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Abstract
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites

commonly exploit their vectors (nutritionally for example) so these can be considered a form

of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the

Americas, is the etiological agent of Chagas disease that affects man and domestic ani-

mals. While it has long been considered avirulent to its vectors, a few reports have indicated

that it can affect triatomine fecundity. We tested whether infection imposed a temperature-

dependent cost on triatomine fitness. We held infected insects at four temperatures

between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in

parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects

took to moult (against a background effect of temperature accelerating moult irrespective of

infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the inter-

mediate temperatures of 24 and 27°C (against a background of increased mortality with in-

creasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature.

Our results demonstrate virulence of a protozoan agent of human disease to its insect vec-

tor under these conditions. It is of particular note that parasite-induced mortality was great-

est over the range of temperatures normally preferred by these insects, probably implying

adaptation of the parasite to perform well at these temperatures. Therefore we propose that

triggering this delay in moulting is adaptive for the parasites, as it will delay the next blood-

meal taken by the bug, thus allowing the parasites time to develop and reach the insect rec-

tum in order to make transmission to a new vertebrate host possible.

Author Summary

Parasites are often assumed to cause little harm to their arthropod vectors, even though
they commonly reproduce inside the arthropods and exploit their nutrients, even causing
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lesions when crossing internal barriers. Thus, the interests of parasite and vector may well
not be aligned and we can expect the parasite to exploit its vector just as it does with its
main host, with consequent negative effects on the vector’s fitness. Here, we show that this
occurs with Trypanosoma cruzi in its bug vector (T. cruzi causes Chagas disease, affecting
ca. 8 million people and disease management is principally attained via vector control).
Our results indicate that the parasites delay insect moulting, which is likely beneficial to
them as they need time to develop in the insect before the next bloodmeal (that only occurs
post-moult). We also show parasite-induced mortality over the narrow range of tempera-
tures which the insect prefers and over which it performs best. In vitro growth of the para-
site increases with temperature and we discuss how this may help explain the effects in
vivo. Overall, these results will be important to understand the epidemiology of Chagas
disease and provide an evolutionary context to explain the parasite0s interaction with
its vector.

Introduction
A long-standing implicit assumption in the literature on vector-borne diseases is that the para-
site does little or no harm to its vector (see [1] for a review). This makes considerable intuitive
sense as the parasite relies on the vector for its transmission, so negative effects on the vectors’
fitness could be expected to reflect negatively on the parasites’ fitness. This was perhaps best
formulated (verbally rather than mathematically) in Ewald’s classic treatise on the evolution of
virulence [2]. With the rapid development of theory on the evolution of virulence in recent
years [3], it has become clear that the vector should to a large degree be considered an alterna-
tive host for the parasite, one in which a certain degree of host exploitation (and consequent
virulence to this ‘host’) is to be expected [1]. Meanwhile, empirical studies that are aimed at de-
tecting fitness effects of parasite infection have become more refined, looking beyond fecundity
and mortality to hunt for more subtle life history or behavioral effects, for example. This can be
seen particularly in studies of mosquito (Culicidae) infection with pathogens, such as negative
effects of dengue virus on fecundity and oviposition success in Aedes [4]. Perhaps the most ele-
gant demonstration that the interests of parasite and vector are not entirely aligned is parasite-
induced increases in biting rates in mosquitoes [5–9], sand flies [10] and tsetse flies [11,12]—
this is likely to increase transmission (and thereby fitness) of the parasite while the vector is lia-
ble to suffer a reduction in fitness due to excessive energy expenditure and increased risk of
mortality when attempting to bite. Meanwhile, evidence of an interplay between parasite and
vector strategies towards one another can be seen in the case of several parasites of plants that
are transmitted by insect vectors. In several systems where parasite and vector are believed to
have shared a coevolutionary history, the parasite increases its vector’s fitness indirectly via ef-
fects on the host plant (e.g. [13,14]). This positive interaction is illustrative as the vector will
likely spend several generations on the main host (the plant), a situation very different from
most vectors of parasite diseases of humans that interact only briefly with the main hosts and
in which negative effects can be expected.

For vector-borne diseases of humans, such considerations are of great importance for vector
management, especially when novel technologies are under consideration. In strategies such as
the release of transgenic vectors, paratransgenesis or use of biocontrol agents that interfere
with transmission, the life history and behavior of the vector are key factors [15,16], as are pos-
sible evolutionary responses of vector and parasite [17]. It is vital, then, to understand how vec-
tor and parasite interact in terms of their respective fitnesses and possible patterns of selection.
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Chagas disease is one such example. Trypanosoma cruzi is a digenetic protozoan that infects
mammals and triatomines in the Americas. As a result of anthropic activities this enzootic in-
fection affects man and domestic animals, causing to the first a disease with different levels of
pathology. As a comparatively recently described disease (Chagas disease was first described by
Carlos Chagas in 1909) research has focused on interactions between the parasite and man,
with little consideration of parasite effects on the invertebrate hosts. Further, as earlier studies
showed no parasite-induced alterations in triatomine physiology [18], the parasite has long
been considered avirulent to its vectors [19–21]. Few studies showing alterations on fecundity
rates of infected females have been conducted [22, 23]. Furthermore, our group has recently
shown that T. cruzi affects fecundity and fertility rates of R. prolixus depending on the tempera-
ture at which insects are raised [24].

We sought, then, to investigate how T. cruzimight affect its triatomine hosts. As the parasite
does not invade the insects’ body but develops rather in its intestine, we might expect effects on
the insects’ fitness to be marginal. Previous studies showed no effect of T. cruzi on the develop-
ment of Nocardia sp. and Rhodococcus rhodnii, gut symbionts of Triatoma infestans and Rhod-
nius prolixus, respectively [25]. However, as a consequence of living only in the insect intestinal
tract, T. cruzi probably competes with its host for nutritional resources. In addition, most labo-
ratory studies of T. cruzi-triatomine interactions have evaluated fitness parameters under con-
ditions that aim to maximize vector development and survival. Changes in mortality rates in
mosquitoes under glucose deprivation have been demonstrated for Plasmodium [26,27] and
dengue virus infections [4]. Therefore, our prediction is that the parasite might have negative
effects on its host’s fitness under less than optimal (and therefore more realistic) environmental
conditions [28].

In addition, temperature is a factor of particular importance in host-parasite interactions,
especially when the host is ectothermic. It can be a key factor in determining whether a host-
parasite interaction eventually favors host or parasite, while in some instances the nature of the
interactions can only really be understood by observing the host-parasite interaction under dif-
ferent thermal conditions [29, 30]. We therefore chose to conduct our study under four ther-
mal regimes, and to use a comparatively narrow range of temperatures to keep the
test conservative.

Materials and Methods

Ethics statement
All experiments using live animals were performed in accordance with FIOCRUZ guidelines
on animal experimentation and were approved by the Ethics Committee in Animal Experi-
mentation (CEUA/FIOCRUZ) under the approved protocol number L-058/08. The protocol is
from CONCEA/MCT (http://www.cobea.org.br/), which is associated with the American As-
sociation for Animal Science (AAAS), the Federation of European Laboratory Animal Science
Associations (FELASA), the International Council for Animal Science (ICLAS) and the Associ-
ation for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Insects and parasites
Rhodnius prolixus used in assays were obtained from a laboratory colony which is derived from
insects collected in Honduras around 1990. The colony was maintained by the Vector Behav-
iour and Pathogen Interaction Group in Centro de Pesquisas René Rachou, FIOCRUZ, Brazil.
Insects were reared at 26 ± 1°C and relative humidity of 65 ± 10%, with natural illumination.
They were fed on chicken and mice anesthetized with an intraperitoneal injection of a keta-
mine (150 mg/kg; Cristália, Brazil)/xylazine (10 mg/kg; Bayer, Brazil) mixture. When insects
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were infected, they were fed on an artificial feeder containing a suspension of freshly collected
and inactivated human blood (56°C/30min) [24], using standard aseptic procedures. There-
fore, the parasites did not enter into contact with the anesthetic mixture. Note also that as a
routine procedure, T. cruzi cultures were checked for bacterial contamination in every passage
under the microscope. Therefore, these procedures assured no bacterial contamination in the
blood or T. cruzi cultures.

The T. cruzi used was ‘CL’ strain, originally isolated from naturally-infected T. infestans
from southern Brazil [31] and subsequently kept in laboratory cultures. Epimastigote forms
were cultured at 27°C in liver infusion tryptose (LIT) medium supplemented with 15% fetal bo-
vine serum, 100mg/ml streptomycin and 100units/ml penicillin. Parasite passages were per-
formed twice a week, i.e. ca. once every three days. As it has been shown that trypanosomes
tend to lose infectivity if they are not frequently exposed to hosts [32], parasites were passed
through mice and triatomines every 6 months. Briefly, 5th instar nymphs were infected with
culture epimastigotes through artificial feeding. One month after infection, these insects were
fed and their urine containing metacyclic trypomastigotes was collected and inoculated into a
Swiss mouse. Two weeks after inoculation the parasites were recovered by cardiac puncture
and used to perform a hemoculture. For infection assays, 50–100μl of culture were washed in
sterile PBS (0.15M NaCl, 0.01M sodium phosphate, pH 7.4; 2,000 RPM) and resuspended in a
final volume of 50μl.

Temperature effects on infected insects
Seven day old second instar nymphs (n = 126) were fed on a suspension of freshly collected
and inactivated human blood (56°C/30min) with culture epimastigotes. Aiming to prepare 5ml
of inoculum at 1x107 parasites/ml of blood, we took a volume of culture that would give us
5x107 parasites total. This volume of culture was washed in PBS, centrifuged and resuspended
in 50μl of PBS. This was then added to 5ml of blood. Since a second instar nymph ingests be-
tween 20–24μl of blood, we estimated that each one ingested approximately 200,000 parasites.
Insects used for the control group were fed on the same inactivated blood at the same condi-
tions, except for the parasite presence (n = 132). One day after feeding, the insects were trans-
ferred to Petri dishes whose bases were lined with filter paper discs (up to seven insects per
plate; 5 plates/treatment). These were placed in temperature control chambers at 21±0.2, 24
±0.2, 27±0.2 or 30±0.2°C and no further food was offered during the experiment. The times
taken to reach third instar and mortality rates were recorded up to 90 days after the first moult.
Insect mortalities were recorded for both treatments at 30, 60 and 90 days after ecdysis to the
third instar. The entire intestinal tracts of infected insects—dead or alive at the end of the ex-
periment—were macerated and examined to confirm parasite infection.

Temperature effects on viability and in vitro growth of Trypanosoma cruzi
Culture epimastigotes were transferred at an initial concentration of 1x106/ml to cell culture
flasks (25cm2) containing fresh LIT medium to a final volume of 8ml. The flasks were immedi-
ately transferred to four independent controlled temperature chambers (21±0.2, 24±0.2, 27
±0.2 and 30±0.2°C) and kept there for seven days. Two replicate culture samples were simulta-
neously tested for each temperature. Daily, a 50μl sample was collected from each flask and
stained for flow cytometry absolute counts and viability analysis.

Dual label fluorescent staining procedures were performed per sample to determine the ab-
solute counts of live and dead parasites in each sample. For this purpose, 50μl of culture were
incubated in the presence of 120μl of PBS and 25μl of fluorescein diacetate (FDA) at 7μg/ml
plus 5μl of propidium iodide (PI) at 25μg/ml, both from Sigma (St Louis, MO, USA) for 10
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min at room temperature. FDA (Sigma 7378) stock solution was prepared at 1mg/ml in ace-
tone and stored at −20°C until use. PI stock solution was prepared in ddH2O at 1 mg/ml and
stored at −20°C until use.

Following incubation, 20μl of fluorosphere suspension were added to each tube immediately
before flow cytometric acquisition. As many flow cytometers cannot directly provide the cell
concentration or absolute count of cells in a sample, the Flow-Count Fluorosphere (lot
#7548025 bead counts of 986 beads/μl, Beckman Coulter, Inc., Miami Lakes, FL, USA) were
used as a calibration device to directly obtain absolute counts of parasites using flow cytometry.

Quantitative flow cytometric double labeling assay, calibrated with fluorospheres, was used
to simultaneously determine the number of parasites along the growth curve, as well as to cal-
culate the mortality rate. In order to obtain the number of total epimastigotes/μL of LIT cul-
tures, following flow cytometer acquisition of approximately 5,000 fluorospheres per sample,
data analysis was carried out as follows: A bidimensional pseudocolor graph of granularity
(SSC) versus non-related fluorescence 3 chart was created to exclude autofluorescent (FL3 posi-
tive) events outside the region R1. Following this, the events inside the R1 were displayed on
size versus granularity plots to select and quantify the bead cluster (BEADS) and epimastigote
population (EPI) as illustrated in S1 Fig. EPI gated events were then analyzed further on FL1
(FDA) versus FL2 (PI) charts to quantify the frequency of PI+FDA positive events (DEAD
EPI = MORTALITY RATE) as well as FDA single positive cells (LIVE EPI) (S1 Fig). The calcu-
lation of the final concentration of TOTAL EPI and the VIABLE EPI counts were achieved
with the following equations:

Totalepi ¼ epi
50� beads� 19; 720

where EPI = number of epimastigote event counts for a given tube, 50 = volume of culture sus-
pension added to each tube; BEADS = number of fluorosphere beads aspirated in a given tube
and 19,720 = number of fluorosphere beads added to each tube, considering the volume of
20ml of bead suspension.

Viableepi ¼ totalepi� liveepi
100

where liveepi = percentage of FDA single positive events and 100 = the percentage
conversion factor.

A dye-free sample was used as a control. A FACScan Becton Dickinson flow cytometer (La
Jolla, CA, USA) was used for acquisition and the FlowJo software 9.6.3 (San Diego, CA, USA)
used for data analysis using pseudocolor charts. Representative flow cytometry charts are pro-
vided in the figures.

Statistical analyses
The times that infected and uninfected insects took to die were estimated using Kaplan—Meier
survival analyses. Comparisons were made with log-rank tests. Intermoult periods were com-
pared through a nested ANOVA with Petri dish groups nested within both feeding and infec-
tion status. As no significant differences were found among the Petri dishes (F = 1.178,
p = 0.286) post hoc comparisons (Tukey HSD test) were performed adding all data of the five
groups of the respective temperatures.

Analyses of temperature effects on in vitro parasite growth were conducted in R version
2.13.0 [33]. The first step was to determine growth rates (i.e. regression slopes) for each repli-
cate (bottle) for each temperature treatment. For this, live parasite population sizes were log-
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transformed (i.e. log10 of parasite number +1) and linear mixed effects models were used to ac-
count for the repeated measures (i.e. days 1, 2, 3 and so on). Eight growth rate values were
therefore obtained (two replicates x four temperatures). These were subjected to regression
analyses aimed at detecting temperature effects on growth rates, in particular, to test whether
growth rates could be seen to peak at different temperatures.

Results

Development of infected nymphs at different temperatures
The time taken to moult from second to third instar was affected by both infection (nested
ANOVA, F = 67.445, p = 0.00001) and temperature (nested ANOVA, F = 68.967, p = 0.00001).
The period was reduced by increasing temperatures up to one third for uninfected insects and
half for infected insects (Fig. 1A-D). Meanwhile, infection with T. cruzi delayed moult by 6–11
days (Fig. 1A-D, Tukey HDS; 32.1±8.3 (control) vs. 43.5±9.2 (infected) days for 21°C
(p = 0.00003), 23.2±9.0 (control) vs. 30.0±7.7 (infected) days for 24°C (p = 0.017), 17.8±8.9
(control) vs. 23.6±6.3 (infected) days for 27°C (p = 0.08), and 13.3±3.2 (control) vs. 23.3±10.4
(infected) days for 30°C (p = 0.00008)).

At the lowest temperature (21°C), mortality in uninfected control insects was more than
20% after 30 days (Fig. 1H). This initial mortality of uninfected insects was much reduced at
the higher temperatures but by the end of the observations (90 days), these uninfected insects
had almost all died at the higher temperatures. Against this background, infection with T. cruzi
was found to accelerate mortality in the two intermediate temperatures, 24 (P = 0.02) and 27°C
(P = 0.0001) (Fig. 1F & G), but not at 21 or 30°C (Fig. 1E & H).

Temperature effects on in vitro growth of parasites
The population growth of T. cruzi in vitro increased consistently with increasing temperature
(Fig. 2; p<0.0001 for temperature effect). The best-fit regression of growth rates against tem-
perature (Fig. 2B) was not curved, so peak growth would have occurred at or above 30°C.

Fluorescein diacetate-propidium iodide staining made it possible to distinguish live cells
from those that had already started to die, these last being stained by both dyes (S1 Fig). Mor-
tality rates of T. cruzi were below 5% at 27 and 30°C, reaching ca. 15% at 24°C and over 20% at
21°C (S1 Fig).

Discussion
To the best of our knowledge, the present study is the first report of temperature-modulated
mortality caused by a protozoan parasite of medical importance to its arthropod vector. In the
case of malaria-mosquito systems, decreased mosquito survival during infection is only seen in
unnatural combinations, although natural combinations exhibit a tendency towards such in-
creases in mortality [34]. More recently, a natural combination of Plasmodium-mosquito (in
this case an avian malaria system), showed an increase in longevity associated with a decrease
in fecundity in infected mosquitoes [35]. It is now well-established that arboviruses can be viru-
lent to their culicid vectors, depending on the taxonomic groups and the mode of virus trans-
mission [36]. In dengue virus-Aedes associations it has been observed that the virus presence
affected several mosquito fitness parameters such as survival, fecundity and oviposition success
[4].

This accelerated mortality of R. prolixus infected with T. cruzi, under conditions of starva-
tion (commonly experienced by these insects—[28]), was seen over a narrow range of tempera-
tures (i.e., at 24 and 27°C but not at 21 or 30°C). High temperatures associated with prolonged
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Fig 1. Effects of Trypanosoma cruzi infection on second instarRhodnius prolixus nymphs over four temperatures. Insects were fed a blood meal at
day 0 and were offered no further food. (A-D) time required to moult from second to third instar. (E-H) survival at 30, 60 and 90 days post-blood meal. P
values indicated in each graph represent statistical significances of comparisons of infected versus uninfected control insects, using Tukey HSD post hoc
tests from nested ANOVA analyses.

doi:10.1371/journal.pntd.0003646.g001
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Fig 2. Growth of cultures of Trypanosoma cruzi epimastigotes kept under different temperatures. (A)
growth through time (live parasites counted in a flow cytometer after staining with fluorescein diacetate). (B)
growth rates with temperature. Error bars are standard errors obtained from two replicates.

doi:10.1371/journal.pntd.0003646.g002
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starvation were lethal to insects, independently of parasite infection. It is well known that high
temperatures promote an increase in the metabolism of insects (reviewed by [37]). Therefore,
an increased mortality would be expected in starved insects submitted to higher temperatures,
as already seen in previous studies [38]. According to the effect of temperature on T. cruzi
growth in culture media, the mortality of infected insects would be expected to occur as a con-
sequence of large parasite populations developed at higher temperatures. Nevertheless, there
were no differences in mortality rates between infected and healthy insects kept at 30°C. This
was probably a result of a lack of nutritional resources for parasite development in starved in-
sects. In fact, it has already been demonstrated that triatomines can eliminate T. cruzi infec-
tions after long periods of starvation [39]. Curiously, R. prolixus prefers temperatures of
25.0–25.4°C when offered a choice and performs best around these temperatures [40]. Further-
more, temperatures in the sylvatic ecotopes in which this insect is to be found oscillate closely
around 25°C [41]. While we might have expected the vector to be less affected by the parasite
at temperatures near to its optimum (as is the case with locusts infected with the fungusMetar-
hizium anisopliae, [29]) we might also expect the parasite to be adapted to perform optimally
at exactly these temperatures. If this is the case, then we must conclude that T. cruzi’s strategy,
in its vector, results in direct physiological harm to its vector, that can be observed as vector
mortality. At this range of temperatures, the parasite has a high in vitro growth rate (Fig. 2) so
we hypothesize that its strategy in the vector is close to unrestrained growth, trading off an in-
creased chance of transmission (due to a high population density in the intestine) with the cost
of killing its vector and so effecting zero transmission. Given these insects are able to display
temperature preferences [40, 42–45], we might expect them, when infected with T. cruzi, to
alter their thermal preferences. All of these factors are liable to affect T. cruzi transmission dy-
namics and ultimately, epidemiology.

The number of T. cruzi parasites increased in direct relation to temperature. In fact, after
seven days, parasites kept at 30°C increased their numbers close to 28 times, almost doubling
their growth rate at 27°C. Previous studies have shown that both T. cruzi epimastigote and try-
pomastigote forms grow when exposed to 37°C [46]. The lowest temperature tested here
seemed to have a harmful effect on T. cruzi, since their mortality at this temperature was close
to 20%. It has been suggested that low temperatures affect the endocytic processes in T. cruzi
epimastigotes [47]. Low-temperature blockage of endocytosis has also been reported in many
eukaryotic cells [48–51]. Whether these effects of low temperature on parasite endocytosis are
related to the poor performance of T. cruzi at 21°C deserves to be analyzed in future experi-
ments. Temperature is important in the development and within-host dynamics of several
other protozoan parasites. Leishmania species differ in their susceptibility to temperature
stress, as reflected in their ability to establish infections at different sites in the mammalian
body [52]. The temperature resistance of Leishmania spp. has been related with the parasite
tropism, as visceral species are more temperature resistant than cutaneous species [53]. Tem-
perature has also been shown to be important to regulate the membrane potential across the
plasma membrane and the internal pH in Trypanosoma brucei [54]. In addition, the reduction
in temperature from 37 to 27°C and the addition of cis-aconitate are enough to trigger the
transformation of the monomorphic T. brucei from bloodstream to procyclic trypomastigotes
in culture medium [55].

Beyond mortality, infection with T. cruzi considerably delayed moult in R. prolixus, across
the range of temperatures tested. In contrast to results observed with other triatomine species
[18–22], moulting in R. prolixus second instar nymphs was delayed by more than 10 days in a
single developmental stage. In an entire life cycle the accumulation of this effect could possibly
prolong by more than a month the time needed to reach the adult stage. It is highly likely that
such a delay would affect insect fitness. While it will be interesting to look for physiological
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explanations for this (there is some evidence indicating a possible competition for lipids in this
host-parasite system [56]), there may be a very good adaptive explanation, in terms of the para-
site’s fitness. Trypanosoma cruzi has been reported to take approximately up to month at 28°C
to colonize the intestine, reach the rectum and differentiate into infective stages [57, 58]. As
triatomines will only feed again after they have moulted, it would benefit the parasite if their
moult, and thus the next bloodmeal, were delayed until such a time as the parasite is in the
right place and life stage to be transmitted to a vertebrate host. Such a delay would then favor
parasite transmission.

Effects of T. cruzi infections on triatomine fitness have previously been described in the lit-
erature. Schaub and Lösch [59] observed that the resistance of infected T. infestans was reduced
when insects were starved. However, in subsequent studies from the same group the parasite
was considered subpathogenic to its invertebrate hosts since, apparently, it does not damage
the vector under optimal conditions [60,61]. Meanwhile, Botto-Mahan [62] evaluated the time
to moult during the ontogeny ofMepraia spinolai infected by T. cruzi (kept at 26°C) and
showed that infected insects presented a delayed moult and an increased mortality when com-
pared with control ones. However, insects from the infection treatment were always fed on in-
fected mice, and as mentioned by the author, it is not possible to be sure that the observed
effects were not a result of differences in blood quality between infected and non infected mice.
Nevertheless, the deleterious effects of T. cruzi described in these studies altogether with the re-
sults presented in this study and the alteration of the reproductive fitness of R. prolixus induced
by T. cruzi recently demonstrated by our group [24] represent a bulk of evidence confirming
fitness costs induced by this parasite.

To conclude, we have shown that the medically-important parasite T. cruzi can exert viru-
lence effects on the vector R. prolixus. This effect is strongest over exactly the temperature
range preferred by the insect and in which it is to be found in the wild (often infected with
T. cruzi). The ability of T. cruzi to develop over a broad temperature range might have contrib-
uted to its adaptation to a larger number of triatomines. It will be important to investigate viru-
lence effects in other vector species, behavioural responses of the insects to infection (see [63]
for example) and impacts on transmission dynamics.

Supporting Information
S1 Fig. Impact of temperature on the growth rate and viability of Trypanosoma cruzi epi-
mastigotes. Dual-color flow cytometry (FDA+PI) using fluorescent calibration beads to deter-
mine absolute epimastigote counts (line charts) and mortality (bar charts). The latter was
calculated considering PI positive and PI+FDA double positive events (PI+FDA stained para-
sites) detected in cultures exposed to different temperatures (●21°C, ◯24°C,! 27°C,
! 30°C). (A) Parasite growth curves express the number of epimastigotes/μl and the corre-
sponding mortality is indicated by bars. (B) Representative flow cytometry pseudocolor charts
are provided to illustrate the morphometric profile (Forward Scatter—Size vs Side Scatter—
Granularity) and fluorescent pattern observed at control samples (incubated in the presence of
PBS) as well as PI+FDA stained parasites and FDA single positive viable parasites.
(TIFF)
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