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Danggui Sini decoction (DSD) is a traditional Chinese decoction, which is wildly applied and showed to be effective in ameliorating
ischemia-related symptoms. However, the mechanisms of DSD action in ischemic damage remain to be fully clarified. Pancreatic
islet endothelial cells are pivotal constituent of islet microvasculature, with high vulnerability to hypoxic injuries. Here, using
MST1 cell, a pancreatic islet endothelial cell-line, as a model, we investigated the effects of DSD on hypoxia-stimulated endothelial
cell lesions and its underlying mechanisms. We found that DSD-Containing Serum (DSD-CS), collected from DSD-treated rats,
could efficiently protect MST1 survival and proliferation from Cobalt chloride (CoCl

2
) induced damage, including cell viability,

proliferation, and tube formation. Furthermore, DSD-CS restored the activity of PI3K/Akt/eNOS signaling inhibited by CoCl
2
in

MST1 cells. The protective effect of DSD-CS could be blocked by the specific PI3K/Akt/eNOS inhibitor LY294002, suggesting that
DSD-CS protection of MST1 cell survival from hypoxia was mediated by PI3K/Akt/eNOS pathway. In conclusion, DSD treatment
protected MST1 survival from hypoxic injuries via PI3K/Akt/eNOS pathway, indicating its role in protecting microvascular
endothelial cells.

1. Introduction

Danggui Sini decoction (DSD), first reported in Shanghan
Lun, is a commonly used traditional Chinese medicine in
increasing cardiovascular and peripheral circulation [1]. In
addition, DSD is also applied in treating watery diarrhea,
shock, heart failure, and severe poor extremity circulation
[2–5]. It is extracted from Angelica sinensis, Ramulus Cin-
namomi, and Radix Puerariae for nourishing blood, antag-
onizing vascular diseases, and hemodynamic instability [2,
5, 6]. Angelical sinensis acts as a traditional phytochemicals,
which was first reported in Shennong Bencao Jing, with ability
to promote angiogenesis [1, 3, 5, 7]. Ramulus Cinnamomi is
a principal bioactive ingredient with antioxidant and anti-
inflammatory effects [8–12]. Puerarin is a traditional Chinese
herbal, which shows a great effect in protecting islets cells
from oxidative stress by activating antioxidant enzymes [13,

14]. In previous study, we have reported that DSD was effec-
tive in ameliorating diabetic peripheral neuropathy (DPN),
one of the common and typical diabetes microvascular
complications [6].

Microvascular endothelial cells form a physiologically
vital interface between the circulating blood and surrounding
microenvironment and thus play a key role in regulating
the access of cells and blood molecules into the tissue
under a variety of conditions including inflammation, repair,
and survival [15, 16]. Besides, uninterrupted blood flow
through the microvasculature is critical for overall organ
function to supporting nutrition and adequate oxygen [15–
18]. As the typical component of islet microvasculature
and microcirculation [19], pancreatic islet endothelial cells
are critical for oxygen and hormones transportation and,
therefore, play important roles in the pancreas 𝛽-cell survival
and proliferation [20–22], with high vulnerability to hypoxic
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Table 1: Parameters of ferulic acid, cinnamic acid, and puerarin for MS condition.

Compound Name Precursor Ion Product Ion Fragmentor Collision Energy Cell Accelerator Voltage Polarity
Ferulic acid 193.2 134.2 91 11 0 Negative
Cinnamic acid 147.2 103.2 83 5 7 Negative
Puerarin 417.1 297.1 152 22 0 Positive

injuries [23–26].Thus the pancreatic islet endothelial cellmay
serve as a goodmodel for studyingmicrovascular endothelial
cell biological activities.

Here, using a pancreatic islet endothelial cell-line MST1
cell as a microvasculature model, we designed the present
study to evaluate whether Danggui Sini decoction can protect
endothelial cells function and survival against hypoxic stress
in vitro.

2. Materials and Methods

2.1. Materials. Cobalt chloride (CoCl
2
), a chemical to induce

hypoxia-like reactions, was purchased from Sigma-Aldrich
(Merck Millipore, Darmstadt, Germany). Cell Counting
Kit-8 (CCK-8) was obtained from Dojindo Laboratories
(Kumamoto, Japan). In Situ Cell Death Detection Kit for
TUNEL assay was obtained from Roche (Basel, Switzerland).
Cell-Light� EdU Apollo488 In Vitro Kit was obtained from
Ribobio (Guangzhou,China).MatrigelMatrixGrowth Factor
Reduced (356230) was purchased from Corning Incorpo-
rated (Tewksbury, MA, USA). Akt, p-Akt, p-eNOS, eNOS,
and 𝛽-actin antibodies were purchased from Cell Signaling
Technology (Boston, MA, USA). LY294002, a PI3K inhibitor,
was obtained from Cell Signaling Technology (Boston, MA,
USA).

2.2. Preparation of DSD-Containing Serum (DSD-CS). The
DSD was prepared by the Department of Pharmacy of
the First Affiliated Hospital of Xiamen University, China.
Male Sprague-Dawley rats (350-400 g) were purchased from
Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai,
China). All procedures conducted in the animal experiments
were approved by Xiamen University Animal Care and Use
Committee. Rats were divided into two groups randomly.
One group was given DSD (100 mg/kg, dissolved in water)
with daily gavage for 7 consecutive days, while the other
group was given an equal volume of water only. On day 7,
2 hours after the last oral administration of DSD, rats were
anesthetized, and the blood was collected from abdominal
aorta and kept at 4∘C overnight. The second day, blood was
centrifuged at 3000 rpm for 10 min and the serum was
collected. The serum was inactivated for 30 mins at 56∘C and
then kept at -20∘C until use.

2.3. Quality Control for DSD and DSD-Containing Serum
(DSD-CS). As described in themethod andmaterial part, we
have compared the chemical composition of DSD and DSD-
Containing Serum using mass spectrometer HPLC analysis
(Figure 1).The chemical compositions ofDSD itself andDSD-
Containing Serum (DSD-CS) were determined by an Agilent

6410 triple stage quadrupole mass spectrometer equipped
with an ESI ion source and anAgilent 1290HPLC systemwith
autosampler (Agilent Technologies, Santa Clara, CA, USA).
The analytes were separated on ACQUITY UPLC HSS C18
(2.1 × 100 mm, 1.8 𝜇m) used at 40∘C. The mobile phase was
used with a gradient elution: 0–5 min, 10-80 % B, and 5-
7 min, 80-90 %, at a flow rate of 0.3 ml/min. ESI-MS/MS
conditions were set as follows: gas temperature 300∘C, gas
flow 5 l/min, capillary: positive 4000V, negative 3500V, and
nebulizer pressure 45 psi. MS acquisition was performed in
multiple reaction monitoring (MRM) mode. The compound
dependent parameters used for analysis were summarized in
Table 1. The result was shown in Figure 1. By comparing to
reference standards, major peaks were identified as ferulic
acid, cinnamic acid, and puerarin. DSD is the same as DSD-
Containing Serum (DSD-CS).

2.4. Cell Culture and Treatment. MST1 cell, an islet endothe-
lial cell-line, was purchased from American Type Culture
Collection (ATCC). MST1 were cultured in RPMI 1640
medium supplemented with 10% fetal bovine serum (FBS),
streptomycin (100 𝜇g/mL), and penicillin (100 Units/mL).
Cells were exposed to CoCl

2
with or without DSD-CS (10%,

v/v) for 12 hours or 24 hours. According to the results of dose
and time course tests, CoCl

2
stimulation at 200 𝜇M for 24

hours was applied in the rest of the study.

2.5. Cell Viability Assay. Cell viability was evaluated by Cell
Counting Kit. MST1 cells were seeded in 96-well plates (5000
cells/ well) and exposed to CoCl

2
(200 𝜇M) with or without

DSD-CS for 24 hours. Then 10 𝜇L CCK-8 reagent was added
to each well of the plates and incubated at 37∘C for 1 hour.
The absorbance was measured with the Bio-Tek Synergy H1
Microplate Reader (Winooski, VT, USA) at 450 nm.

2.6. Apoptosis Assay. Cell apoptosis was evaluated by In Situ
Cell Death Detection Kit with counterstaining by DAPI.
Images were taken by a fluorescence microscope (Olympus,
Shanghai, China).

2.7. Cell Proliferation Assay. Cell proliferation was evaluated
by Cell-Light� EdU Apollo488 In Vitro Kit. Briefly, MST1
cells were fixed in the 4%paraformaldehyde after treatment at
room temperature for 30 min and then stained with Apollo�
for 30 min. Nuclei were stained with Hoechst 33342 at room
temperature for 30 min. Images were taken by a fluorescence
microscope (Olympus, Shanghai, China).

2.8. Tube Formation Assay. Tube formation capacity was
measured by Matrigel tube formation assay. Following the



Evidence-Based Complementary and Alternative Medicine 3

B

C

A

(a)

A

B

C

(b)

A

B

C

(c)

Figure 1: Mass spectrometer HPLC analysis of the reference standards (a), DSD (b), and DSD-Containing Serum (DSD-CS) (c). The peaks
corresponding to puerarin (A), ferulic acid (B), and cinnamic acid (C) were identified.

treatment, MST1 cells (5×104 cells) were counted and seeded
on 96-well culture plates precoated with 50𝜇l of Matrigel
Matrix at 37∘C for 30minutes in advance. Images were taken
using the fluorescent microscope 1 hour after seeding.

2.9.Western Blot Analysis. TheMST1 cells were collected and
lysed for protein extraction. Protein (25 𝜇g) was separated by
10% polyacrylamide gels and transferred to the nitrocellulose
membrane.Themembraneswere blocked by 5%BSA inPBST
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Figure 2: MST1 survival and proliferation were dose-dependently reduced by CoCl
2
treatment. The cells were treated with CoCl

2
ranging

from 100 to 400 𝜇M for 12 hours or 24 hours and measured with CCK8 assay (a) and for PNCA protein level (b, c). *P < 0.05 and **P < 0.01
versus Control group.

and incubated with primary antibodies overnight at 4∘C
followed by secondary antibody incubation at 1:5000 dilution
for 1 hour at room temperature. The blots were developed in
chemiluminescence (ECL) system and Kodak X-OMAT film.

2.10. Statistical Analysis. Results were presented as mean ±
SEM from three independent experiments at least. GraphPad
Prism 5.0 software (GraphPad, CA, USA) was applied for
data analysis. Statistical analysis among different groups was
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Figure 3: Phosphorylation of PI3K/Akt and eNOS was dose-dependently inhibited by CoCl
2
treatment. The cells were treated with different

concentrations of CoCl
2
for 12 hours or 24 hours. Protein level of p-Akt was reduced in MST1 cells stimulated with CoCl

2
(a, b). Protein level

of p-eNOS was reduced in MST1 cells stimulated with CoCl
2
(c, d). *P < 0.05 versus control group.

carried out with the paired t-test. P < 0.05 was considered
statistically significant.

3. Results

3.1. Cobalt Chloride (CoCl2) Dose-Dependently ReducedMST1
Survival and Proliferation. To investigate howMST1 respond
to hypoxia stimuli, CoCl

2
was applied in this study to

mimic hypoxia status. As was shown in Figure 2, CoCl
2

could damage cell viability dose-dependently as measured in
Cell Counting Kit-8 (CCK8) assay. PCNA (proliferating cell
nuclear antigen), identified as a marker of DNA synthesis
during cell cycling, also decreased upon hypoxia stimula-
tion indicating that MST1 proliferation was inhibited. These
results suggested that CoCl

2
could inhibit MST1 cell survival

and proliferation capacity. CoCl
2
stimulation at 200 𝜇M for

24 hours was determined for the rest of this study.

3.2. Cobalt Chloride (CoCl2) Dose-Dependently Inhibited
Phosphorylation of PI3K/Akt and eNOS. PI3K/Akt/eNOS sig-
naling plays a pivotal role in endothelial cell biological func-
tions [27–30]. Here we measured p-Akt, Akt, p-eNOS, and
eNOS expression by Western blot. As is shown in Figure 3,
CoCl
2
could reduce p-Akt and p-eNOS. The result suggested

that PI3K/Akt/eNOS signaling pathway was correlated to
CoCl
2
induced MST1 dysfunction.

3.3. DSD-CS Protected Cell Survival and Proliferation from
Hypoxia-Induced Damage is PI3K/Akt Dependent. To deter-
mine whether DSD-CS could protect cell survival from
hypoxia-induced damage, CCK8 and TUNEL assay were
applied in this study. As presented in Figure 4, exposure
to 200 𝜇M CoCl

2
for 24 hours significantly reduced cell

survival compared with the vehicle group. The decrease of
cell survival was abrogated by DSD-CS treatment, which was
attenuated by PI3K/Akt inhibitor LY294002. Furthermore,
we measured cell proliferation with Cell-Light� EdU assay
and PCNA expression. As shown in Figure 4, compared
with the vehicle group, CoCl

2
treatment significantly reduced

cell proliferation, which was partially restored by DSD-CS.
The reversed cell proliferation by DSD-CS was attenuated by
LY294002. These results suggested that DSD-CS protected
cell survival and proliferation fromhypoxia-induced damage,
in which PI3K/Akt signaling was involved.

3.4. DSD-CS Protected MST1 Tube Formation Capacity
from Hypoxia-Induced Damage Was PI3K/Akt Dependent. A
Matrigel tube formation assay was performed to measure
the morphology and tube formation capacity of MST1.
Compared to the vehicle group, CoCl

2
treatment significantly

reduced the amount of tubes formation, which was antag-
onized by DSD-CS. The reversed tube formation by DSD-
CS was blocked by PI3K/Akt inhibitor LY294002, suggesting
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Figure 4: Cell survival and proliferation were protected by DSD-CS from hypoxia-induced damage. (a-c) The cell survival capacity was
measured by TUNEL assay and CCK8 assay. *P < 0.05 and ***P < 0.001 versus vehicle group (V); #P < 0.05 and ###P < 0.001 versus CoCl

2
+

vehicle group (V); &P < 0.05 and &&P < 0.01 versus CoCl
2
+ DSD group. (d-f) The cell proliferation was measured by EdU assay and PCNA

expression. *P < 0.05 and ***P < 0.001 versus vehicle group (V); #P < 0.05 and ##P < 0.01 versus CoCl
2
+ vehicle group (V); &P < 0.05 and

&&P < 0.01 versus CoCl
2
+ DSD group. Scale bars: 200 𝜇m.

that PI3K/Akt signaling is involved in DSD-CS mediated
improvement of cell tube formation capacity (Figure 5).

3.5. DSD-CS Mediated Protective Action Activated PI3K/Akt/
eNOS Signaling. To investigate whether the effect of DSD-
CS was mediated by PI3K/Akt/eNOS signaling pathway, we
measured p-Akt, Akt, p-eNOS, and eNOS expression by

Western blot. As shown in Figure 6, hypoxia stimulation
reduced level of p-Akt compared to the control group. DSD-
CS treatment can partially antagonize the reduction. The
effect was blocked by LY294002. Meanwhile, we found that
CoCl
2
reduced p-eNOS protein level in MST1 after 24 hours

of incubation, which was abrogated by DSD-CS. Similarly,
LY294002 could also block the reverse effect of DSD-CS
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(a) (b)

Figure 5: DSD-CS protected MST1 tube formation capacity from hypoxia-induced damage and was PI3K/Akt dependent. (a) The cells tube
formation was measured by Matrigel tube formation assay. (b) Number of branching was quantified. *P < 0.05 versus vehicle group (V); #P <
0.05 versus CoCl

2
+ vehicle group (V). Scale bars: 200 𝜇m.

(a)

(b)

(c)

(d)

Figure 6: Effects of DSDon PI3K/Akt/eNOS signaling in CoCl
2
treatedMST1. (a-b) RepresentativeWestern blots of total and phosphorylated

Akt protein expression. *P < 0.05 versus vehicle group (V); #P < 0.05 and ###P < 0.001 versus CoCl
2
+ vehicle group (V); &P < 0.05 and &&P

< 0.01 versus CoCl
2
+ DSD group; (c-d) Representative Western blots of total and phosphorylated eNOS protein expression. *P < 0.05 versus

vehicle group (V); #P < 0.05 and ###P < 0.001 versus CoCl
2
+ vehicle group (V); &P < 0.05 and &&P < 0.01 versus CoCl

2
+ DSD group.
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indicating the involvement of Akt pathway in DSD-CS
effect.

4. Discussion

Danggui Sini decoction (DSD) is a commonly used Chi-
nese traditional medicine in increasing cardiovascular and
peripheral circulation [1]. Previous researches had demon-
strated that it is effective in treating vascular diseases,
including Raynaud’s phenomenon (RP), shock, heart failure,
and severe poor extremity circulation [1–5]. Furthermore,
its major components including Angelica sinensis, Ramulus
Cinnamomi, andRadix Puerariae have been shown to possess
great potential in promoting angiogenesis [1, 3, 5, 7] and
activating antioxidant enzymes and anti-inflammation [8–
14]. Here we showed that DSD greatly protected endothelial
cell survival, proliferation, and function under hypoxic con-
ditions.

Mounting studies have revealed the underlying mecha-
nisms of Danggui Sini decoction (DSD) in regulating micro-
circulation. It was demonstrated that DSD could regulate the
lipid metabolism, energy, and amino acid to adjust the fiber
protease, platelet aggregation, and the expression of tissue
factor [31]. In addition, DSD could alleviate diabetes-induced
neuropathic pain by suppressing inflammatory process and
gliosis in spinal cord [6]. Pancreas islet has a plenty of
microvasculature transporting oxygen and hormones, which
plays pivotal roles in supporting and regulating the pro-
liferation and survival of pancreas 𝛽-cells [20–22]. It may
also influence pancreatic islet transplantation, the responsive
capacity to insulin resistance of 𝛽-cells, and the overall islet
microenvironmental homeostasis [32, 33]. Our present study
demonstrated that DSD could efficiently protect islet derived
endothelial cell-line-MST1 against Cobalt chloride (CoCl

2
)

induced lesions, including cell viability and proliferation and
tube formation.

Endothelial cell viability, proliferation and tube formation
capacity could be regulated by mitotic spindle dynamics [34–
36], the activation of proapoptotic factors, and the inhibition
of antiapoptotic factors [37–39]. PI3K/Akt is reported to be a
key signaling pathway involved in regulating endothelial cells
viability, proliferation, and angiogenesis [40, 41]. One of its
downstream targets is eNOS, which is also a critical regulator
in endothelial cell survival and proliferation. By using MST1
cells, the phosphorylation of eNOS was completely blocked
in the presence of LY294002 (a specific PI3K/Akt inhibitor).
Besides, our study discovered that DSD-CS could reverse
the CoCl

2
-induced PI3K/Akt/eNOS inhibition, which was

blocked by the specific PI3K/Akt inhibitor LY294002, sug-
gesting that DSD-CS protection of MST1 cell survival from
hypoxia was mediated by PI3K/Akt/eNOS pathway.

Lining in the inner surface of blood microvessels, the
vascular endothelium acts as the first interface for circulating
blood components and regulates the perfusion and blood
delivery. Besides, it interacts with extravascular tissues as
well as other cell types lining along vasculatures. As a
semipermeable barrier, it controls blood–tissue exchange of
oxygen, nutrients, and hormones. Upon barrier dysfunction,

it will lead tomultiple organ dysfunction includingmetabolic
disorder, infection, trauma, and other kinds of disease [42].
Our study demonstrated that DSD-CS treatment could effi-
ciently protect MST1 against hypoxic injuries by maintaining
cell viability and proliferation and tube formation capacity
indicating that DSD treatment had a direct protection effect
on islet endothelial cell.

In summary, we revealed that DSD is effective in protect-
ing the islet endothelial cells from hypoxia-induced damage.
DSD protection of endothelial cell survival and proliferation
and tube formation capacity involved PI3K/Akt/eNOS path-
way. In addition to its multiple roles in treating ischemia-
related diseases [1–6], DSD was showed here that it had a
direct and potent effect in protecting cultured islet endothe-
lial cell under hypoxic conditions, implying a further applica-
tion in ameliorating islet microvasculature andmicrocircula-
tion dysfunction when the hypoxia is present.
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