F, then the values of F evaluated at the data should be uniformly distributed

between 0 and 1. Applying the test to the simulated data, we rejected the null that the model fit

the data for zero of 2,451 simulation trials after Bonferroni correction (p< 2 × 10−5; S3 Fig).

The results suggest the method is successfully able to fit the observed data, and also suggest

that inaccuracy in the estimated parameters is likely explained by noise due to small sample

sizes.

We then applied our method to the observed data, correcting for batch and C1 chip. Impor-

tantly, we did not correct for gene detection rate, reasoning that the dependence on gene

detection rate is only an artifact introduced by analyzing log CPM. We tested the goodness of

fit for each individual and each gene, and rejected the null that the model fit the data for only

60 of 537,658 individual-gene combinations (0.01%) after Bonferroni correction (p< 9 × 10−8;

Variance QTL mapping in iPSCs
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S4 Fig). Our results emphasize that careful experimental design as well as careful statistical

modeling are required to robustly map effects on gene expression variance across cells.

Quantitative trait locus mapping

Previous studies have shown a clear relationship between the mean and variance of gene

expression [18, 19]; therefore, apparent genetic effects on the variance could potentially be

explained by effects on the mean. In our model, the mean-variance relationship is controlled

by a single dispersion parameter per gene per individual. We sought to directly map QTLs

which could alter the variance independently of altering the mean by using the estimated dis-

persion parameter as a quantitative phenotype. However, we found zero dispersion QTLs

(dQTLs) using this approach (FDR 10%). Further, we found the QQ plot of association p-val-

ues did not show deviation from the null (S5 Fig).

Alternative approaches to decouple the mean-variance relationship include using the coeffi-

cient of variance (CV; ratio of standard deviation to mean) or Fano factor (ratio of variance to

mean) as quantitative phenotypes. However, prior work shows these quantities have predict-

able relationships with the mean, and therefore effects could still be explained away [14, 19].

Therefore, we proceeded to map eQTLs, variance QTLs (vQTLs), CV-QTLs, and Fano-QTLs,

and then asked whether we could discover variance effects which could not be explained as

effects on mean expression.

We found 235 eQTLs, 5 vQTLs, 0 CV-QTLs, and 0 Fano-QTLs (FDR 10%; S5 Fig). To vali-

date the eQTLs, we estimated the replication rate against eQTLs discovered in bulk RNA-seq

from the same iPSC lines [20]. We found that 79% of the single cell eQTLs replicate in the

matched bulk data (Fig 2A), and 80% of bulk eQTLs replicate in the single cell data. However,

we found 1,390 eQTLs (FDR 10%) using all of the individuals in the bulk RNA-seq study

(n = 58), and still recovered 1,136 eQTLs (FDR 10%) after subsampling to n = 53. Our results

therefore suggest that eQTL discovery in scRNA-seq (as opposed to replication of previously

discovered eQTLs) loses power compared to equal-sized studies in bulk RNA-seq, likely due to

increased experimental noise.

We found 85% of the eQTLs were also discovered as vQTLs (when restricting to testing

only at the eQTL SNP), and 100% of vQTLs were discovered as eQTLs (Fig 2B). We then

sought to directly explain away vQTLs as eQTLs by regressing out the mean from the variance.

Treating the residuals from the regression as the phenotype, we recovered zero vQTLs. These

results suggest the significant variance effects detected in this study are all likely to be explained

as effects on mean expression.

Power analysis

Our goal in this study was to find QTLs which alter the variance of gene expression indepen-

dently of altering the mean expression. Under our model, these QTLs should explain variation

in the dispersion parameter across individuals; however, we failed to find dQTLs. Further, all

of the vQTLs we were able to identify could be explained by mean effects. In contrast, we were

able to discover eQTLs, but fewer than expected based on bulk RNA-seq in matched samples.

To understand why we failed to discover dQTLs, and why we discovered fewer eQTLs than

expected, we first derived the power function in terms of effect size (log fold change), sample

size, noise ratio (ratio of measurement error variance to phenotypic residual variance), and sig-

nificance level (Methods). We then sought to estimate the distribution of QTL effect sizes and

the typical noise ratio, for both mean expression and dispersion.

To estimate the distribution of QTL effect sizes, we fit a flexible unimodal distribution for

the true effect sizes which maximizes the likelihood of the observed effect sizes and standard

Variance QTL mapping in iPSCs
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errors [21]. Surprisingly, we found that dQTL effects could be larger than eQTL effects (S6

Fig). For example, we estimate that the 99th percentile eQTL effect size is 0.022, but is 0.090 for

dQTLs. Given this result and the power function we derived, there are two possible explana-

tions for why we still failed to find dQTLs: (1) the noise ratio of dispersion is large (measure-

ment error reduced power), or (2) the residual variance of dispersion is large (genetic variation

explains little phenotypic variance).

To estimate the typical noise ratio, we developed a two-step procedure to estimate the mea-

surement error variance and residual variance per gene (Methods). Briefly, in our approach we

have one measurement error variance per individual, per gene, which equals the sampling var-

iance of our ZINB model. To estimate each error variance, we used non-parametric bootstrap-

ping. To estimate the measurement error variance for each gene, we took the median of the

estimated measurement error variances across individuals. To estimate the residual variance

for each gene, we fit a flexible unimodal distribution for the true phenotypes which maximizes

the likelihood of the observed phenotypes and measurement errors, and estimated the variance

of the posterior mean true phenotypes.

Using our approach, we estimated that the typical noise ratio of the dispersion is 2.99, com-

pared to 4.18 for the mean (S7 Fig). This result suggests that we did not fail to find dQTLs only

due to measurement error, because the noise ratio was lower for dQTLs than for eQTLs. As a

reference point, a noise ratio equal to 1 has the same impact on power to detect a QTL as cut-

ting the sample size in half, explaining why our study lost power to detect eQTLs. We found

that the typical phenotypic standard deviation of dispersion is 7.2 fold larger than that of the

mean expression, suggesting we failed to find dQTLs because the effect sizes of dQTLs (relative

to phenotypic standard deviation) are smaller than the effect sizes of eQTLs.

We finally asked how much power our current study had to detect the 99th percentile dQTL

effect size, assuming the typical noise ratio estimated above. We found that our study had only

0.001% power to detect that effect size at Bonferroni–corrected level α = 5 × 10−6 (Fig 3). Fix-

ing the typical noise ratio (a function of the number of cells per individual and sequencing

depth), we estimate 16,015 individuals would be required to achieve 80% power. As a lower

bound (setting the noise ratio to zero), we estimate 4,015 individuals would be required

Fig 2. Discovery and overlap of expression QTLs and variance QTLs. (A) z-scores for expression QTL (eQTL) SNP-

gene pairs discovered in pooled single cell RNA-seq data against z-scores of the same SNP-gene pairs in matched bulk

RNA-seq data. (B) In the single cell data, z-scores for eQTL SNP-gene pairs (FDR 10%) against variance QTL (vQTL)

z-scores of the same SNP-gene pairs. vQTL z-scores are stratified based on whether the gene was discovered as a vQTL

at FDR 10%.

https://doi.org/10.1371/journal.pgen.1008045.g002
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regardless of the number of cells per individual. Overall, our results suggest a much larger

study, both in terms of number of individuals and number of cells per individual, would be

required to detect the strongest dQTLs in iPSCs.

Discussion

Individual cells must tolerate both external and internal perturbations arising from the envi-

ronment or mutations. It has long been argued that this outcome of robustness is an inherent

property of biological systems [22], and arises from natural selection [23, 24]. Robustness is

especially critical in the context of cell fate transitions during differentiation [25]. Other

dynamic physiological processes must also be robust, and as a result, loss of robustness is asso-

ciated with clinically relevant phenotypes and complex genetic disease [26, 27].

Cells maintain their identity and other phenotypes despite perturbations because of the

robust regulation of key sets of genes [28]. We hypothesized that QTLs could disrupt the

mechanisms underlying robust regulation, and therefore reveal new insights into the genetic

regulation of differentiation and disease.

To investigate this hypothesis, we directly observed gene expression variance across multi-

ple individuals using scRNA-seq, and sought to identify QTLs which could alter the variance

of gene expression across cells within a single individual, independently of altering the mean

expression. However, we failed to discover such QTLs, and demonstrated that QTLs which are

associated with the variance of gene expression can be explained by effects on mean expres-

sion. We found that relative to the phenotypic standard deviation, effects on the dispersion are

smaller than effects on the mean, partially explaining why this study failed to find them.

Our results do not rule out genetic effects on variance independent of mean effects, due to

limitations of our analysis. First, our estimated distributions of effect sizes are based on an

empirical Bayes estimate of the underlying effect sizes, given the observed effect sizes. Our

results in simulation and observed data suggest the observed effect sizes may be not be accu-

rately estimated given the size of the current study. Therefore, the empirical Bayes estimate

may not accurately reflect the true distribution of effect sizes. However, we chose to bias the

Fig 3. Power to detect dispersion QTLs. Power is a function of effect size (relative to phenotypic standard deviation), sample size, noise ratio, and significance level.

Gray lines indicate the 99th percentile of dispersion effect sizes relative to the typical phenotypic standard deviation, and the power achieved to detect an effect of that

size at the typical noise ratio. Power curves are computed for the current sample size (left), the sample size required to achieve 80% power for that effect size fixing the

number of cells per individual (center), and the minimum sample size assuming no measurement error (right).

https://doi.org/10.1371/journal.pgen.1008045.g003
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estimation procedure towards putting prior mass on zero, so our estimates of effect sizes are

conservative. Additionally, our estimates may not generalize beyond iPSCs, because the distri-

bution of dispersion effect sizes could vary across cell types and conditions.

Second, we made a strong assumption that latent gene expression is point-Gamma distrib-

uted. In this study, we directly assessed whether or not this was true using a simple statistical

diagnostic, and did not find any gross violations of this assumption in the data. However, it is

likely that this assumption will be violated in heterogenous populations of cells. One possible

extension of our method to this case would be to assume there are K homogeneous subpopula-

tions of cells, each described by a (possibly different) point-Gamma distribution. This mixture

of ZINB model suggests an expectation-maximization approach where each cell is assigned to

a subpopulation, and then the distributions of the subpopulations are re-estimated.

Finally, we took a modular approach to map QTLs in this study: (1) we estimated parame-

ters for each individual using only the scRNA-seq data, and then (2) we mapped QTLs using

phenotypes derived from the estimated parameters. An alternative approach would be to

include genotype in the count model for the data, and jointly learn the mean, dispersion, pro-

portion of excess zeros, and genetic effect sizes for mean and dispersion. Such an approach

could borrow information across cells with common genotypes to improve power, holding the

experiment size fixed. However, further development will be needed to efficiently fit the mod-

els at QTL mapping scale.

We stress that our power calculation is only a rough guideline for designing QTL mapping

studies using scRNA-Seq. Intuitively, some minimum number of cells per individual is

required to adequately estimate means and variances. However, having achieved that lower

bound, the most important quantity to maximize is the number of individuals. In support of

this argument, we estimate thousands of individuals would be required to detect a dQTL no

matter how many cells were collected per individual.

We based our power calculations on typical values of the noise ratio for the mean expres-

sion and dispersion, and chose a conservative significance level. However, we found consider-

able variation in the noise ratio across genes, suggesting that our results may not generalize

even across genes. Overall, our results suggest that the technical noise introduced by scRNA-

seq greatly reduces the power to discover eQTLs. Our results also suggest that, for iPSC lines,

dramatically larger studies will be required to map both eQTLs and dQTLs from scRNA-seq.

Materials and methods

Ethics statement

The cell lines used in this study were obtained from the NHGRI Sample Repository for

Human Genetic Research at the Coriell Institute for Medical Research. All samples were col-

lected by the Coriell Institute for Medical with written informed consent and with IRB

approval.

Sample collection and quality control

We cultured YRI iPSCs [20] in feeder-free conditions for at least ten passages in E8 medium

(Life Technologies) [29]. We collected cells using the C1 Single-Cell Auto Prep IFC microflui-

dic chip (Fluidigm). We used a balanced block-incomplete design to randomize individuals

across chips. For each chip, we freshly prepared a mixture of cell suspensions from four indi-

viduals. We measured live cell number via trypan blue staining (ThermoFisher), to ensure

equal cell numbers across individuals per mixture. We performed single cell capture and

library preparation as previously described using 6 bp Unique Molecular Identifiers [14]. We

Variance QTL mapping in iPSCs
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pooled the 96 samples on each C1 chip and sequenced them on an Illumina HiSeq 2500 using

the TruSeq SBS Kit v3-HS (FC-401-3002).

We mapped the reads to human genome GRCh37 (including the ERCC spike-ins) with

Subjunc [30], deduplicated the UMIs with UMI-tools [31], and counted molecules per protein-

coding gene (Ensembl 75) with featureCounts [32]. We then matched single cells back to YRI

individuals using verifyBamID [33].

We filtered samples on the following criteria, derived as previously described [14]:

• Only one cell observed per well

• Valid identification

• At least 1,011,612 mapped reads

• Less than 49% ERCC reads

• At least 4,730 genes with at least one read

• Linear discriminant analysis predicts one cell

We filtered genes for QTL mapping on the following criteria:

• Number of molecules less than 46 = 4096

• Median log CPM at least 3

We applied principal component analysis (PCA) to the matrix X of log counts per million

(log CPM), using the pseudocount proposed in edgeR [34].

We corrected for gene detection rate by simultaneously regressing out quantiles of gene

expression, correcting for sample-specific and gene-specific means, and performing PCA. Let

X = (x1, . . ., xn) be observed p-vectors, and let (z1, . . ., zn) be latent k-vectors where k� p.

Then, PCA corresponds to maximum likelihood estimation in the following latent variable

model [35]:

xi � N ð�;Wzi þ μ;s2IÞ ð1Þ

In this parameterization, μ denotes a per-coordinate mean (in our application, per-gene).

However, as previously reported [15], we additionally have to account for the per-sample

mean.

Our approach is based on the latent variable model:

xij � N ðWjzi þ q0iβj þ ui þ vj; s
2IÞ ð2Þ

where u is an n-vector of per-sample means, v is a p-vector of per-gene means, and

Q = (q1, . . ., qn) is a n × k matrix of expression quantiles.

We fit the model as follows:

1. Estimate βj via least squares estimation of the following linear model:

Xj ¼ mj þQβj þ � ð3Þ

Variance QTL mapping in iPSCs
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2. Construct the residual matrix xij ≔ xij � q0iβj, then estimate u, v via coordinate descent:

ui ≔
1

p

X

j

xij � vi ð4Þ

vj ≔
1

n

X

j

xij � ui ð5Þ

3. Construct the residual matrix xij≔ xij − ui − vj, then estimate W via maximum likelihood.

The MLE Ŵ equals the top k singular vectors of residual matrix X [35].

We estimated the squared correlation between each PC and categorical covariates (batch,

C1 chip, individual, well) by recoding each category as a binary indicator, fitting a multiple lin-

ear regression of the PC loadings against the binary indicators, and then estimating the coeffi-

cient of determination of the model.

Estimating gene expression mean and variance

We assume the count data are generated by a zero-inflated negative binomial (ZINB) distribu-

tion (S1 Text). Let:

• rijk be the number of molecules for individual i, cell j, gene k

• Rij be a size factor for each cell

• μik be proportional to relative abundance

• ϕik be the variance of expression noise

• πik be the proportion of excess zeros

• xij be a q-vector of confounders per cell

• βk be a q-vector of confounding effects on gene k

Then, we assume:

rijk � Poissonð�;Rij exp ðx0ijβkÞlijkÞ ð6Þ

lijk � pikd0ð�Þ þ ð1 � pikÞGammað�;mik; �ikÞ ð7Þ

Under this model, the mean and variance of gene expression are:

E½lijk� ¼ ð1 � pikÞmik ð8Þ

V½lijk� ¼ ð1 � pikÞm
2
ik�ik þ pikð1 � pikÞm

2
ik ð9Þ
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Considering just the non-zero component, marginalizing out λ yields the negative binomial

(NB) log likelihood, weighted by 1 − πik:

lð�Þ ¼ ln ð1 � pikÞ þ rijk ln
Rij exp ðx0ijβkÞmik

Rij exp ðx0ijβkÞmik þ �
� 1

ik

 !

þ�
� 1

ik ln
�
� 1

ik

Rij exp ðx0ijβkÞmik þ �
� 1

ik

 !

þ lnGðrijk þ �
� 1

ik Þ � lnGðrijk þ 1Þ � lnGð�� 1

ik Þ

ð10Þ

Then, marginalizing over the mixture yields the ZINB log likelihood:

ln pðrijk j �Þ ¼ ln ðpik þ exp ðlð�ÞÞÞ if rijk ¼ 0 ð11Þ

ln pðrijk j �Þ ¼ lð�Þ otherwise ð12Þ

To estimate the model parameters, we maximized the ZINB log likelihood. The parameters

must satisfy the constraints μik> 0, ϕik> 0, 0� πik� 1. To make the problem easier, we re-

parameterized in terms of ln μik, ln ϕik, logit(πik) and performed unconstrained optimization.

The ZINB log likelihood is nonconvex; therefore, we used a two stage optimization proce-

dure. In the first stage, we optimized the NB log likelihood with respect to ln μik, ln ϕik,

initializing from zero. In the second stage, we used the NB solution and logit(πik) = −8 (corre-

sponding to a suitably small value of πik) as the initialization and optimized the ZINB log likeli-

hood. In both stages, we used batch gradient descent for 30,000 iterations with fixed learning

rate 10−3, accelerated by RMSProp [36]. We implemented the method in Tensorflow [37].

We defined the size factor of each cell as the total number of molecules detected (before

excluding genes in QC). To correct for technical confounders, we included C1 chip as an

observed confounder, recoded as binary indicator variables and centered. This approach is suf-

ficient to also correct for batch, because in our experimental design, batch is a linear combina-

tion of C1 chip. Intuitively, if there were a batch effect independent of C1 chip, then we could

add the batch effect to each chip effect and set the batch effect to 0.

To assess the goodness of fit of the method, we used a diagnostic test based on the following

simple fact: if the data x1, . . ., xn are continuous random variables generated from a continuous

CDF F, then F(xi)�Uniform(0, 1). Then, to test for goodness of fit of an estimated F̂ to

the data x1, . . ., xn, we apply the Kolmogorov-Smirnov (KS) test to test whether the values

F̂ðx1Þ; . . . ; F̂ðxnÞ are uniformly distributed. (This test is slightly conservative because it uses

the data to estimate F̂).

Here, we have to modify this simple procedure to account for the fact that our data are dis-

crete counts, so F is not continuous. To address this issue, we used randomized quantiles [38]:

we sample one random value per observation ui j xi � UniformðF̂ðxi � 1Þ; F̂ðxiÞÞ. These have

the property that if xi� F then ui� Uniform(0, 1).

In our model, each observed UMI count xijk comes from a different distribution

Fijk, because it depends on the library size which is cell-specific. We therefore draw

uijk j xijk � UniformðF̂ ijkðxijk � 1Þ; F̂ ijkðxijkÞÞ. Then, for each individual i and gene k, we apply

the KS test to whether the randomized quantiles uijk across cells j are uniformly distributed.

Quantitative trait locus mapping

We imputed dosages for 120 Yoruba individuals from the HapMap project (Phase 3, hg19) as

previously described [39]. We restricted our analysis to 8,472,478 variants with minor allele

frequency at least 0.05.
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For each single cell expression phenotype tested, we standardized and quantile-normalized

the phenotype matrix to a standard normal as previously described [40]. We called QTLs

within 100 kilobases of the transcription start site of each gene and controlled the gene-level

false discovery rate using QTLtools [41]. We included principal components (PCs) of the nor-

malized expression matrix as covariates for QTL mapping, and selected the number of PCs for

each phenotype by greedily searching for the number of PCs which maximized the number of

QTLs discovered on even chromosomes only at FDR 10%. We did not include genotype PCs

as covariates. We additionally recalled eQTLs in the matched bulk RNA-seq data [20] using

the re-processed dosage matrix.

We performed replication testing by taking each SNP-gene pair from the discovery cohort,

and testing that pair in the replication cohort. We defined a hit as replicating if it passed the

Benjamini–Hochberg procedure at level 10% (restricted to the set of SNP-gene pairs tested)

and had the same effect size direction.

Power analysis

For individual i and gene k, we assume the generative model:

yik ¼ xibþ eik ð13Þ

~yik ¼ yik þ ~eik ð14Þ

where ~yik is the observed phenotype, yik is the true phenotype, xi is the genotype at the SNP of

interest, ~eik � N ð0; s2
mÞ, and eik � N ð0; s2

r Þ.

To perform QTL mapping, we fit a working model which ignores measurement error:

~yik ¼ xibþ �ik ð15Þ

where �ik� N(0, σ2). From this model, we estimate b̂. Assuming V½x� ¼ 1, we have s2 ¼

s2
r þ s

2
m and:

b̂ � N b;
s2

r þ s
2
m

n

� �

ð16Þ

where n is the number of individuals. Under the working model, the power function is:

Powð�Þ ¼ F F� 1 a

2

� �
þ

b
SEðb̂Þ

 !

ð17Þ

where α denotes the significance level, SE(�) denotes standard error, and F(�) denotes the stan-

dard Gaussian CDF. Under the assumed generative model, the power function equals:

Powðl; n; d; aÞ ¼ F F� 1 a

2

� �
þ l

ffiffiffiffiffiffiffiffiffiffiffi
n

1þ d

r� �

ð18Þ

where λ = b/σr, and d ¼ s2
m=s

2
r . Parameterized in terms of δ, the power function implies useful

reference points; for example, δ = 1 is equivalent to cutting the sample size in half.
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To determine the effect size b, we estimate the distribution of true effect sizes b given

observed effect sizes b̂ j and associated standard errors ŝj. We assume the hierarchical model:

b̂ j j bj; ŝ j � N ðbj; ŝ2
j Þ ð19Þ

bj j ŝj � gð�Þ ð20Þ

where g is a unimodal mixture of Gaussians. We estimate g using adaptive shrinkage (ash)

[21]. We took b to be the 99th percentile of the fitted distribution.

Although we assumed a single measurement error variance s2
m, we actually have measure-

ment errors for each individual and gene s2
mik. To estimate s2

mik, we used non-parametric boot-

strapping. For each individual and gene, we resampled the counts (matched with the library

size and technical confounders) with replacement, and refit the ZINB model. To reduce

computational burden, we restricted our analysis to 200 randomly chosen genes, warm-started

the optimization from the optimal parameters for the original data, and ran gradient descent

for 30,000 iterations.

To estimate the typical noise ratio δ, we estimate a measurement error variance per gene

s2
mk and a residual variance per gene s2

rk. We take ŝ2
mk ¼ medianðs2

mikÞ. To estimate s2
rk, we

solve a deconvolution problem [42]:

~yik j yik; ŝ
2
mik � N ðyik; ŝ

2
mikÞ ð21Þ

yik j ŝ
2
mik � gð�Þ ð22Þ

where g is a unimodal mixture of uniforms, estimated using ash. To fit the model, we centered

the ~yik for each gene k, concatenated them across genes, and assumed a common prior.

Then, the required estimates are:

ŝ2
rk ¼ V̂½E½yik j � �� ð23Þ

d̂ ¼ median
ŝ2

mk

ŝ2
rk

� �

ð24Þ

l ¼
b

medianðŝ2
rkÞ

ð25Þ

where V̂ denotes sample variance.
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S1 Text. Derivation of ZINB model.
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S1 Fig. Descriptive statistics of the experiment. Number of cells per individual, and number

of molecules per cell after applying quality control filters.
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S2 Fig. Estimated ZINB parameters and latent mean and variance in idealized simulation.

Estimates of ln(μ) and latent mean are displayed for logit(π) < 0. Estimates of ln(ϕ) and latent

variance are displayed for ln(μ)> −10, logit(π) < 0. Estimates of logit(π) are displayed over

the entire range of parameter values. In each trial, simulated molecule counts for 95 cells are
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drawn from the model assuming 114,026 molecules per cell, matching the median number of

cells, and molecules per cell in the observed data.
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S3 Fig. Histogram of diagnostic test p-values for goodness of fit on simulated data. For

each simulated data set, we use Kolmogorov-Smirnov test to test for departure of randomized

quantiles of the data (based on the fitted ZINB distribution) from the uniform distribution.
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S4 Fig. Histogram of diagnostic test p-values for goodness of fit on real data. For the set of

observed UMI counts for each individual, for each gene, we use Kolmogorov-Smirnov test to

test for departure of randomized quantiles of the data (based on the fitted ZINB distribution)

from the uniform distribution.

(PDF)

S5 Fig. Quantile-quantile plots for QTL discovery. QQ plots are shown for dispersion, mean,

variance, coefficient of variation (CV), and Fano factor.

(PDF)

S6 Fig. Estimated distribution of QTL effect sizes. We fit a unimodal mixture of Gaussians

to the distribution of observed eQTL (QTL) effect sizes (in terms of log fold change) using

Empirical Bayes.
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S7 Fig. Distribution of estimated noise ratios. Noise ratios (ratio of measurement error vari-

ance to phenotypic variance) are estimated for 200 randomly chosen genes using a two-step

empirical Bayes procedure.
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7. Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-Cell RNA-Seq Reveals Dynamic, Random Mono-

allelic Gene Expression in Mammalian Cells. Science. 2014; 343(6167):193–196. https://doi.org/10.

1126/science.1245316 PMID: 24408435

8. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool

transcriptomes: Stochasticity in gene expression and RNA splicing; 24(3):496–510. https://doi.org/10.

1101/gr.161034.113

9. Raser JM, O’Shea EK. Control of Stochasticity in Eukaryotic Gene Expression. Science. 2004; 304

(5678):1811–1814. https://doi.org/10.1126/science.1098641 PMID: 15166317

10. Farkash-Amar S, Zimmer A, Eden E, Cohen A, Geva-Zatorsky N, Cohen L, et al. Noise Genetics: Infer-

ring Protein Function by Correlating Phenotype with Protein Levels and Localization in Individual

Human Cells. PLOS Genetics. 2014; 10(3):1–10. https://doi.org/10.1371/journal.pgen.1004176

11. Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M, Fehrmann S, et al. Cell-to-Cell Sto-

chastic Variation in Gene Expression Is a Complex Genetic Trait; 4(4):1–10. https://doi.org/10.1371/

journal.pgen.1000049

12. Liu J, Martin-Yken H, Bigey F, Dequin S, François JM, Capp JP. Natural Yeast Promoter Variants

Reveal Epistasis in the Generation of Transcriptional-Mediated Noise and Its Potential Benefit in Stress-

ful Conditions. 2015; 7(4):969–984. https://doi.org/10.1093/gbe/evv047

13. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with

unique molecular identifiers. Nature Methods. 2013; 11:163. https://doi.org/10.1038/nmeth.2772 PMID:

24363023

14. Tung PY, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, et al. Batch effects and the

effective design of single-cell gene expression studies; 7:39921. https://doi.org/10.1038/srep39921

15. Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-

sequencing experiments; p. kxx053. https://doi.org/10.1093/biostatistics/kxx053

16. Kim JK, Marioni JC. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequenc-

ing data; 14(1):R7. https://doi.org/10.1186/gb-2013-14-1-r7

17. Wang J, Huang M, Torre E, Dueck H, Shaffer S, Murray J, et al. Gene expression distribution deconvo-

lution in single-cell RNA sequencing. https://doi.org/10.1073/pnas.1721085115

18. Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics;

11:637. https://doi.org/10.1038/nmeth.2930

19. Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW, et al. Single-cell gene expression

analysis reveals genetic associations masked in whole-tissue experiments; 31:748. https://doi.org/10.

1038/nbt.2642

20. Banovich NE, Li YI, Raj A, Ward MC, Greenside P, Calderon D, et al. Impact of regulatory variation

across human iPSCs and differentiated cells; 28(1):122–131. https://doi.org/10.1101/gr.224436.117

21. Stephens M. False discovery rates: a new deal; 18(2):275–294. https://doi.org/10.1093/biostatistics/

kxw041

22. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. 2010; 467(7312):167–173. https://doi.

org/10.1038/nature09326

23. Waddington CH. Canalization of Development and Genetic Assimilation of Acquired Characters. 1959;

183:1654. https://doi.org/10.1038/1831654a0

24. Waddington CH. Evolutionary Systems–Animal and Human. 1959; 183:1634. https://doi.org/10.1038/

1831634a0

Variance QTL mapping in iPSCs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008045 April 19, 2019 15 / 16

https://doi.org/10.1038/nrg1471
https://doi.org/10.1038/nrg1471
http://www.ncbi.nlm.nih.gov/pubmed/15520792
https://doi.org/10.1016/j.tig.2009.07.005
https://doi.org/10.1016/j.tig.2009.07.005
https://doi.org/10.1073/pnas.95.15.8420
https://doi.org/10.1371/journal.pbio.0040428
https://doi.org/10.1038/nrg3564
https://doi.org/10.1554/02-750R
https://doi.org/10.1554/02-750R
http://www.ncbi.nlm.nih.gov/pubmed/14575319
https://doi.org/10.1126/science.1245316
https://doi.org/10.1126/science.1245316
http://www.ncbi.nlm.nih.gov/pubmed/24408435
https://doi.org/10.1101/gr.161034.113
https://doi.org/10.1101/gr.161034.113
https://doi.org/10.1126/science.1098641
http://www.ncbi.nlm.nih.gov/pubmed/15166317
https://doi.org/10.1371/journal.pgen.1004176
https://doi.org/10.1371/journal.pgen.1000049
https://doi.org/10.1371/journal.pgen.1000049
https://doi.org/10.1093/gbe/evv047
https://doi.org/10.1038/nmeth.2772
http://www.ncbi.nlm.nih.gov/pubmed/24363023
https://doi.org/10.1038/srep39921
https://doi.org/10.1093/biostatistics/kxx053
https://doi.org/10.1186/gb-2013-14-1-r7
https://doi.org/10.1073/pnas.1721085115
https://doi.org/10.1038/nmeth.2930
https://doi.org/10.1038/nbt.2642
https://doi.org/10.1038/nbt.2642
https://doi.org/10.1101/gr.224436.117
https://doi.org/10.1093/biostatistics/kxw041
https://doi.org/10.1093/biostatistics/kxw041
https://doi.org/10.1038/nature09326
https://doi.org/10.1038/nature09326
https://doi.org/10.1038/1831654a0
https://doi.org/10.1038/1831634a0
https://doi.org/10.1038/1831634a0
https://doi.org/10.1371/journal.pgen.1008045


25. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J. Robustness of Cellular Functions. Cell. 2004; 118

(6):675–685. https://doi.org/10.1016/j.cell.2004.09.008. PMID: 15369668

26. Gibson G. Decanalization and the origin of complex disease. 2009; 10:134. https://doi.org/10.1038/

nrg2502

27. Ogbunugafor CB, Pease JB, Turner PE. On the possible role of robustness in the evolution of infectious

diseases. 2010; 20(2):026108. https://doi.org/10.1063/1.3455189

28. Garfield DA, Runcie DE, Babbitt CC, Haygood R, Nielsen WJ, Wray GA. The Impact of Gene Expres-

sion Variation on the Robustness and Evolvability of a Developmental Gene Regulatory Network.

PLOS Biology. 2013; 11(10):1–16. https://doi.org/10.1371/journal.pbio.1001696

29. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions

for human iPS cell derivation and culture; 8(5):424–429. https://doi.org/10.1038/nmeth.1593

30. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-

vote. 2013; 41(10):e108–e108. https://doi.org/10.1093/nar/gkt214

31. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to

improve quantification accuracy. Genome Research. 2017; 27(3):491–499. https://doi.org/10.1101/gr.

209601.116 PMID: 28100584

32. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics. 2014; 30(7):923–930. https://doi.org/10.1093/

bioinformatics/btt656 PMID: 24227677

33. Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR, et al. Detecting and Estimating

Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data; 91(5):839–

848. https://doi.org/10.1016/j.ajhg.2012.09.004.

34. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments

with respect to biological variation; 40(10):4288–4297. https://doi.org/10.1093/nar/gks042

35. Tipping ME, Bishop CM. Probabilistic Principal Component Analysis; 61(3):611–622.

36. Tieleman T, Hinton G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent

magnitude; 2012. COURSERA: Neural Networks for Machine Learning.

37. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

38. Dunn PK, Smyth GK. Randomized Quantile Residuals. Journal of Computational and Graphical Statis-

tics. 1996; 5(3):236–244. https://doi.org/10.1080/10618600.1996.10474708

39. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al. Identification of Genetic

Variants That Affect Histone Modifications in Human Cells; 342(6159):747–749. https://doi.org/10.

1126/science.1242429

40. Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al. DNase I sensitivity QTLs

are a major determinant of human expression variation; 482:390. https://doi.org/10.1038/nature10808

41. Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for molecu-

lar QTL discovery and analysis; 8:15452. https://doi.org/10.1038/ncomms15452

42. Cordy CB, Thomas DR. Deconvolution of a Distribution Function. Journal of the American Statistical

Association. 1997; 92(440):1459–1465. https://doi.org/10.1080/01621459.1997.10473667

Variance QTL mapping in iPSCs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008045 April 19, 2019 16 / 16

https://doi.org/10.1016/j.cell.2004.09.008
http://www.ncbi.nlm.nih.gov/pubmed/15369668
https://doi.org/10.1038/nrg2502
https://doi.org/10.1038/nrg2502
https://doi.org/10.1063/1.3455189
https://doi.org/10.1371/journal.pbio.1001696
https://doi.org/10.1038/nmeth.1593
https://doi.org/10.1093/nar/gkt214
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.1101/gr.209601.116
http://www.ncbi.nlm.nih.gov/pubmed/28100584
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://doi.org/10.1016/j.ajhg.2012.09.004
https://doi.org/10.1093/nar/gks042
https://www.tensorflow.org/
https://doi.org/10.1080/10618600.1996.10474708
https://doi.org/10.1126/science.1242429
https://doi.org/10.1126/science.1242429
https://doi.org/10.1038/nature10808
https://doi.org/10.1038/ncomms15452
https://doi.org/10.1080/01621459.1997.10473667
https://doi.org/10.1371/journal.pgen.1008045

