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Abstract

Bayesian estimation has been previously demonstrated as a viable method for developing subject-

specific vocal fold models from observations of the glottal area waveform. These prior efforts, 

however, have been restricted to lumped-element fitting models and synthetic observation data. 

The indirect relationship between the lumped-element parameters and physical tissue properties 

renders extracting the latter from the former difficult. Herein we propose a finite element fitting 

model, which treats the vocal folds as a viscoelastic deformable body comprised of three layers. 

Using the glottal area waveforms generated by self-oscillating silicone vocal folds we directly 

estimate the elastic moduli, density, and other material properties of the silicone folds using a 

Bayesian importance sampling approach. Estimated material properties agree with the “ground 

truth” experimental values to within 3% for most parameters. By considering cases with varying 

subglottal pressure and medial compression we demonstrate that the finite element model coupled 

with Bayesian estimation is sufficiently sensitive to distinguish between experimental 

configurations. Additional information not available experimentally, namely, contact pressures, are 

extracted from the developed finite element models. The contact pressures are found to increase 

with medial compression and subglottal pressure, in agreement with expectation.
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1. Introduction

Numerical models have long been employed to better understand the complex physics 

involved in human phonation. For example, reduced-order and finite element numerical 

models of the vocal folds (VFs) can self-oscillate in a manner representative of actual VF 

kinematics during sustained vowels [1], pitch glides [2], and, in a few cases, running speech 

[3]. Such models have explored a wide range of phenomena relevant to normal and 

pathological phonation, including the impact of a posterior glottal gap [4], the ventricular 

folds [5], phonation onset pressure [6], and the efficacy of various compensation 

mechanisms for vocal hyperfunction [7,8].

Whereas the majority of modeling efforts in speech, to date, have employed models with 

general population-based parameters to uncover the universal physical underpinnings of 

human phonation, a few research teams have begun to explore the development of subject-

specific numerical models for phonation [9–13]. The dynamics of the VFs are sensitive to a 

variety of factors, including subglottal pressure [14], laryngeal muscle activation [15], and a 

posterior glottal gap [4], to name a few. These factors, which can play a role in vocal 

hyperfunction [16] and other pathologies [17–20], can be a challenge to observe clinically. 

Subject-specific models, on the other hand, are constructed based on measurements of the 

subject through less challenging media, such as high speed videoendoscopy (HSV) [9,11,21] 

and offer the potential to elucidate clinically opaque features and parameters, such as VF 

contact pressures.

In general, development of a subject-specific model entails estimation of numerical 

parameters such that the model behavior “matches” some observed data from the individual 

of interest, such as VF kinematics from HSV [9,11,21]. Specifically, numerical model 

parameters are sought such that some model output(s) (e.g., the VF kinematics) best match 

the equivalent observation data from the subject. This problem is ill-posed, thus 

necessitating inverse analysis techniques to determine the model parameters [22]. To date, 

optimization [9,22], machine learning [23], and Bayesian [10,11,21] frameworks have been 

developed to estimate VF model parameters.

Optimization-based approaches define a cost functional and employ optimization techniques 

to determine the parameter values that minimize the functional. Döllinger et al. [22] was the 

first to successfully use this approach, employing the Nelder-Mead algorithm to determine 

the vibrating masses, spring stiffnesses, and subglottal pressure of a two mass VF model by 

minimizing the least-squares error between specific Fourier coefficients of the measured VF 

trajectories and the simulated trajectories. Genetic algorithms were subsequently employed 

to determine parameters of a two mass model that best reproduced the trajectories from 

patients suffering from unilateral VF paralysis [16]. Inverse procedures have also been used 

to classify disordered versus healthy VF oscillations. Wurzbacher et al. [24] employed 

simulated annealing to minimize the Euclidean distance between the model and 

experimental vocal fold trajectories to distinguish between normal and dysphonic subjects 

during sustained vowel phonation and a pitch glide. Very recently, deep learning tools have 

been employed for subject-specific modeling [23]. A long short-term memory network, 

trained on simulated data, was used to estimate the subglottal pressure from ex vivo 
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recordings of porcine vocal folds. They were able to produce accurate estimates of the 

subglottal pressure with very low online computational costs.

The vast majority of these subject-specific VF modeling efforts, and all of those mentioned 

above, have used lumped-element representations of the VFs and employed inverse methods 

to determine the reduced-order parameters. Of noted exception are the efforts by Xue et al. 

[12] and Chang et al. [13] that employ finite element model representations of the VFs. Xue 

et al. used computed tomography to reconstruct the larynx of a subject in a computational 

domain. The external geometry of the VFs was obtained from the scan, whereas the VF 

layers and material properties were assumed from population-based histological data. Chang 

et al. constructed a laryngeal model of a rabbit from magnetic resonance images. Two VF 

layers were observed in the scans, leading to a body-cover-type construction wherein the 

densities and Poisson ratios were assumed a priori. The elastic moduli of the layers were 

determined by an informal optimization that attempted to match the maximum glottal width 

and fundamental frequency of the model with HSV measurements.

In contrast to optimization-based and machine learning methods that treat estimated model 

parameters as deterministic, the Bayesian framework treats all parameters and measurements 

as random variables. Such a framework has the benefit of elucidating the propagation of 

measurement uncertainties to the model parameters and outputs. Uncertainty estimates are 

powerful as they provide additional information about the fidelity of the model outputs, 

which are expected to be of value for clinical decisions. Cataldo et al. [10] introduced the 

Bayesian framework to estimate stationary (non-time-varying) parameters of a two mass VF 

model using an importance sampling approach. This work was extended to estimate non-

stationary parameters of a three mass body-cover model using both a particle filter [11] and 

an extended Kalman filter [21]. The Bayesian framework has, thus far, been demonstrated 

using simulated observation data from a reduced-order VF model, wherein the ground truth 

was known a priori, to estimate the parameters of a different reduced-order VF fitting model. 

The similarity between the generation and fitting models enabled direct assessment of the 

performance of the Bayesian framework. Herein we build on the Bayesian inference 

framework for developing subject-specific VF models by: (i) considering real HSV 

recordings of self-oscillating silicone VFs as the observation data; and, for the first time, (ii) 

employing a two-dimensional (2D) finite element (FE) model of the VFs as the fitting 

model. These two considerations address several limitations in prior Bayesian estimation-

based inference studies applied to voiced speech, while simultaneously extending the 

methodology to more complex VF representations. Specifically, actual experimental data, 

with its inherent uncertainties, are used as the observations. Furthermore, by employing a FE 

representation of the VFs, the estimated FE parameters have direct relation to the material 

properties of the silicone VF models, reducing the layer of abstraction associated with 

reduced-order models. By using silicone VFs to generate the observation data, however, the 

“ground truth” is still available to assess the performance (estimated properties and their 

uncertainties) of the estimation procedure. Lastly, the use of experimental data provides a 

more realistic test bed due to the dynamical differences between the data source and the 

fitting model.
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We consider two different VF base configurations, with and without medial compression, as 

well as multiple subglottal pressures. Exploring medial compression offers insights into how 

FE models and Bayesian estimation can incorporate VF posturing for subject-specific 

models, while varying subglottal pressure affords a mechanism for evaluating how well 

Bayesian inference, when accounting for measurement uncertainty, can differentiate 

between phonation conditions.

The paper is structured as follows: Section 2 discusses the silicone VFs and experimental 

conditions used during collection of the data sets and handling of the HSV. Respectively, 

Sections 3 and 4 briefly discuss the mathematical model and estimation procedure used in 

the analysis. Section 5 presents the results of the estimates and provides discussion of the 

findings. Additionally, this section examines how the numerical parameters, including the 

triangulation density and step size in time, effect the subject-specific estimates. The 

manuscripts concludes with Section 6.

2. Experimental Setup and Data Collection

We employ the measured kinematics of silicone VFs undergoing self-sustained oscillations 

as a proxy for clinical HSV recordings. Silicone VFs have been shown to exhibit similar 

kinematics to real VFs [25], and thus serve as a reasonable test platform for exploring the 

viability of Bayesian estimation for producing subject-specific models from clinical data. 

Furthermore, the known histology and material properties of the silicone VFs provide 

“ground truth” data with which to compare property estimates. This section discusses the 

details of the silicone VF experiments, including the manufacturing process used to develop 

the silicone VFs, the experimental procedures used to capture the HSV, and extraction of the 

glottal area waveform (GAW) from the HSV, which will serve as the observation data in the 

inverse analysis.

2.1. Silicone Vocal Fold Models

Silicone VFs are manufactured to reflect the physiological VF structure. The geometry, 

shown in Figure 1a, is based on the M5 geometry [25] and comprises four layers to reflect 

the layered VF structure; namely, the body, ligament, superficial lamina propria (SLP), and 

epithelium. Additionally, a fiber is included in the middle of the ligament layer to control 

anterior-posterior stiffness. Each VF has an anterior-posterior length of 17.00 mm, inferior-

superior depth of 10.51 mm, and a medial-lateral height of 8.40 mm.

The manufacturing process of each silicone VF follows previous approaches [25], where the 

specific ratios of part A, B, and thinner used to manufacture each layer of the VFs, and the 

approximate resulting value of the elastic modulus, can be found in Table 1. The same 

silicone VF models were used for all tests.

2.2. Laryngeal Flow Facility

The synthetic VFs were mounted in a custom laryngeal flow facility driven by compressed 

air (~550 kPa) that was regulated down to 17.0 kPa via a Siemens 40–2 pressure regulator. 

The flow then passed through a Dwyer RMC 103-SSV flow meter that measured the 

volumetric flow rate and further regulated the flow before entering the vocal tract test 
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facility shown in Figure 1b. The facility was comprised of a model lung plenum, which 

consisted of a 0.03 m3 cylindrical chamber that was acoustically treated on the inside to 

reduce acoustic reflections. The plenum exhausted to a square tube, representing the trachea, 

with a cross-sectional area of 4.94 cm2 and 48.0 cm in length. The subglottal pressure was 

measured with a flush-mounted Kulite ET-3DC pressure transducer in the wall of the trachea 

tube, 3.8 cm upstream of the glottal exit.

Two square mounting brackets that housed the synthetic VF models were attached at the exit 

plate of the tracheal tube. An inset within the tracheal tube transitioned the interior 

dimensions of the square tracheal tube down to 1.7 cm × 1.7 cm over a length of 2.5 cm. 

While the medial-lateral dimension of each VF is 8.4 mm, an inset depth of 7.6 mm was 

machined into each opposing mounting bracket to hold the VFs. In this manner, the medial 

surface extended above the contacting surface of each bracket by 0.8 mm, such that when 

the opposing VFs were brought into contact the amount of medial compression could be 

adjusted.

Two data sets were collected. The first positioned the VFs in a natural, uncompressed 

position such that there was no medial compression. The second incorporated a 0.8 mm 

shim between the opposing brackets when the medial surfaces were positioned in contact. 

This resulted in each VF being compressed by 0.4 mm in the medial-lateral direction. 

Anterior–posterior tensioning was applied in all cases by pulling on the string embedded in 

the models with a constant force of 0.3 N. Note that in this study there was no supraglottal 

tract, see Figure 1b.

High-speed video of the VF motion was acquired using an 8-bit IDT MotionPro X3 PLUS 

camera equipped with an Elicar V-HQ Macro 90 mm lens. In this study, an array size of 484 

× 504 pixels was used with a frame rate of 2000 fps. The spatial resolution of the videos was 

24.4 pixels/mm, corresponding to a physical area for each pixel of 1.680 × 10−3 mm2.

For the case without medial compression, the VFs were driven with a subglottal pressure of 

1.00 kPa. With medial compression, data were collected for subglottal pressures of 0.91, 

1.00, 1.09, and 1.18 kPa, yielding average flow rates of 236, 260, 291, and 307 mL/s, 

respectively. HSV was recorded for 1 s in each configuration, from which a 300 ms segment 

was used to extract the GAW using segmentation [26].

3. Finite Element Model

Estimates of the silicone VF material properties were computed by matching the simulated 

motion with the kinematics captured by the HSV. To simulate the dynamics we employed a 

FE representation of the silicone VFs based upon the model developed by Alipour et al. 

[27], where the displacement field of a transversely isotropic linear medium is approximated 

using a FE basis defined by piece-wise linear functions over triangular elements. The FE 

formulation, which is functionally equivalent to Alipour et al. [27], is briefly described in 

this section.
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3.1. Mathematical Model

Small deformations of the silicone VFs can be modeled using a displacement field u, which 

describes the displacement of two linear transversely isotropic elastic bodies [27]. The VFs 

were oriented such that the medial-lateral direction defines the x-axis, the y-axis is in the 

anterior-posterior direction, and the z-axis is positive in the superior direction. As a 

simplification, the dynamics of the two VFs are treated as symmetric and displacement is 

treated as uniform along the length of the VFs; as such, the displacement field does not vary 

along the y-axis, i.e.,

u = u(x, t) = ux(x, t)i + uz(x, t)j , (1)

where x = [x, z]T is a vector of planar spatial coordinates. This reduction of physical 

dimension greatly reduces the computational cost of the FE model.

Given a deformation with displacement field u and an arbitrary variation uδ, the virtual work 

principle gives [28]

∫
Ω

uδ Tρ(x)üdV + ∫
Ω

σ(u):ε uδ dV = ∫
Γ

uδ TfsdS, (2)

where Ω and Γ are the 2D VF domain and its boundary, respectively, ρ is the material 

density, σ and ε are the stress and strain tensors, and fs is the surface force, in this case 

arising from aerodynamics.

Since the vocal folds are modeled as isotropic in the xz-plane, Hooke’s law gives [28]

σ(u):ε uδ = σ(u)Tε uδ = ε uδ Tσ(u) = ε uδ TCε(u), (3)

where ε(u) =
∂ux
∂x ,

∂uz
∂z ,

∂uz
∂x +

∂ux
∂z

T
 and C is a positive definite matrix given by

C(E, v) =
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

= μ(E, v)

2(1 − v)
1 − 2v

2v
1 − 2v 0

2v
(1 − 2v)

2(1 − v)
1 − 2v 0

0 0 1

. (4)

Here λ and μ are the Lamé parameters that are related to the Young’s modulus E and 

Poisson’s ratio ν via

μ(E, v) = E
2(1 + v) , λ(E, v) = vE

(1 + v)(1 − 2v) . (5)

Note that for C(E, ν) to be positive definite requires E > 0 and −1 < ν < 1/2.

Finally, following Alipour et al. [27], the viscous damping experienced by the VFs is 

modeled by replacing the shear modulus, μ(E, ν), with μ + ηd/dt, where η is viscosity.
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3.2. Finite Element Approximation

The displacement field is approximated with a linear combination of piece-wise linear basis 

functions ϕi i = 1
N , given by

u(x, t) ≈
∑i = 1

N αi(t)ϕi(x)

∑i = 1
N βi(t)ϕi(x)

(6)

where each ϕi(x) is defined over a set of connected elements that approximate the geometry 

of the VFs. The FE approximation is then found by substituting this approximation into 

Equation (2), giving

Mθ̈ + Dθ̇ + Kθ = F, (7)

where

M = ∫
Ω

ρΦTΦdV , D = ∫
Ω

ηΦd
TSΦddV , K = ∫

Ω
Φd

TCΦddV ,  and F = ∫
Γ

ΦTfs

dS .
(8)

Here,

θ(t) = α1(t), …αN(t), β1(t), …βN(t) T, (9)

Φ(x) =
ϕ1(x) ⋯ ϕN(x) 0 … 0

0 … 0 ϕ1(x) … ϕN(x) , (10)

Φd(x) =
∂xϕ1(x) … ∂xϕN(x) 0 … 0

0 ⋯ 0 ∂zϕ1(x) … ∂zϕN(x)
∂zϕ1(x) … ∂zϕN(x) ∂xϕ1(x) … ∂xϕN(x)

, (11)

and integration is interpreted element wise. The computation of M, D, and K now follow the 

standard finite element construction [28].

The boundary of the VFs was split into two sections: (i) a section where external forces are 

applied, denoted Γfree, and (ii) a section where the nodes do not move, which represents the 

walls of the trachea, denoted Γfixed. The vector F is the nodal force vector and is the result of 

the transverse surface force. In this work aerodynamic pressure is treated as the only stress 

leading to an external force on the surface nodes. The pressure at each node along the free 

surface is modeled using a one-dimensional Bernoulli flow model, which gives
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p(s, t) = psub − psub − psup
Asep(t)
A(s, t)

2
, A(s, t) < Asep

psub, A(s, t) ≥ Asep

(12)

where s ∈ Γfree, psub and psup are the subglottal and supraglottal pressures, respectively, 

Amin(t) is the minimum glottal area at time t, A(s, t) is the area at location s at time t, and 

Asep = 1.3Amin(t) is the glottal area at the location of flow separation [29,30].

Vocal fold collision is modeled by restricting the x-coordinate of each node from crossing 

the midline. Should a time step result in a node crossing the midline, its x-coordinate is 

forced to the midline. The force required to restrict the node to the midline is directly the 

contact force. Contact pressure can be obtained by dividing by the edge area (distance 

between the the node and its neighbor).

Finally, time integration was achieved through the finite differencing scheme set out by 

Alipour et al. [27]. The time integration gives the displacement field over time, yielding a 

position time series for each node in the finite element mesh. From this the glottal width, 

equivalent to what can be observed with HSV; Wgl is given by Wgl(t) = 2 min{x1(t), x2(t), 
…, xN(t)}, where N is the number of nodes, and xi(t) represents the x-coordinate position 

time series the of the ith node. Thus the simulated glottal area, As, can be computed as As(t) 
= ℓgl × Wgl(t), where ℓgl is the length of the glottis, a constant in the two-dimensional 

approximation employed herein.

4. Estimation of VF Material Properties

The FE model embeds the material properties (e.g., E, ρ, etc.) that we aim to directly 

estimate via Bayesian inference. This section details the parameterization of the FE model 

and the Bayesian inference procedure employed herein.

4.1. Parameterization of the FE Model

The silicone VFs were numerically modeled with three layers: the body, cover (which 

combines the SLP and epithelium), and ligament. Employing the same dimensions as the 

silicone VFs (see Section 2.1), a FE representation was generated comprising 205 triangular 

elements and 120 nodes, see Figure 2a. The sensitivity of the results to the triangularization 

is discussed in Section 5.3.

All material properties are modeled as uniform across all layers except for the Young’s 

modulus, which differs from layer to layer, but is constant within a layer. As a result, the FE 

model is parameterized by: ρ, η, E (for each layer), ν, and psub and psup. The density, 

viscosity, Young’s modulus for each layer, and subglottal pressure were estimated while all 

other parameters were treated as fixed and known. Specifically, we assumed ν = 0.4995 [31] 

and psup = 0 Pa. This parameterization results in low dimensionality for the estimation 

problem while still employing a high degree-of-freedom VF model.

As discussed in Section 2.2, medial compression of the silicone VFs is considered. Medial 

compression pre-stresses the VFs introducing more initial potential energy into the system. 
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The compression is modeled via an initial position parameter, x0, which represents the 

maximum value that the x coordinate of any node can attain. As a result, having x0 = 8.4 

mm indicates no medial compression and any value 0 ≤ x0 < 8.4 mm indicates the presences 

of medial compression, as shown in Figure 2. The initial displacement of each node θ0 in 

cases involving medial compression was calculated from Equation (7) with time derivatives 

set to zero. This equation was solved iteratively by adjusting the x coordinate of the nodes in 

steps of 10−4 mm while enforcing that no node cross the midline.

The FE simulations used a time step of h = 0.05 ms [27], which is equivalent to a frame rate 

of 20,000 fps. Since the HSV was captured at 2000 fps, the simulated signal was 

downsampled to match that of the HSV. The first 250 ms of the simulated GAW were 

trimmed to ensure that the numerical model had reached stable oscillations and to avoid any 

initial numerical transients. This generally resulted in a phase shift between the measured 

and simulated signals which was corrected by cross correlating the first two cycles of the 

signals and phase shifting to align the remainder of the signals.

4.2. Bayesian Inference

The Bayesian framework for parameter inference seeks a joint probability distribution that 

represents the probability of all potential values of the parameters of interest, χ. Such a 

density is found through Bayes equation [32]

π(χ |y) = π(y |χ)πpri(χ)
π(y) ∝ π(y |χ)πpri(χ), (13)

where π(χ|y) is the posterior probability density function, which contains all probabilistic 

information about χ given observed measurements y. The density πpri(χ) is the “prior” 

probability density, π(y|χ) is the “likelihood”, and π(y) is the “evidence”. The prior contains 

known or expected statistical properties of the parameters based on all knowledge available 

prior to obtaining the measurements. For instance, if subglottal pressure is a model 

parameter to be inferred, it is known ahead of time that the value cannot be negative, and is 

likely within a specified bound. The likelihood quantifies the probability of an observed 

measurement occurring given fixed parameter values; that is, given a particular model with 

set parameters, what is the likelihood that the measured data would be observed. Lastly, the 

evidence is a normalization constant that ensures the Law of Total Probability is satisfied.

In the present work, the importance sampling approach is used due to the computational 

complexity of the model [33]. Such approaches have been successfully used previously for 

the study of phonation [10,11,34]. The fundamental premise of importance sampling is that 

certain values of the inputs are more important to the parameter being estimated than others. 

So a greater weight, which we hereafter refer to as an importance weight, is allocated to 

those regions in the parameter space that exhibit a better fit to the measurements. In 

particular, random samples of χ are drawn from some proposal distribution, and the 

resulting observations are simulated using the randomly drawn parameters. The likelihood 

distribution is then used to probabilistically quantify the goodness of fit to the measured 

data, from which an importance weight is allocated. When a sufficiently large number of 

random draws have been computed, a new ensemble is constructed by sampling from the 
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random draws in proportion to their computed importance weight. This can be summarized 

as follows:

• Initialization: generate an ensemble χ(l)
l = 1
N

 of N random samples from the 

proposal distribution π0(χ).

• Update: for each of the drawn samples, calculate the relative likelihood and 

normalize to get the importance weight for that sample

w(l) = 1
W π y|χ(l) , W = ∑

l = 1

N
π y |χ(l) . (14)

• Resample: generate another ensemble χ(l)
l = 1
N  by sampling each χl with 

probability wℓ.

If the proposal distribution is chosen to be the prior density, the final resampled ensemble 

converges in distribution to the posterior [35]. As a result, the resampled ensemble can then 

be used to compute sample-based point and spread estimates of the posterior. Herein, the 

sampling ensembles consist of 50,000 random draws from the prior distributions, which 

treats each parameter as independent. The sample mean of each ensemble is used to estimate 

the material properties and the sample standard deviation serves as an uncertainty estimate. 

The sensitivity of the results to the number of samples is considered in Section 5.3.

The above algorithm defines importance weights in terms of the likelihood density π(y |χ), 
which is determined by the specific error model [33]. In particular, if errors are modeled as 

unbiased additive normal errors the likelihood density is given by

π(y |θ) ∝ exp −1
2σe2

Am − As
2 , (15)

where σe is the expected standard deviation of the measurement error, and ∥Am − As∥2 is the 

squared two-norm of the difference between the vectors of the measured and simulated 

GAWs, respectively. In this work we choose σe = 1 mm2; this assumes a noise level of 

around 6%, which is quite large. Such a large noise level was chosen to “whiten” the 

likelihood to compensate for any model errors that are present [33].

The prior distribution for all estimated parameters were assumed uniform so as to impart the 

least information into the posterior. Table 2 lists the parameters to be estimated, their 

experimental “ground truth” values (when known), and the bounds of the uniform prior 

distribution. The specific bounds for these priors were selected to ensure that the priors 

sampled a sufficiently wide range of combinations of the parameters and were selected in an 

ad hoc manner based on an amplification of the expected uncertainty in the experimental 

value or expectations about that value. We note that a more informative prior distribution 

(e.g., a Normal distribution) will generally improve estimates and reduce uncertainties, see 

[36] for more details of how different priors impact estimates.
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5. Results and Discussion

Considering the case without medial compression as an exemplar, the estimated material 

properties from the Bayesian inferences are presented in Table 3. Overall, the estimated 

parameters show good agreement with the “ground truth” experimental values; the 

maximum discrepancy between the estimates and the experimental values occurs with the 

Young’s modulus of the ligament with a 9.6% difference. We note that the experimental 

values, while considered the “ground truth”, are themselves approximate values estimated 

from the silicone mixture fractions.

We observe that Ebdy and Ecvr are over-estimated while psub is under-estimated when 

compared with the experimental values. The under-estimation of subglottal pressure is likely 

due to the simplified fluids model being used resulting in high nodal pressures. Over-

estimating Young’s modulus of the cover is likely due to the lack of an epithelium in the FE 

model. The epithelium in the silicone VFs is extremely thin, but has a high Young’s modulus 

(45 kPa). As a result it is likely that the estimate for Ecvr is slightly elevated to compensate. 

It is unclear why the estimate for the body is consistently higher than expected, but may be 

related with the under-estimation of Elig. An important observation, however, is that all of 

the experimental values fall within two standard deviations of the estimated values. This 

indicates that the use of a FE model of the VFs is statistically capable of inferring accurate 

estimates of the material properties from a GAW. The relative uncertainty (standard 

deviation divided by the estimated value) shows that all estimates except for the Young’s 

modulus of the ligament have uncertainties of approximately 3%; the Young’s modulus of 

the ligament has an 8.6% level of uncertainty.

The relatively large bias and uncertainty for the ligament stiffness in comparison with the 

other parameters potentially results from the comparative insensitivity of the FE kinematics 

to this parameter. The ligament is a small internal region of the geometry and as a result has 

less impact on the large scale kinematics compared with the body and cover layers. Since 

Elig is the only parameter defined in this region, a range of values are likely to generate 

similar GAWs, and any error in the estimate of Elig can be compensated for by slight 

adjustments to Ebdy and/or Ecvr. Despite the modest difficulty in estimating this parameter, 

overall Bayesian inference is able to accurately estimate the VF material properties from 

HSV data alone, presuming that the histology of the folds are known a priori.

Figure 3 compares the kinematics of the FE model employing the estimated material 

properties from Table 3 with the HSV over a single vibratory cycle. The FE model captures 

the silicone VF motion well, including the mucosal wave and the pronounced inferior-

superior motion of the folds (see the third column in Figure 3). The fourth column highlights 

that closure of the FE model does not necessarily always correspond with closure of the 

silicone VFs.

The GAW extracted from the FE model and the corresponding HSV for the no medial 

compression case is presented in Figure 4. As suggested by the fourth column of Figure 3, 

the FE model closes (GAW reaches zero) before the silicone VFs close. In fact, small 

openings along the span of the silicone VFs exist during the “closed” phase, as suggested by 
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Figure 2a. Overall, however, the simulated GAW fits the observed data well, with the 

measured GAW falling within the estimated uncertainty bounds the majority of the time. 

There are a few persistent mismatches, such as the small peak immediately after opening. 

Such errors are likely to be model errors induced by approximations, including the use of a 

simplified 2D approximation of the VFs.

5.1. Effect of Medial Compression

As discussed in Section 2.1, HSV was captured with and without medial compression for 

psub = 1 kPa. Since it was difficult to measure the degree of medial compression 

experimentally, the actual pre-stress is highly uncertain. As such, the initial position 

parameter x0 in the FE model is included as an estimated parameter for both cases.

Table 4 presents the estimated material properties for both medial compression cases. The 

estimated properties (excepting x0) agree well with each other and with the “ground truth” 

values. This is encouraging in two respects: the same silicone VFs were used in both cases, 

and the pre-stress in the medial compression case is captured in x0 and thus does not 

appreciably bias the stiffness estimates. However, the higher parameter uncertainties for the 

medial compression case is very likely due to the fact that the pre-stress associated with 

medial compression can be approximated by varying other stiffness parameters. This yields 

more overall uncertainty in the results, as other parameter combinations can explain the 

observed data.

The estimates for the initial position parameter, x0, are statistically different between the two 

cases. When there is no medial compression the initial position is estimated to be 8.39 mm 

(8.4 mm corresponds to zero compression, see Figure 2a); with compression, x0 is estimated 

to be 8.27 mm. This 0.12 mm difference in the estimates is more than double the sum of the 

two estimated standard deviations, with a t-value of 3.67, indicating that the FE model was 

capable of distinguishing between the experimental configurations. This does differ from the 

0.4 mm shim placed experimentally to produce the medial compression, though again, the 

actual degree of experimental medial compression was very difficult to ascertain.

Comparing the case without medial compression with the results in Table 3 shows that the 

uncertainties in the estimated parameters are larger in the present case despite using the 

same observation data. By including the extra fitting parameter, x0, the estimated 

uncertainties increase due to the higher dimensionality (more parameters being fit given the 

same input data). That is, with the addition of x0 as a parameter, there is now an alternative 

pathway to influence the energy in the system. That said, the uncertainties in both estimates 

are large enough and the estimated values are similar enough that the two data sets cannot be 

distinguished statistically.

Figure 5 presents the measured and estimated GAWs for the two medial compression cases, 

wherein the FE models employ the material properties given in Table 4. Both estimates fit 

the data reasonably well given the simplified FE model being used. The open quotient and 

speed quotients are both lower for the FE models, with the effect more pronounced for the 

case with medial compression. This results in a more peaked GAW in comparison with the 

HSV. The case without medial compression exhibits larger maximum glottal area, however 
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the maximum contact pressure experienced during collision in the case with compression is 

18% higher, on average, due to the pre-stress of the system (825.7 ± 58.6 Pa versus 665.0 ± 

53.1 Pa).

5.2. Distinguishing between Model Configurations

As the eventual goal of this research is patient-specific modeling, we wish to investigate 

whether the FE model is sufficiently sensitive and if HSV data provide enough information 

to distinguish between similar experimental configurations. As a first order exploration we 

consider varying subglottal pressures for silicone VFs with medial compression. As 

discussed in Section 2.1, the pressures considered range from 0.91 to 1.18 kPa.

The fits to each GAW are shown in Figure 6 and the resulting estimates of the degree of 

medial compression, along with the other material properties, are shown in Table 5. Similar 

to Figure 5, the fits are again reasonable given the simplified model being used. As the 

subglottal pressure increases, so too does the maximum glottal area, as expected; this 

increase is captured by the FE model. As with the previous comparison, the open quotient 

and speed quotient are both lower for the FE model, though the difference decreases with 

increasing subglottal pressure.

As shown in Table 5, all experimental values fall within two standard deviations of the 

estimated values; furthermore, the viscosity is estimated to be approximately 3 Poise, which 

is consistent with the previous results. The estimated medial compression, x0, varies 

somewhat from case to case, but all values are within two standard deviations of one 

another, indicating statistical consistency. Overall, comparing the estimates in Tables 3–5, 

we find that the estimated material properties are quite consistent across all cases studied, 

engendering confidence in the method.

Considering the uncertainty in the estimates, we see that as the subglottal pressure increases 

its uncertainty decreases. As the variance of the measurement noise is treated as fixed at 1 

mm2 in all estimates, this decrease in uncertainty is not due to a decrease in measurement 

uncertainty. Furthermore, the same prior distributions are used in all cases. Hence, this 

decrease in uncertainty is due to an increase in sensitivity of the model, which could be due 

to the larger glottal width having fewer parameter combinations that are capable of matching 

the data. Alternatively, the change in uncertainty could be due to the pre-stress model. The 

estimates computed for psub = 1.09 kPa and psub = 1.18 kPa have x0 > 8.3 mm, whereas the 

other two estimates have x0 < 8.3 mm; in addition, there is a marked decrease in the 

uncertainties in x0 as psub increases. This could indicate that a higher level of VF 

compression results in a model with lower sensitivity to the parameters. That is, the 

dynamics may be more influenced by pre-stress at higher subglottal pressures.

Overall, the consistency in the material property estimates and the reasonably low relative 

uncertainty in psub indicates that the FE model is capable of distinguishing between 

operational conditions. In pairwise t-tests of the four estimates only two pairs fail to reject 

the hypothesis of unique data sets (95% confidence); those pairs are psub = 0.91 kPa versus 

1.00 kPa and psub = 1.00 kPa versus 1.09 kPa. In these two pairs there are small changes in 

the experimental subglottal pressures (0.09 kPa) and similar fundamental frequencies. 
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Interestingly, there is significant difference between the two cases with the highest subglottal 

pressures, despite also only differing by 0.09 kPa in line with the decreased uncertainty in 

subglottal pressure at these conditions. We note there is a more marked difference between 

fundamental frequencies in these cases.

For further validation we compare the volumetric flow rate, Q, estimated from the model 

with the experimentally measured values; volumetric flow rate was not included in the 

estimation process and thus provides an independent measure for method/model validation. 

Table 6 compares the estimated and experimentally measured values. The estimated flow 

rate is derived directly from the Bernoulli flow model embedded in the FE model (see 

Section 3) as Q(t) = 1.3Amin(t) 2ϱ−1 psub − psup  where ϱ = 1.14 kg m−3 is the density of air. 

As can be seen in the table, the estimated values generally agree well with, but tend to 

slightly over-predict, the experimentally measured values. Excepting for the case of psub = 

1.18 kPa, the estimated values are all within one standard deviation of the measurements.

With the FE models developed for the four cases and validated with an independent measure 

(Q), an additional parameter is explored that is not available experimentally. Table 7 presents 

the average mean and maximum contact pressures experienced during collisions for the four 

subglottal pressures. The contact pressures increase with increasing subglottal pressure, 

which qualitatively agrees with previous studies [37]. Excepting for the psub = 1.18 kPa case, 

the contact pressures are all less than the subglottal pressure. The silicone VFs employed in 

this study qualitatively do not appear to have vigorous contact when self-oscillating, and as 

such, the contact pressures may indeed be less than the subglottal pressure. The outlier in the 

estimated pressure data is the highest subglottal pressure, which exhibits mean and 

maximum contact pressures well above the subglottal pressure. This is also the case that 

predicted a volumetric flow rate well above the measured value, suggesting that this model is 

less reliable. Interestingly, this is the case that had the lowest material property uncertainties. 

It is likely that the poor agreement in Q, and the exceedingly high contact pressures for this 

case, are a result of more complex vibratory patterns for the silicone VFs at this higher 

subglottal pressure that are not captured well with the simplified 2D FE model. This 

suggests that additional measures may be required in the estimation process to generate an 

accurate model for this case.

5.3. Sensitivity Analysis

The estimates presented in Section 5 were produced for fixed ensemble size for the 

importance sampling, and fixed time step size and mesh density for the FE model. These 

parameters influence the quality of the numerical model and the estimation procedure while 

also impacting the computational load. The estimates presented in the previous sections, for 

example, took 140 h for 16 parallel threads on a AMD Ryzen Threadripper 1950X with 16 

cores at 3.4 GHz and 128 GB of RAM to run the importance sampling for all 50,000 

samples. As such, there is motivation to use a coarser model (larger/fewer elements and 

larger time step) and fewer samples to decrease the computational load. To ensure that the 

estimates presented in this work are not conditional on the numerical parameters being used 

in the model we explore the sensitivity of the results to them in this section. We use the case 

without medial compression, again, as the exemplar.
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5.3.1. Ensemble Size—Sensitivity of the results to the importance sampling ensemble 

size was checked by computing estimates with a progressively smaller number of samples 

from the priors. Figure 7 presents the relative error, defined as the percentage difference in 

the estimate and experimental value, and uncertainty level for ensemble sizes ranging from 

100 to 50,000. It was found that, on average, the estimated values stabilize as the ensemble 

size increases. The peaks which occur at approximately 15,000 and 25,000 samples are due 

to the sample-based nature of the estimate. Since the estimates are the sample mean of the 

resampled ensemble the exact estimated value for each parameter changes as more samples 

are included in the ensemble. As such, it is encouraging to note that the estimates do appear 

to stabilize. Specifically, the average error of the estimates stabilizes when using an 

ensemble size of approximately 15,000, with the maximum error stabilizing with 

approximately 40,000 samples. The uncertainty smoothly decreases as the ensemble 

increases, stabilizing when approximately 25,000 samples are used. Error in the estimates 

converges faster than the uncertainty since an accurate estimate of the mean is easier to 

attain than a stable estimate of the variance.

5.3.2. FE Time Step and Triangulation—Estimates were produced using time step 

sizes of h = 0.025, 0.05, and 0.1 ms and triangulations with 172, 205, and 263 elements over 

the same geometry. For direct comparison, the estimates were computed using an 

importance sampling ensemble size of 50,000.

Figure 8a shows that, on average, the relative error (as defined above) in the estimates is 

very similar whether the triangulation involves 263 or 205 elements. In fact, all estimated 

parameter values differ by 0.1% or less for the two triangulations. This difference is likely 

due to numerical error resulting from the sample-based nature of importance sampling. In 

contrast, the lower density mesh introduces a larger error for all step sizes, but rapidly 

improves with decreasing step size.

Similar trends are observed in Figure 8b where decreasing step size or increasing mesh 

density results in a decrease in uncertainty. The observed decrease in uncertainty with 

decreasing time step and increasing mesh density results from having a higher fidelity 

numerical model that is more sensitive to the parameter values; that is, small changes in the 

parameter values will have a larger impact on the simulated data [33]. As a result, the 

uncertainty of the estimates will decrease as the fidelity of the model increases. However, as 

the time step decreases and mesh density increases the computational cost grows 

exponentially. Thus, examining how the estimated uncertainty behaves as the fidelity of the 

model increases becomes quickly infeasible.

6. Conclusions

To date, the approaches employed for developing subject-specific numerical VF models have 

focused on lumped-elements for the fitting model in the inverse analysis; as such, parameter 

estimates are often greatly abstracted from the physical tissue properties. To overcome these 

limitations, the present work proposes a FE model of the VFs for a fitting model. The FE 

model captures the geometry and layered structure of the VFs more accurately, treating them 

as a multi-layered viscoelastic body, thus better approximating their kinematics. Since the 
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FE model directly employs the tissue properties, such as Young’s moduli, these properties 

are estimated directly. Estimation of material properties was demonstrated using HSV data 

of silicone VFs as the observation, showing good agreement between the estimated and 

“ground truth” material properties.

The robustness of the method was demonstrated by considering experimental data with 

different degrees of medial compression and differing subglottal pressures. The FE model 

faithfully recovered the material properties in all cases, including the degree of medial 

compression, which was embedded into the FE model in the form of base displacement. 

This suggests that the employed Bayesian framework using a FE fitting model is sufficiently 

sensitive to distinguish between different experimental conditions, even though the model 

was restricted to two dimensions.

The FE models were validated by comparing the volumetric flow rate predicted by the 

model with experimentally measured values. This observation was not included in the 

estimation process and, as such, was an independent measure. The volumetric flow rate was 

slightly over-predicted, but generally agreed well. The exception was the highest subglottal 

pressure case, which was considerably over-predicted. Additionally, the contact pressures 

extracted from the developed FE models were found to increase with increasing subglottal 

pressure and medial compression, which is a trend that qualitatively agrees with previous 

studies. The highest subglottal pressure case was again an outlier, suggesting that the FE 

model for that case does not accurately capture the kinematics of the silicone VFs, likely due 

to the 2D geometry. This could potentially be improved by incorporating additional 

observations in the estimation procedure or expanding to a three-dimensional model.

The stability of the results was examined with respect to numerical parameters, such as the 

importance sampling ensemble size, time step size, and mesh density. Estimated values 

converged at relatively modest ensemble sizes, though resolving the uncertainties required 

considerably more samples. Decreasing the time step size and increasing the mesh density 

lead to smaller uncertainties at the cost of significant computational time. One of the main 

drawbacks to our proposed model is the computational complexity; this cost will increase if 

more complex fluids models, a three-dimensional geometry, or acoustics are included.

One source of uncertainty that has not been considered in this work is the structure of the 

layers. All estimates in this work have been computed with a FE model that was formed 

treating the layers and dimensions of the silicone VFs as perfectly known. The use of 

imperfect layers will affect the estimates and uncertainties of the material properties, 

however, this is the subject of ongoing research and requires a further examination.

As an introductory effort, incorporating a FE fitting model into the Bayesian estimation 

framework has shown good promise. Future work includes validating the contact pressure 

estimates with experimental data, implementing a three-dimensional FE model, and 

employing clinical HSV.
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Figure 1. 
(a) Model of the geometry of the silicone vocal folds; and (b) image of the experimental 

flow facility.
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Figure 2. 
(a) Finite element triangulation used to simulate the silicone vocal folds; and (b) mesh 

deformation occurring as a result of medial compression. Red region: body; green region: 

ligament; and blue region: cover.
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Figure 3. 
Kinematics of the FE model in comparison with the observed high speed videoendoscopy 

(HSV) for the case with no medial compression (psub = 1 kPa) at several time points 

throughout a single oscillation cycle.
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Figure 4. 
Comparison of the glottal area waveforms extracted from the FE model and the HSV for the 

case with no medial compression (psub = 1 kPa). Blue dashed line: HSV; red solid line: FE 

model; orange solid lines: uncertainty bounds from the FE estimate.
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Figure 5. 
The glottal area waveform extracted from HSV of self-oscillating silicone vocal folds at psub 

= 1.00 kPa (a) without medial compression and (b) with medial compression. Blue dashed 

line: HSV; red solid line: FE model; orange solid lines: uncertainty bounds from the FE 

estimate.
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Figure 6. 
Comparison on the glottal area waveforms extracted from HSV and the FE predictions from 

the fitted material properties for (a) psub = 0.91, kPa (b) psub = 1.00 kPa, (c) psub = 1.09 kPa, 

and (d) psub = 1.18 kPa. Blue dashed line: HSV; red solid line: FE model; orange solid lines: 

uncertainty bounds from the FE estimate.
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Figure 7. 
(a) Relative error of the estimates; and (b) relative uncertainty for increasing ensemble size. 

Solid blue line: average; dashed red line: maximum.
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Figure 8. 
The average (a) relative error and (b) relative uncertainty of the estimates as a function of 

time step size for various triangulations. Blue with the plus markers: 172 elements; red with 

circle markers: 205 elements; black with diamond markers: 263 elements.
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Table 1.

Different mixture ratios of silicone and their corresponding Young’s moduli. A ratio of 1:1:x means that the 

layer was formed by mixing 1 part A, 1 part B, and x parts thinner by weight.

VF Layer Material Ratio (A-B-Thinner) Young’s Modulus (kPa)

Body Ecoflex 1-1-1 11.8

Ligament Ecoflex 1-1-4 2

SLP Ecoflex 1-1-6 0.6

Epithelium Dragon Skin 1-1-1 45
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Table 2.

List of the the experimental values and prior distributions used for the estimated parameters. The distribution 

bounds are the bounds of the employed uniform prior distribution (lower bound, upper bound).

Ebdy (kPa) Ecvr (Pa) Elig (kPa) psub (Pa) ρ (kg/m3) η (Poise) x0 (mm)

Experimental Value 11.8 600 2 1000 1049.75 - -

Distribution Bounds (9, 15) (250, 950) (0.5, 3) (400, 1800) (950, 1200) (1, 7) (7.4, 8.4)
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Table 3.

Material property estimates for the case without medial compression.

Ebdy(kPa) Ecvr(Pa) Elig(kPa) psub (Pa) ρ (kg/m3) η (Poise)

Experimental Value 11.8 600 2 1000 1049 -

Estimated Value 12.15 636.2 1.808 989.9 1051 3.079

Standard Deviation as a percentage of the Estimate 3.19% 3.35% 8.63% 3.21% 0.31% 3.48%
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Table 4.

Estimates and the associated uncertainties as a percentage of the estimate values (in brackets) for material 

properties of the silicone vocal folds and initial position for cases with and without medial compression (psub 

= 1 kPa).

Data Set Ebdy (kPa) Ecvr (Pa) Elig (kPa) psub (Pa) ρ (kg/m3) η (Poise) x0 (mm)

Experimental Value 11.8 600 2 1,000 1049 - -

Without Medial 
Compression

12.32 
(3.96%)

632.1 
(3.53%)

1.807 (9.74%) 987.7 (3.98%) 1051 (0.25%) 2.981 
(4.66%)

8.39 (0.38%)

With Medial 
Compression

12.28 
(4.30%)

629.8 (4.1%) 1.842 
(12.16%)

991.9 
(4.536%)

1051 (0.26%) 3.11 (4.66%) 8.27 (0.30%)
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Table 5.

Material properties estimates for varying subglottal pressures with medial compression. The associated 

estimate uncertainties as a percentage of the estimate values are in brackets.

psub (kPa) Ebdy (kPa) Ecvr (Pa) Elig (kPa) psub (Pa) ρ (kg/m3) η (Poise) x0 (mm)

0.91 12.38 (4.31%) 643.0 (6.22%) 2.375 (12.67%) 901.2 (6.16%) 1048 (0.28%) 2.98 (6.28%) 8.29 (0.37%)

1.00 12.28 (4.3%) 629.8 (4.1%) 1.842 (12.16%) 991.9 (4.53%) 1051 (0.26%) 3.11 (4.66%) 8.27 (0.30%)

1.09 12.15 (2.27%) 635.1 (3.01%) 1.858 (10.39%) 1062 (2.89%) 1047 (0.16%) 3.01 (4.45%) 8.33 (0.28%)

1.18 12.25 (2.07%) 639.6 (2.74%) 2.098 (8.1%) 1164 (2.43%) 1049 (0.15%) 3.03 (3.86%) 8.32 (0.22%)
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Table 6.

Experimental and estimated mean volumetric flow rates along with a measure of uncertainty in the form of a 

standard deviation as a percentage of the estimated value. Data are all in mL/s.

psub (kPa) 0.91 1.00 1.09 1.18

Experimental 236 260 291 307

Estimated 242.5 272.2 301.4 361.6

Uncertainty 8.29% 7.02% t6.14% 4.87%
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Table 7.

Estimated average maximum and mean contact pressures along with a measure of uncertainty in the form of a 

standard deviation as a percentage of the mean estimated value for the cases with medial compression. All data 

are in (Pa).

psub (kPa) 0.91 1.00 1.09 1.18

Maximum 405.8 825.7 1032.8 2000.9

Mean 246.5 475.8 662.6 1469.8

Uncertainty 13.87% 12.32% 10.14% 6.67%
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