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1.1 Network architecture and hyperparameters 

The networks consist of four fully connected areas of which the topmost (area 3) has no error units 

and the lowest (area 0) is driven by the input only, in a pixel-wise manner. Thus, the number of 

neurons in area 0 corresponds to the resolution of the inputs. Table S1 shows the precise number of 

neurons per area. Table S2 lists the used hyperparameters. 

Network area Number of neurons 

Input: Area 0 1156 

Area 1 2000 

Area 2 500 

Area 3 30 

Table S1. Network architecture used for the different datasets. 

Parameter Value Meaning 

ϵinf 0.05 uniform inference rate for areas 1-3 

ϵlearn 0.01 learning rate 

neps 20-40 number of training epochs 

nisteps 10 inference steps before weight update 

nfreps 5 inference-learn cycles on each frame 

nsreps 10 cycles on each sequence per epoch 

Table S2. Network hyperparameters. 

 



  Supplementary Material 

 2 

1.2 Training 

Network training was conducted in nested loops as described in section 2.3. Alg S1 depicts the 

pseudocode for both training paradigms. The main difference between the continuous and static 

training paradigms is the additional reset of activity in the beginning of the fifth ‘for’ loop. To 

compensate for the shorter time between activity resets in the static training paradigm, the number of 

cycles per frame 𝑛𝑓𝑟𝑒𝑝𝑠 is increased by a factor of 6. 

for i ← 1, neps  do                                                                                    ▷  Epochs  

 for j ← 1 , nseqs  do                                                  ▷ Number of sequences 

 Initialize activity 

     for k ← 1, nsreps  do                                          ▷  Iterations per sequence 

   for l ← 1, nfps   do ▷ Frames per sequence 

for m ← 1,nfreps  do ▷ Iterations per frame 

 (Static training: Reset activity)                           

for n ← 1,nisteps  do       

inference (Eq. 1-3) 

end for  
update weights (Eq. 4) 

end for 

end for 

end for 

end for  

end for 

 

▷ Inference steps 

Alg S1. Pseudocode for network training. Nested loops during network training as described in the 

Methods section. In the static training, activities are reset each time a new input is presented.  

 

1.3 Inference of high-level representations 

Convergence of high-level neural activity took considerably longer (2000 inference steps were used) 

than the duration that was necessary until the total prediction error in the network converged (one to 

two orders of magnitude less). I.e., after the prediction errors were minimized, further inference 

improved invariance, but not stimulus reconstruction. Across the network areas, this is plotted for the 

rotating digits in Figure S1. 
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Figure S1. Convergence of activity over inference steps for a fixed inputs from the rotating 

digits dataset across representation neurons in the different network areas. 

1.4 Influence of temporal continuity 

In how far is the learning of invariant representations attributable to the training paradigm? Figure S2 

shows the RDM of a network trained in a static manner: the more position-dependent representations 

stand in contrast to the RDMs of the continuously trained networks (Figure 4B-F) with more uniform 

representations within sequences. 

To analyze whether the different neural timescales are a result of the training paradigm or a result of 

the network architecture, we compared the decay speed of activity autocorrelation to the statically 

trained network (Figure S3). 

 

Figure S2. Influence of static training on high-level representational invariance. Network trained 

in a static manner with resets of activity after each frame show less invariance in area-3 

representations compared to the continuously trained networks (Figure 4B-F). The diagonal structure 

of the RDM shown here reveals that representations are specific to individual images and do not 

generalize across positions. 
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Figure S3. Decay of activity autocorrelation of neural subpopulations in a statically trained 

network in which activity is reset after each frame. (A) Representation neurons, (B) Error neurons, 

(C) Inferred decay constants to quantify the timescale on which neural activity changed. This figure 

can be compared to Figure 6, but note the different scale in Figure 6C.Reconstruction of complete 

inputs 

 

1.5 Reconstruction of complete inputs 

To test which input patterns can be reconstructed from different network areas, an input image needs 

to be presented for an extended period. Here, 2000 inference steps were used. The image was then 

removed, and reconstructions were triggered from the chosen area, i.e., predictions were consecutively 

projected to the area below according to Figure 2A: 

 �̂�𝑙 = 𝑾𝑙𝒚𝑙+1 (𝟕) 

 

For symbols, the reader is referred to Equation 1. 
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1.6 Reconstruction of occluded sequences 

For reconstruction of whole objects from partially occluded sequences, the first frame of a sequence 

was presented for an initial number of inference steps (see below) to give higher areas time to infer 

stimulus identity. Each consecutive frame of the sequence was then shown for a varying number of 

consecutive inference steps that is specified later. Lastly, reconstructions were normalized, dividing all 

predictions by the value of the largest pixel-wise prediction of the current reconstruction. To 

systematically investigate the difference between the static and continuous training paradigm, we 

varied both the initial and consecutive number of inference steps across a range of parameters and used 

the optimal combination we found for Figure 8. The continuously trained network consistently 

achieved better reconstructions than the statically trained network as shown by the consistently positive 

mean difference in reconstruction errors in Figure S4. 

 

Figure S4. Reconstruction of occluded scenes: influence of hyperparameters. The continuously 

trained network achieved better reconstructions of occluded inputs than the statically trained one. The 

left plot shows the mean difference in reconstruction error between the two training paradigms across 

ten occlusion sequences, for various hyperparameters (see main text). Positive values indicate better 

performance of the continuously trained network. The right plot shows the standard deviations across 

the ten occlusion sequences. 

 

1.7 Influence of weight initialization 

Initializing weights to lower values than used by default (for default values see section 2.2) led to a 

decrease in performance, with less distinguishable representations in area 3 after 10 epochs (Figure 

S5). To test this, we decreased the standard deviation of the Gaussian weight initialization. As the 

distribution is centered at zero and clipped at zero to prevent negative weights, the value of the standard 

deviation corresponds to the average value of the initial weights (note that this is before dividing each 

weight by the number of neurons in the next higher area). Despite initially less distinguishable 

representations for smaller initial weights, prolonged training led to a non-collapsed state even for the 

smallest initialization that we tested (on the right of Figure S5). 
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Figure S5. Influence of weight initialization. Initializing weights to smaller values gradually 

deteriorates the RDMs that are shown after 10 training epochs. The leftmost plot corresponds to the 

default settings used in the rest of the paper, shown for a digit translation dataset. The rightmost plot 

corresponds to a tenth of these weight values. After 20 more epochs on the network trained with an 

initial weight of 0.05, a considerable improvement was observed. 

 

1.8 Representational dissimilarity matrices on larger datasets 

To test the influence of increasing the dataset size on the RDMs, we ran the same analysis of 

constructing the RDMs (as in Figure 4) for the networks trained on the larger datasets. While the RDMs 

shown in Figure S6 lost the clear block-diagonal structure, decoding performance was still far above 

chance (Figure 5C). This effect, that was present for both the default and the increased network size, 

    ore 

epo h 

  g  eight    .  .  .  .  



 
7 

can be explained by a better approximation of the underlying data-generating distribution when dataset 

size was increased. 

 

A 

 

B 

 

Figure S6. Representational dissimilarity matrices on larger datasets. When dataset size is 

increased such that multiple digits of each class are shown (in different sequences), the network forms 

instance-specific (e.g. a particular digit ‘ ’ irre pe ti e of po ition) in tead of  la  -specific (e.g. all 

digit ‘ ’ ) repre entation . (A) RDM for a network of increased size, with [4000, 2000, 90] neurons in 

[area 1, area 2, area 3] (chosen because it better visualizes the effect) instead of the default [2000, 500, 

  ]. The net ork  a  trained and e aluated on a data et of    digit in tan e  ( equen e ), fi e ‘ ’ , 

fi e ‘ ’ , et ., re ulting in     i age fra e . The blo k  along the diagonal are of  ize  ix, a  ea h 

sequence contains six frames. (B) When increasing the dataset size even further, the structure in the 

RDM becomes less obvious, but the digit classes are still relatively well decodable (Figure 5C). An 

explanation is given in the main text.  

 

1.9 Learning multiple transformations in a single network 

Learning different transformations of the same digit when these are not shown in sequence proved 

challenging. Nevertheless, Figure S7 provides a proof of principle result showing decoding of digit 

identity with ~80% accuracy after seven training epochs, with a linear decoder again trained on 2/3 of 

the inferred representations. With prolonged training, the network tended to separate the invariant 

representations for the different transformations of each digit, suggesting the need for a unifying 

mechanism to merge these different invariant representations. 
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Figure S7. Learning multiple transformations in a single network with [2000,500,10] neurons in 

[area 1, area 2, area 3]. (A) RDM of ten digits each undergoing three transformations (translation, 

rotation, scaling). (B) Linear decoding accuracy of digit identity from area 3 of the same network. 

 

1.10 Comparison of continuously trained to the untrained network 

Complementing Figure 4, Figure S8 depicts the comparison of the continuously trained against the 

untrained network for the remaining datasets (listed in the figure caption). 
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Figure S8. Comparison of continuously trained to the untrained network. Complement to Figure 

4: comparison of untrained RDMs (left) to trained (right). (A) and (B) digit rotation, (C) and (D) digit 

scaling, (E) and (F) digit translation with noise, (G) and (H) rotating toy objects. 
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1.11 Comparison across areas 

Higher network areas contained more invariant representations than lower areas. We quantified this by 

computing a sequence invariance value S, that is given as the ratio between the average cosine distance 

�̅�𝑖𝑛 between representations of frames from the same sequence (after 2000 inference steps each) and 

the average distance to frames from all other sequences �̅�𝑎𝑐𝑟𝑜𝑠𝑠: 

𝑆 =  
�̅�𝑖𝑛

�̅�𝑎𝑐𝑟𝑜𝑠𝑠

 

As shown in Figure S9, area 2 initially rises quickest, but is then surpassed by area 3. The result is 

related to the hierarchy of timescales, as more invariant representations (in areas with a higher value 

according to Figure S9) can be expected to be more stable across time. 

 

Figure S9. Comparison of representational invariance across network areas. The highest network 

area (area 3) eventually develops more invariant representations as compared to lower areas, which is 

mirrored in an eventually larger sequence invariance value. Error bars indicate standard deviation 

across two random seeds (computed on the fast translation digits). 

 

 

1.12 Comparison to Slow Feature Analysis 

To compare model performance to linear Slow Feature Analysis (SFA) (40), we used the sklearn-sfa 

package from https://pypi.org/project/sklearn-sfa/. From the concatenated digit/toy object input 

sequences, we let the algorithm extract a fixed number of features. As this number of features needs to 

be provided for the SFA algorithm, we tried different settings and optimized for decoding accuracy on 

each dataset. The subsequent linear decoding analysis consisted of training a linear decoder in a 

stratified k-fold manner on 2/3 of the extracted features and evaluated on the remaining 1/3. For the 

ten moving digits, 30 features – matching the number of neurons in our top layer - proved optimal. For 

the five toy objects, reducing the number of features from 30 to 10 significantly improved accuracy 

from 23.33% to 73.33%, so we used this setting for the results shown in Fig5a and Tab 1. 

https://pypi.org/project/sklearn-sfa/
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1.13 Changing the number of neurons in different network areas 

As it could be expected that projecting from the representation in one area to a larger number of neurons 

in the next higher area orthogonalizes the representations in the higher area, we systematically analyzed 

the influence of varying the size of all three network areas across almost two orders of magnitude. The 

results depicted in Figure S10 show the robustness of the learning paradigm and a minimum number 

of required neurons in area 3. As this analysis was performed on a dataset with ten samples only, we 

also refer to the simulations on larger datasets (Figure 5c-d) that showed slightly improved performance 

when network size was increased. Although orthogonalization may play a role, the memorization 

capacity of area 3 is more important here: the more sequences are shown, the more neurons are 

necessary to represent them separately. 

 

Figure S10. The effect of changing the number of neurons in the respective areas on decoding 

accuracy of object identity from area 3 representations. On the x-axis, n1 corresponds to the 

number of neuron  in area  , n  and n  a  ordingly in area    and  . The  erti al “ tandard” line refer  

to the network architecture used in most simulations, except where noted differently. 

 

1.14 Influence of sequence order 

While the influence of temporal continuity becomes clear when comparing to the static training 

paradigm (Fig 5b) it is not obvious whether only temporal proximity of input images is necessary or 

whether the transformation also needs to be spatially continuous. To test this, we trained the network 

from Fig 5b on shuffled versions of the input sequences. We found that irrespective of sequence order, 

the only important factor was the temporal continuity of the transformation (Figure S11). In a less 

ethologically plausible paradigm that would differ significantly from the scope of this paper, this fact 

could be exploited by showing distinct instances from an object class consequently without resets. In 

this case, the preselection of which images to show in sequence, however, would require labeled data 

and thus be supervised. Additionally, it should be noted that movement and spatial continuity are non-

trivial concepts in fully connected networks without an a priori retinotopic layout. 



  Supplementary Material 

 12 

 

Figure S11. Temporal continuity but not sequence order influences decoding accuracy of object 

identity. Four conditions are compared: No temporal continuity (the static training paradigm) and three 

temporally continuous transformations. In addition to the spatially continuous transformation used in 

the  ain text (‘ordered’),  equen e   ere pre ented in a fixed rando  order and in a  hanging rando  

order that was shuffled newly each epoch. 

 

1.15 Reducing the number of activity resets between sequences 

To investigate how representation learning is influenced by not resetting the network activity at the 

start of each new sequence, we introduced a probabilistic reset. As shown in Figure S12a, resetting the 

activity approximately every three sequences slightly reduced the linear decodability. This decrease in 

performance follows from the less separated representational manifolds as shown in the RDMs (Figure 

12b). Merging of representations across sequences in turn is caused by distinct digits being now 

presented in  equen e  ith high probability (a ‘ ’ ha  a 7 %  han e of being follo ed by a ‘6’  ithout 

activity reset). As mentioned in the main text, such a situation is rare in nature where objects are 

typically encountered in a randomly interleaved manner, and resets can be provided by head/eye 

movements, object-based attention and neural replay mechanisms. 
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Figure S12. Reducing the number of activity resets maintains well-behaved representation 

learning. (A) Linear decoding accuracy in the standard training paradigm and with reduced probability 

of activity reset, shown for the fast digit rotation dataset. Small differences between the RDM shown 

here to Figure 5B result from sequential instead of batchwise training being deployed here. (B) RDM 

for both conditions from (A). 

 

1.16 Statistical methods to analyze the autocorrelation decay constant 

To analyze whether significant differences between dynamics across network areas were present, we 

first conducted a Welch ANOVA using the pingouin package in Python (https://pingouin-

stats.org/build/html/index.html). The null hypothesis (i.e., no significant difference in 𝜏-value across 

error neurons and representation neurons in the three network areas) was rejected based on the p-value 

of 1.64e-7 (Table S3).  

 

Table S3. Full report on the outcome of the Welch’s ANOVA for the intrinsic timescale of neural 

populations. ddof1: degrees of freedom (numerator), ddof2: degrees of freedom (denominator), p-unc: 

uncorrected p-values, np2: Partial eta-square effect sizes. See also main text section 3.2 – Temporal 

stability of representations. 

Subsequently, multiple pairwise comparisons were conducted using the pingouin implementation of 

the Games-Howell post-hoc test, which led to the corrected p-values reported in section 3.2 of the main 

text. All comparisons are shown in Table S4. 

 

 e et probability    % e et probability   %

https://pingouin-stats.org/build/html/index.html
https://pingouin-stats.org/build/html/index.html
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Table S4. Full report of the post-hoc pairwise test (Games-Howell). Columns A and B refer to the 

neuronal populations tested in a pairwise manner. Columns: mean: average decay constant across the 

randomly initialized runs, diff: difference between mean values, se: standard error, df: adjusted degrees 

of freedom, pval: Games-Howell corrected p-values, hedges: Hedges effect size. 

 


