

Supplementary Material

1.1 Network architecture and hyperparameters

The networks consist of four fully connected areas of which the topmost (area 3) has no error units

and the lowest (area 0) is driven by the input only, in a pixel-wise manner. Thus, the number of

neurons in area 0 corresponds to the resolution of the inputs. Table S1 shows the precise number of

neurons per area. Table S2 lists the used hyperparameters.

Network area Number of neurons

Input: Area 0 1156

Area 1 2000

Area 2 500

Area 3 30

Table S1. Network architecture used for the different datasets.

Parameter Value Meaning

ϵinf 0.05 uniform inference rate for areas 1-3

ϵlearn 0.01 learning rate

neps 20-40 number of training epochs

nisteps 10 inference steps before weight update

nfreps 5 inference-learn cycles on each frame

nsreps 10 cycles on each sequence per epoch

Table S2. Network hyperparameters.

 Supplementary Material

 2

1.2 Training

Network training was conducted in nested loops as described in section 2.3. Alg S1 depicts the

pseudocode for both training paradigms. The main difference between the continuous and static

training paradigms is the additional reset of activity in the beginning of the fifth ‘for’ loop. To

compensate for the shorter time between activity resets in the static training paradigm, the number of

cycles per frame 𝑛𝑓𝑟𝑒𝑝𝑠 is increased by a factor of 6.

for i ← 1, neps do ▷ Epochs

 for j ← 1 , nseqs do ▷ Number of sequences

 Initialize activity

 for k ← 1, nsreps do ▷ Iterations per sequence

 for l ← 1, nfps do ▷ Frames per sequence

for m ← 1,nfreps do ▷ Iterations per frame

 (Static training: Reset activity)

for n ← 1,nisteps do

inference (Eq. 1-3)

end for
update weights (Eq. 4)

end for

end for

end for

end for

end for

▷ Inference steps

Alg S1. Pseudocode for network training. Nested loops during network training as described in the

Methods section. In the static training, activities are reset each time a new input is presented.

1.3 Inference of high-level representations

Convergence of high-level neural activity took considerably longer (2000 inference steps were used)

than the duration that was necessary until the total prediction error in the network converged (one to

two orders of magnitude less). I.e., after the prediction errors were minimized, further inference

improved invariance, but not stimulus reconstruction. Across the network areas, this is plotted for the

rotating digits in Figure S1.

3

Figure S1. Convergence of activity over inference steps for a fixed inputs from the rotating

digits dataset across representation neurons in the different network areas.

1.4 Influence of temporal continuity

In how far is the learning of invariant representations attributable to the training paradigm? Figure S2

shows the RDM of a network trained in a static manner: the more position-dependent representations

stand in contrast to the RDMs of the continuously trained networks (Figure 4B-F) with more uniform

representations within sequences.

To analyze whether the different neural timescales are a result of the training paradigm or a result of

the network architecture, we compared the decay speed of activity autocorrelation to the statically

trained network (Figure S3).

Figure S2. Influence of static training on high-level representational invariance. Network trained

in a static manner with resets of activity after each frame show less invariance in area-3

representations compared to the continuously trained networks (Figure 4B-F). The diagonal structure

of the RDM shown here reveals that representations are specific to individual images and do not

generalize across positions.

 Supplementary Material

 4

A

B

C

Figure S3. Decay of activity autocorrelation of neural subpopulations in a statically trained

network in which activity is reset after each frame. (A) Representation neurons, (B) Error neurons,

(C) Inferred decay constants to quantify the timescale on which neural activity changed. This figure

can be compared to Figure 6, but note the different scale in Figure 6C.Reconstruction of complete

inputs

1.5 Reconstruction of complete inputs

To test which input patterns can be reconstructed from different network areas, an input image needs

to be presented for an extended period. Here, 2000 inference steps were used. The image was then

removed, and reconstructions were triggered from the chosen area, i.e., predictions were consecutively

projected to the area below according to Figure 2A:

 𝒚̂𝑙 = 𝑾𝑙𝒚𝑙+1 (𝟕)

For symbols, the reader is referred to Equation 1.

5

1.6 Reconstruction of occluded sequences

For reconstruction of whole objects from partially occluded sequences, the first frame of a sequence

was presented for an initial number of inference steps (see below) to give higher areas time to infer

stimulus identity. Each consecutive frame of the sequence was then shown for a varying number of

consecutive inference steps that is specified later. Lastly, reconstructions were normalized, dividing all

predictions by the value of the largest pixel-wise prediction of the current reconstruction. To

systematically investigate the difference between the static and continuous training paradigm, we

varied both the initial and consecutive number of inference steps across a range of parameters and used

the optimal combination we found for Figure 8. The continuously trained network consistently

achieved better reconstructions than the statically trained network as shown by the consistently positive

mean difference in reconstruction errors in Figure S4.

Figure S4. Reconstruction of occluded scenes: influence of hyperparameters. The continuously

trained network achieved better reconstructions of occluded inputs than the statically trained one. The

left plot shows the mean difference in reconstruction error between the two training paradigms across

ten occlusion sequences, for various hyperparameters (see main text). Positive values indicate better

performance of the continuously trained network. The right plot shows the standard deviations across

the ten occlusion sequences.

1.7 Influence of weight initialization

Initializing weights to lower values than used by default (for default values see section 2.2) led to a

decrease in performance, with less distinguishable representations in area 3 after 10 epochs (Figure

S5). To test this, we decreased the standard deviation of the Gaussian weight initialization. As the

distribution is centered at zero and clipped at zero to prevent negative weights, the value of the standard

deviation corresponds to the average value of the initial weights (note that this is before dividing each

weight by the number of neurons in the next higher area). Despite initially less distinguishable

representations for smaller initial weights, prolonged training led to a non-collapsed state even for the

smallest initialization that we tested (on the right of Figure S5).

 Supplementary Material

 6

Figure S5. Influence of weight initialization. Initializing weights to smaller values gradually

deteriorates the RDMs that are shown after 10 training epochs. The leftmost plot corresponds to the

default settings used in the rest of the paper, shown for a digit translation dataset. The rightmost plot

corresponds to a tenth of these weight values. After 20 more epochs on the network trained with an

initial weight of 0.05, a considerable improvement was observed.

1.8 Representational dissimilarity matrices on larger datasets

To test the influence of increasing the dataset size on the RDMs, we ran the same analysis of

constructing the RDMs (as in Figure 4) for the networks trained on the larger datasets. While the RDMs

shown in Figure S6 lost the clear block-diagonal structure, decoding performance was still far above

chance (Figure 5C). This effect, that was present for both the default and the increased network size,

 ore

epo h

 g eight

7

can be explained by a better approximation of the underlying data-generating distribution when dataset

size was increased.

A

B

Figure S6. Representational dissimilarity matrices on larger datasets. When dataset size is

increased such that multiple digits of each class are shown (in different sequences), the network forms

instance-specific (e.g. a particular digit ‘ ’ irre pe ti e of po ition) in tead of la -specific (e.g. all

digit ‘ ’) repre entation . (A) RDM for a network of increased size, with [4000, 2000, 90] neurons in

[area 1, area 2, area 3] (chosen because it better visualizes the effect) instead of the default [2000, 500,

]. The net ork a trained and e aluated on a data et of digit in tan e (equen e), fi e ‘ ’ ,

fi e ‘ ’ , et ., re ulting in i age fra e . The blo k along the diagonal are of ize ix, a ea h

sequence contains six frames. (B) When increasing the dataset size even further, the structure in the

RDM becomes less obvious, but the digit classes are still relatively well decodable (Figure 5C). An

explanation is given in the main text.

1.9 Learning multiple transformations in a single network

Learning different transformations of the same digit when these are not shown in sequence proved

challenging. Nevertheless, Figure S7 provides a proof of principle result showing decoding of digit

identity with ~80% accuracy after seven training epochs, with a linear decoder again trained on 2/3 of

the inferred representations. With prolonged training, the network tended to separate the invariant

representations for the different transformations of each digit, suggesting the need for a unifying

mechanism to merge these different invariant representations.

 Supplementary Material

 8

A

B

Figure S7. Learning multiple transformations in a single network with [2000,500,10] neurons in

[area 1, area 2, area 3]. (A) RDM of ten digits each undergoing three transformations (translation,

rotation, scaling). (B) Linear decoding accuracy of digit identity from area 3 of the same network.

1.10 Comparison of continuously trained to the untrained network

Complementing Figure 4, Figure S8 depicts the comparison of the continuously trained against the

untrained network for the remaining datasets (listed in the figure caption).

9

A

B

C

D

E

E

G

H

Figure S8. Comparison of continuously trained to the untrained network. Complement to Figure

4: comparison of untrained RDMs (left) to trained (right). (A) and (B) digit rotation, (C) and (D) digit

scaling, (E) and (F) digit translation with noise, (G) and (H) rotating toy objects.

 Supplementary Material

 10

1.11 Comparison across areas

Higher network areas contained more invariant representations than lower areas. We quantified this by

computing a sequence invariance value S, that is given as the ratio between the average cosine distance

𝑑̅𝑖𝑛 between representations of frames from the same sequence (after 2000 inference steps each) and

the average distance to frames from all other sequences 𝑑̅𝑎𝑐𝑟𝑜𝑠𝑠:

𝑆 =
𝑑̅𝑖𝑛

𝑑̅𝑎𝑐𝑟𝑜𝑠𝑠

As shown in Figure S9, area 2 initially rises quickest, but is then surpassed by area 3. The result is

related to the hierarchy of timescales, as more invariant representations (in areas with a higher value

according to Figure S9) can be expected to be more stable across time.

Figure S9. Comparison of representational invariance across network areas. The highest network

area (area 3) eventually develops more invariant representations as compared to lower areas, which is

mirrored in an eventually larger sequence invariance value. Error bars indicate standard deviation

across two random seeds (computed on the fast translation digits).

1.12 Comparison to Slow Feature Analysis

To compare model performance to linear Slow Feature Analysis (SFA) (40), we used the sklearn-sfa

package from https://pypi.org/project/sklearn-sfa/. From the concatenated digit/toy object input

sequences, we let the algorithm extract a fixed number of features. As this number of features needs to

be provided for the SFA algorithm, we tried different settings and optimized for decoding accuracy on

each dataset. The subsequent linear decoding analysis consisted of training a linear decoder in a

stratified k-fold manner on 2/3 of the extracted features and evaluated on the remaining 1/3. For the

ten moving digits, 30 features – matching the number of neurons in our top layer - proved optimal. For

the five toy objects, reducing the number of features from 30 to 10 significantly improved accuracy

from 23.33% to 73.33%, so we used this setting for the results shown in Fig5a and Tab 1.

https://pypi.org/project/sklearn-sfa/

11

1.13 Changing the number of neurons in different network areas

As it could be expected that projecting from the representation in one area to a larger number of neurons

in the next higher area orthogonalizes the representations in the higher area, we systematically analyzed

the influence of varying the size of all three network areas across almost two orders of magnitude. The

results depicted in Figure S10 show the robustness of the learning paradigm and a minimum number

of required neurons in area 3. As this analysis was performed on a dataset with ten samples only, we

also refer to the simulations on larger datasets (Figure 5c-d) that showed slightly improved performance

when network size was increased. Although orthogonalization may play a role, the memorization

capacity of area 3 is more important here: the more sequences are shown, the more neurons are

necessary to represent them separately.

Figure S10. The effect of changing the number of neurons in the respective areas on decoding

accuracy of object identity from area 3 representations. On the x-axis, n1 corresponds to the

number of neuron in area , n and n a ordingly in area and . The erti al “ tandard” line refer

to the network architecture used in most simulations, except where noted differently.

1.14 Influence of sequence order

While the influence of temporal continuity becomes clear when comparing to the static training

paradigm (Fig 5b) it is not obvious whether only temporal proximity of input images is necessary or

whether the transformation also needs to be spatially continuous. To test this, we trained the network

from Fig 5b on shuffled versions of the input sequences. We found that irrespective of sequence order,

the only important factor was the temporal continuity of the transformation (Figure S11). In a less

ethologically plausible paradigm that would differ significantly from the scope of this paper, this fact

could be exploited by showing distinct instances from an object class consequently without resets. In

this case, the preselection of which images to show in sequence, however, would require labeled data

and thus be supervised. Additionally, it should be noted that movement and spatial continuity are non-

trivial concepts in fully connected networks without an a priori retinotopic layout.

 Supplementary Material

 12

Figure S11. Temporal continuity but not sequence order influences decoding accuracy of object

identity. Four conditions are compared: No temporal continuity (the static training paradigm) and three

temporally continuous transformations. In addition to the spatially continuous transformation used in

the ain text (‘ordered’), equen e ere pre ented in a fixed rando order and in a hanging rando

order that was shuffled newly each epoch.

1.15 Reducing the number of activity resets between sequences

To investigate how representation learning is influenced by not resetting the network activity at the

start of each new sequence, we introduced a probabilistic reset. As shown in Figure S12a, resetting the

activity approximately every three sequences slightly reduced the linear decodability. This decrease in

performance follows from the less separated representational manifolds as shown in the RDMs (Figure

12b). Merging of representations across sequences in turn is caused by distinct digits being now

presented in equen e ith high probability (a ‘ ’ ha a 7 % han e of being follo ed by a ‘6’ ithout

activity reset). As mentioned in the main text, such a situation is rare in nature where objects are

typically encountered in a randomly interleaved manner, and resets can be provided by head/eye

movements, object-based attention and neural replay mechanisms.

13

A

B

Figure S12. Reducing the number of activity resets maintains well-behaved representation

learning. (A) Linear decoding accuracy in the standard training paradigm and with reduced probability

of activity reset, shown for the fast digit rotation dataset. Small differences between the RDM shown

here to Figure 5B result from sequential instead of batchwise training being deployed here. (B) RDM

for both conditions from (A).

1.16 Statistical methods to analyze the autocorrelation decay constant

To analyze whether significant differences between dynamics across network areas were present, we

first conducted a Welch ANOVA using the pingouin package in Python (https://pingouin-

stats.org/build/html/index.html). The null hypothesis (i.e., no significant difference in 𝜏-value across

error neurons and representation neurons in the three network areas) was rejected based on the p-value

of 1.64e-7 (Table S3).

Table S3. Full report on the outcome of the Welch’s ANOVA for the intrinsic timescale of neural

populations. ddof1: degrees of freedom (numerator), ddof2: degrees of freedom (denominator), p-unc:

uncorrected p-values, np2: Partial eta-square effect sizes. See also main text section 3.2 – Temporal

stability of representations.

Subsequently, multiple pairwise comparisons were conducted using the pingouin implementation of

the Games-Howell post-hoc test, which led to the corrected p-values reported in section 3.2 of the main

text. All comparisons are shown in Table S4.

 e et probability % e et probability %

https://pingouin-stats.org/build/html/index.html
https://pingouin-stats.org/build/html/index.html

 Supplementary Material

 14

Table S4. Full report of the post-hoc pairwise test (Games-Howell). Columns A and B refer to the

neuronal populations tested in a pairwise manner. Columns: mean: average decay constant across the

randomly initialized runs, diff: difference between mean values, se: standard error, df: adjusted degrees

of freedom, pval: Games-Howell corrected p-values, hedges: Hedges effect size.

