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Numerical analysis of unsteady 
momentum and heat flow of dusty 
tangent hyperbolic fluid in three 
dimensions
Madiha Bibi1,2*, A. Zeeshan3 & M. Y. Malik1,4

This paper explores the impact of MHD and viscous dissipation with joule heating on convective 
stretching flow of dusty tangent hyperbolic fluid over a sheet in 3D. A time-dependent magnetic 
field is applied along the z-axis and the sheet being stretched along the xy-plane. The fluid and dust 
particles motions are coupled only through drag and heat transfer between them. The effect of viscous 
dissipation with convection is appreciable when the generated kinetic energy becomes appreciable 
as compared to the amount of heat transferred. A well known bvp4c method has been used to find 
the fruitful results. Graphs and tables show the facts and figures for physical properties according 
to different parameters. The main findings are that Increase in power law index, magnetic field, 
Weissenberg effect, concentration of dust particles, and unsteadiness parameter reduces the flow of 
fluid and solid granules.

Flow behavior of solid-liquid two-phase flow systems depends on the properties of the dispersed solid phase, 
the continuous liquid phase that suspends the solids, and the interactions between the two phases. There are 
many strong reasons of study of fluid dynamics at macro and micro-level as well. At macro level mathemati-
cians and engineers try to investigate the flows without defined boundaries but the case of nano or micro level is 
really very interesting. In this article we discussed how the surface forces affect the non-Newtonian behavior of 
solid-liquid suspensions, with the aim of having a deeper understanding of the rheological phenomena.In the 
classical technologies, paints, coatings, cement slurries, coal slurries, mineral tailings, ceramic oxides, drugs, 
and food materials are only a few of the many diverse applications. Concentrated suspensions have an immense 
significance not only in the classical technologies, but also in the emerging technologies as well as in biological 
systems. We can also detect the presence of a micro-organisms or any impurity in water or in any other liquid. 
Micro-organism could be considered as particles, not actually but in reference of size, like viruses are nano-sized 
(20 to about 100 nanometers in size) and bacteria are mostly micro-sized (about 0.5–3 µm ). Such type of study 
moves towards two phase or multiphase flows. In this write-up dust-particles are submerged in non-Newtonian 
tangent hyperbolic fluid. The prime-mover for the study of dusty flows was  Saffmann1. Afterwards  Drew2 derived 
a set of coupled equations Orr–Sommerfield, which were helpful to govern the infinitesimal distribution of dust 
particles in fluid. Then Mekheimer et al.3 used the same concept of equations gave results for peristaltic flow in 
a channel. Recently Bhatti and  Zeeshan4 discussed the non-Newtonian flow of solid-liquid suspension. Most 
related and recent studies are given in following  references5,6.

The boundary layer flow and heat transfer analysis over a stretching flat surface have many applications in 
industry such as polymer industry, paper production, rolling and manufacturing of sheets and fibers, drawing of 
plastic film etc. Parenthetically the study of the particulate flow has significant applications for cooling systems, 
matter separating systems, and purification of crude oil. The beginners of stretching flows were  Sakiadis7,  Crane8, 
Grubka and  Bobba9.  Wang10 started the study of 3-D flow over a stretching surface. Takhar and  Nath11 studied the 
unsteady three dimensional flow because of stretching surface. A remarkable role in this research area played by 
 Ariel12–14. Latest study regarding three dimensional boundary layer flow is done by Hayat et al.15 and Mair et al.16.

The consumption of non-Newtonian fluids found in many engineering and industrial processes, such as food 
mixing, blood flow, mercury amalgams, and lubrications. In view of intense need, many studies are focused on 
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non-Newtonian fluids. This study is also for the non-Newtonian tangent hyperbolic considered as base fluid 
which obeys the power law model and capable of describing the shear thinning effects. In the last going decade 
the boundary layer flow as well as the peristaltic flow considered in the following literature. Akbar et al.17 dis-
cussed the stretching problem for 2D, Malik et al.18 proposed the numerical scheme for the flow over stretching 
cylinder, and Bibi et al.19 investigate the dusty flow over stretching surface. Flow can be disturbed or facilitate by 
changing the values of different physical parameters. Here we have considered the MHD, effect, joule heating 
and viscous dissipation with convective boundary conditions. Kumar et al.20 discussed the MhD flow of dusty 
tangent hyperbolic fluid under the effect of thermal radiations. Historically the front runner of the study of 
viscous dissipation in natural convection was  Gebhart21. Joule heating (also related to resistive or ohmic heat-
ing) is the process where the power of an electric current is converted into heat as it flows through a resistance. 
The effect of viscous dissipation in natural convection is appreciable when the induced kinetic energy becomes 
appreciable compared to the amount of heat transferred. Above effects are discussed in a combine way in fol-
lowing different  references22–29.

Precisely the focus of the current article is to study the three dimensional dusty tangent hyperbolic fluid flow 
with change in time while considering MHD. This study is different from the previous  atricle30 in that respect, we 
have used different non-Newtonain base fluid and estimated heat flow is executed by joule heating and viscous 
dissipation with convection. The solution of highly non-linear problem is sorted out numerically.

Modeling
The incompressible unsteady dusty tangent hyperbolic non-Newtonian fluid flow is considered in trheedimen-
ional space. The consideration of temperature profile is under the effect of MHD (Magnetohydrodynamic), Joule 
heating and viscous dissipation with convective boundary conditions. Flow distribution is due to stretching 
sheet which is assumed to be placed in xy-plane and fluid is placed along the z-axis. The physical configuration 
is given in Fig. 1. The two phase modeling is followed by the  reference4 and the cauchy stress tensor for tangent 
hyperbolic fluid is mentioned in the  reference19,

where µ∞ is the infinite share rate viscosity and µ◦ is the zero rate viscosity of the fluid. n is known as power law 
index, Ŵ is the time constant and γ̇ is defined below,

Here A1 is the first Rivilin–Ereckson tensor. The fluid tangent Hyperbolic is shear thinning so the Ŵγ̇ << 1 
should be considered. The tangent hyperbolic series Eq. (1) reduces to,

Problem can be modeled as:

(1)τ = [µ∞ + (µ◦ + µ∞) tanh(Ŵγ̇ )n]γ̇ ,

(2)γ̇ =
√

1

2
trac(A2

1).

(3)τ = µ◦[1+ n(Ŵγ̇ − 1)]γ̇

(4)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

(5)
∂uP

∂x
+

∂vP

∂y
+

∂wp

∂z
= 0,

Figure 1.  Physical configuration.
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conditions at the boundary are:

u, v and w are the fluid velocity components in abscissa, ordinate and applicate axis direction. Similarly uP , vP 
and wp are particles velocity components. ρ is the density of the fluid and ρP is the density of the particles. σ is 
for electrical conduction. B(t) is the magnetic field. T is the fluid temperature and TP is temperature of particles 
respectively. Uw and Vw are the stretching velocities. Tw is the temperature of wall, hf  is the heat transfer coefficient 
(HTC) and k is thermal diffusion. C is the volume fraction of the solid particles, S is the drag force, there are 
different correlations of it according to assumptions are defined by Chhabra in his  book31. Here the considered 
value for S is given below,

Value of the above function is determined by  Tam32. The correlation for viscosity of fluid-particle mixture is 
proposed by Charm and  Kurland33.

For the conversion of Partial Differential Equations into Ordinary Differential Equations one need some 
transformations. Similarity transformations required for the conversion of PDE’s to ODE’s can be defined as

and to be noted that,
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(12)u = Uw(x, t), v = Vw(y, t), w = 0, −k
∂T
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= hf (Tw − T), at z = 0,
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Here c is a balancing constant and a > 0 is for accelerated flows and Bo is the amplitude of applied magnetism. 
Using Eqs. (18)–(19) into Eqs. (4)–(13),

along with the boundary conditions

A is the unsteadiness parameter, M is the magnetic parameter, Wex and Wey are Weissenberg numbers along x 
and y-direction, Pr is Prandtl number, R is the fluid-particle interaction for velocity profile, βT is fluid-particle 
interaction for temperature profile, C is the volume fraction of the granules, α is the mass concentration, γ is 
the ratio of the specific heat capacity of the fluid to the particles, s is stretching ratio, Ec∗ is viscous dissipation 
parameter and Ecx , Ecy are Eckert numbers in x and y-direction, defined below

where τT is the equilibrium time, required by dust particles to manage their temperature compatible to fluid. 
Skin friction for three dimensional flow is mentioned in Eq. (29),

coefficients will be reduced to

(19)
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by inserting Eq. (30), into Eq. (29), one can get,

The expression for the Nusselt number is given in Eq. (33),

where qw denotes the heat flux of the surface. Settle the value of qw into Nux while considering the thermal radia-
tions effective, one can get following relation for Nusselt number,

Here Rex = Uwx
ν

 and Rey = Vwy
ν

 are the Reynolds numbers.

Method of solution
The suitable method for the problem is bvp4c. For this one can convert equations in he following form:

The required dummy variables as shown in Eq. (41).
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Set of Eqs. (35)–(40) can be molded in the initial value problem as:

(41)
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the reduced endpoint conditions are

There is need of some initial guesses that are s1, s2, s3, s4, s5 and s6 in a way like integration of the system of 
ODEs fulfil the conditions at endpoints and obtained the solution for the system of Eq. (42)–(54).

Results and discussions
In this section the results of the momentum and temperature boundary layers discussed graphically and numeri-
cally. Figures  2 and 3 show the behavior of the power-law index n that the rise in flow index decreases the veloc-
ity of both fluid and granules in both directions. Here the values are checked for n < 1 which are applicable for 
pseudoplastics fluids, so we can use the results for shear thinning fluids. Figures 4 and 5 are for describing the 
Weissenberg effect, Wex and Wey are time dependent parameters. Increase in Weissenberg parameter reduces 
retardation time will reduce the velocity of fluid and solid particles. The Weissenberg effec is actually rod climb-
ing efffect which is associated with the non-Newtonain flows, so one can use the results for the different non-
Newtonian fluids. Figures 6 and 7 shows the effects of applied magnetic field. The magnetic field causes Lorentz 
force which create hurdle in the fluid flow because of resistive nature, in result of which decreases the flow of 
fluid and solid particles as well in both directions. Figures 8 and 9 are plotted to check the change in velocity 
profile due to change in A. Graphs show that the increase in unsteadiness, reduces the velocity of fluid and solid 
particles in both directions. One can see in the graph that velocity decreases near the surface and increases away 

(55)

y1(a) = 0, y2(a) = 1, y2(b) = s1, y4(b) = y1(b),

y5(b) = s2, y6(a) = 0, y7(a) = s, y7(b) = s3,

y9(b) = y6(b), y10(b) = s4, y11(b) = s5,

y12(a) = −ζ(1− y11(a)), y13(b) = s6.

Figure 2.  Effect of “n” on the velocity distribution in x-direction.

Figure 3.  Effect of “n” on the velocity distribution in y-direction.
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Figure 4.  Effect of “ Wex ” on the velocity distribution in x-direction.

Figure 5.  Effect of “ Wey ” on the velocity distribution in y-direction.

Figure 6.  Effect of “M” on the velocity distribution in x-direction.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16079  | https://doi.org/10.1038/s41598-022-20457-4

www.nature.com/scientificreports/

Figure 7.  Effect of “M” on the velocity distribution in y-direction.

Figure 8.  Effect of “A” on the velocity distribution in x-direction.

Figure 9.  Effect of “A’ on the velocity distribution in y-direction.
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from surface. As A is defined as inversely proportional to stretching coefficient a. The increase in unsteadiness 
parameter A reduces the a, in result of which velocity of fluid and solid particles decreases.

Figures 10 and 11 depict the outcome of volume fraction that accretion of concentration enhances the resist-
ance to flow due to which boundary layer becomes shorten in both directions. As the flow is solid-liquid so 
results show that more the solid will redues the flow rate, we can adjust the flow rate by changing the amount of 
solid particles in mixture flow. Figures 12 and 13 assimilate the out-turn of interaction between fluid and dust 
particles R. The interaction reduces the flow of fluid and enhances the speed of dust particles because more the 
interaction more the particles will flow but due to interaction the resistance increases due to which speed of fluid 
reduces. Same results are shown in both directions. Figure 14 shows that while enhancing the power law index 
there is a decrease in temperature of the fluid. The same results for the velocity profile due to power law index 
and we know that temperature is connected with kinetic energy relation. So we can say that decrease in velocity 
will reduce the kinetic energy and in turn the temperature of fluid will decrease. Figure 15 shows that rise of 
unsteadiness decreases the temperature profile. Enhancement in unsteadiness decline the flow of fluid in turn 
decreases the temperature of fluid. Figures 16, 17 and 18 show that increment of viscous dissipation parameters 
Ec∗ , Ecx and Ecy enhances the temperature of the system because heat generated during the dissipation due to 
viscous forces. The produced heat absorbed by the fluid and thicken the thermal boundary layer of fluid and 
solid particles. Figure 19 shows the results for Prandtl number. Prandtl number has an inverse relation with 
the thermal conduction of fluid, the enhancement of Pr reduces the temperature of fluid and dust particles as 
well. Figure 20 shows that enhancement of mass concentration α reduces the temperature profile of fluid after 
attaining the maximum value for balancing of the temperature profile of the fluid and solid particles. Figure 21 
shows that the enhancment of fluid-particle interaction βT reduces the temperature profile of fluid and raises the 
temperature of solid particles. Figure 22 shows the impact of volume fraction of solid particles C on temperature 
profile. Increase in number of particles the temperature boundary layer decreases because increase in fraction of 
granules causes resistance results in the generation of internal energy turns to utilized to keep the temperature 

Figure 10.  Effect of “C” on the velocity distribution in x-direction.

Figure 11.  Effect of “C” on the velocity distribution in y-direction.
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Figure 12.  Effect of “R” on the velocity distribution in x-direction.

Figure 13.  Effect of “R” on the velocity distribution in y-direction.

Figure 14.  Effect of “n” on the temperature distribution.
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Figure 15.  Effect of “A on the temperature distribution.

Figure 16.  Effect of “ Ec∗ ” on the temperature distribution.

Figure 17.  Effect of “ Ecx ” on the temperature distribution.
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Figure 18.  Effect of “ Ecy ” on the temperature distribution.

Figure 19.  Effect of “Pr” on the temperature distribution.

Figure 20.  Effect of α on the temperature distribution.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16079  | https://doi.org/10.1038/s41598-022-20457-4

www.nature.com/scientificreports/

Figure 21.  Effect of βT on the temperature distribution.

Figure 22.  Effect of C on the temperature distribution.

Figure 23.  Effect of ζ on the temperature distribution.
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of the mixture at state of equilibrium. Figure 23 shows that temperature profile increases with increase in Biot 
number. This is due to the fact that the convective heat exchange at the surface leads to enhance the thermal 
boundary layer thickness. Figure 24 shows that with the increase in stretching ratio parameter there is decrease 
in velocity in x-direction and increases in y-direction. And the reason is clear that s = b

a , s is directly proportional 
to b and inversely proportional to a. So increase in s increases b which is coefficient of Vw and decreases the a 
which is coefficient of Uw . In Table 1 we have compared the of results with the online published articles by the 
 Ariel12 and Hayat et al.34 in which they have solved the problem by exact method and numerical technique as 
well. The present data founded by bvp4c numerical method comparable with already published results. Tables 2 
and 3 exhibit the changes in values of skin friction and Nusselt number for the considered parameters.

Concluding remarks
The three dimensional unsteady dusty flow of tangent hyperbolic fluid is studied in this article. As we know that 
time is really important factor in real world so one of the purpose of this study to check the effects of different 
variables and factors while keeping in mind the effect of time on flows. Also the three dimensional flows are near 
to real world problems. Here the used concept is of solid-liquid flows which are of already existing flows on earth 
and using this concept we can take benefits at industrial level like fluidinzation. How these types of flows can be 
adjusted according to our requirements by considerering different effects. The effects of magnetic field and viscous 
dissipation with convection are discussed for fluid and dust particles as well. Also we can adjust the temperature 
of the system according to our requirments by controlling different used parameters. Outcomes of the current 
problem are mentioned below. Most of the parameter cause hindrance to flows, let have a glance to the results,

• Increase in power law index, magnetic field, Weissenberg effect, concentration of dust particles, and unsteadi-
ness parameter reduces the flow of fluid and solid granules in both x and y-directions.

Figure 24.  Effect of s on the velocity distribution of fluid in x and y-direction.

Table 1.  Similarity of values of skin friction coefficient with published  data12,34 by keeping n = 0 , M = 0 , 
A = 0 , R = 0 , Wex = 0 and Wey = 0.

s

−f ”(0) −g”(0)

Exact8results Approximate12results Present findings Exact8results Approximate12results Present findings

0 1 1 1.000172075 0 0 0.000000013

0.1 1.02025978 1.01952736 1.020660804 0.06684715 0.06684715 0.062427429

0.2 1.03949519 1.03827716 1.040423786 0.14873691 0.15018484 0.134408200

0.3 1.05795478 1.05642139 1.059440011 0.24335980 0.24476799 0.217419213

0.4 1.07578811 1.07406868 1.077719687 0.34920865 0.35039176 0.312560997

0.5 1.09309502 1.09129272 1.095289353 6.46520485 0.46606428 6.420667298

0.6 1.10994694 1.10814635 1.112183080 0.59052892 0.59101139 0.542377495

0.7 1.12639752 1.10814635 1.128437063 0.72453174 0.72460900 0.678186868

0.8 1.14248862 1.14089185 1.144088858 0.86668292 0.86634122 0.828485294

0.9 1.15825383 1.15683905 1.159176650 1.01653870 1.01577291 0.993585147

1.0 1.17372074 1.17253093 1.172544500 1.1737274 1.17253093 1.172020638
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Table 2.  Numerical values of skin friction.

A n Wex Wey M C R s −f ′′(0) −g ′′(0) (1− n)f ′′(0)+ nWex
2

√

f ′′(0)2 + g ′′(0)f ′′(0)2 (1− n)g ′′(0)+
nWey
2

√

f ′′(0)2 + g ′′(0)g ′′(0)2

0.0 – – – – – – – 1.2439 0.5322 1.1118 0.4776

0.1 – – – – – – – 1.2742 0.5493 1.1387 0.4929

0.2 0.1 – – – – – – 1.3044 0.5664 1.1655 0.5082

– 0.2 – – – – – – 1.3927 0.6023 1.0948 0.4782

– 0.3 0.1 0.1 – – – – 1.5036 0.6463 1.0186 0.4461

– – 0.2 0.2 – – – – 1.5387 0.6516 1.0061 0.4434

– – 0.3 0.3 – – – – 1.5787 0.6572 0.9929 0.4406

– – 0.4 0.4 0.1 – – – 1.6249 0.6631 0.9790 0.4378

– – – – 0.2 – – – 1.6474 0.6743 1.9903 0.4474

– – – – 0.3 – – – 1.6845 0.6927 1.0089 0.4561

– – – – 0.4 0.2 – – 1.7357 0.7177 1.0342 0.4715

– – – – – 0.3 – – 1.8242 0.7540 1.0773 0.4937

– – – – – 0.4 1 – 1.9388 0.8001 1.1316 0.5217

– – – – – – 2 – 2.0678 0.8342 1.1909 0.5422

– – – – – – 3 – 2.1054 0.8431 1.2078 0.5475

– – – – – – 4 0.5 2.1790 0.8548 1.2404 0.5545

– – – – – – – 0.7 2.2077 1.0812 1.2530 0.6867

– – – – – – – 0.9 2.2629 1.5948 1.2768 1.0663

Table 3.  Numerical values of Nusselt number.

A n Pr α β C γ Ec∗ Ecx Ecy ζ −θ ′(0)

0.0 – – – – – – – – – – 0.3085

0.1 – – – – – – – – – – 0.3194

0.2 0.1 – – – – – – – – – 0.3293

– 0.2 – – – – – – – – – 0.3088

– 0.3 0.7 – – – – – – – – 0.2827

– – 0.8 – – – – – – – – 0.3211

– – 0.9 – – – – – – – – 0.3539

– – 1.0 1.0 – – – – – – – 0.3825

– – – 2.0 – – – – – – – 0.3902

– – – 3.0 – – – – – – – 0.3974

– – – 4.0 1.0 – – – – – – 0.4041

– – – – 2.0 – – – – – – 0.4256

– – – – 3.0 – – – – – – 0.4421

– – – – 4.0 0.1 – – – – – 0.4555

– – – – – 0.2 – – – – – 0.4984

– – – – – 0.3 – – – – – 0.5310

– – – – – 0.4 0.1 – – – – 0.5577

– – – – – – 0.2 – – – – 0.5474

– – – – – – 0.3 – – – – 0.5375

– – – – – – 0.4 1.0 – – – 0.5280

– – – – – – – 2.0 – – – 0.5115

– – – – – – – 3.0 – – – 0.4949

– – – – – – – 4.0 1.0 – – 0.4784

– – – – – – – – 2.0 – – 0.3669

– – – – – – – – 3.0 – – 0.2555

– – – – – – – – 4.0 1.0 – 0.1441

– – – – – – – – – 2.0 – 0.1330

– – – – – – – – – 3.0 – 0.1220

– – – – – – – – – 4.0 1.0 0.1109

– – – – – – – – – – 2.0 0.1798

– – – – – – – – – – 3.0 0.2267

– – – – – – – – – – 4.0 0.2607
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• Increase in interaction between fluid and particles drops the flow of fluid, simultaneously increases the veloc-
ity (in both x and y-directions) and temperature of dust granules.

• Increase in Prandtl number reduces the temperature of fluid and dust granules as well.
• Increase in viscous dissipation and Biot number rise the temperature of the system, increase the temperature 

of fluid and dust particles as well.

By using the above results we can control the flow and temerature of the system at industrial level in different 
areas especially in polymer industry, as in introduction the detailes for the industries and medical field signifi-
cances are mentioned.
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