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Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors,
is a ubiquitin-like protein that conjugates to and regulates the biological function of
its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation
of the neddylation pathway is closely associated with the progression of various
tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising
new antitumor compound for combination therapy. Here, we summarize the latest
progress in anticancer strategies targeting the neddylation pathway and their combined
applications, providing a theoretical reference for developing antitumor drugs and
combination therapies.
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INTRODUCTION

As a post-translational modification, protein neddylation refers to a process where substrate
proteins are tagged with a ubiquitin-like protein NEDD8 and participate in cellular activity by
regulating protein function. NEDD8 encodes an 81-amino acid polypeptide, which is highly
homologous to ubiquitins and is connected to its substrates by forming isopeptide chains. For
NEDD8, this linkage occurs between Gly-76 at NEDD8’s C-terminus and the Lys-48 residue
of the substrates (Kamitani et al., 1997). Different from ubiquitin, as a precursor, NEDD8 is
initially synthesized with five additional downstream residues of Gly-76 that must be cracked by
a C-terminal hydrolase (Rabut and Peter, 2008), mainly ubiquitin carboxyl-terminal esterase L3
(UCH-L3) (Johnston et al., 1997) and NEDD8 specific-protease cysteine (NEDP1) (Gan-Erdene
et al., 2003; Mendoza et al., 2003). After that, an adenosine triphosphate (ATP) and an E1 NEDD8-
activating enzyme (NAE) first adenylate and activate mature NEDD8, respectively. NAE is a
heterodimer comprising NAE1 (also called APPBP1) and UBA3 (also called NAEβ) (Bohnsack
and Haas, 2003; Walden et al., 2003; Kurz et al., 2008). Next, activated NEDD8 transfers to one of
two NEDD8-conjugating E2 enzymes (UBC12/UBE2M or UBE2F) (Kamitani et al., 1997; Huang
et al., 2005). Finally, the E3 ligase catalyzes the production of isomers of the C-terminal Gly-76 and
lysine residue of the substrate protein via covalent attachment, ultimately transferring NEDD8 to
the substrates to complete the neddylation process (Kamitani et al., 1997).

E3 ubiquitin ligases are numerous, but 10 NEDD8 E3 ligases are available. Except for defective
cullin neddylation 1 (DCN1) (Kurz et al., 2005, 2008) and DCN1-like proteins (Kurz et al., 2008;
Meyer-Schaller et al., 2009), most of these contain the novel gene (RING) domain structure.
The 10 NEDD8 E3 ligases are DCN1, RING-box proteins 1 (RBX1) and RBX2 [also known as
regulators of cullin 1 (ROC1) and ROC2/SAG, respectively] (Duan et al., 1999; Kamura et al., 1999;
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Huang et al., 2009), murine double minute 2 (MDM2)
(Xirodimas et al., 2004), casitas B-lineage lymphoma (c-CBL)
(Oved et al., 2006; Zuo et al., 2013), SCFFBXO11 (Zuo et al.,
2013), ring finger protein 111 (RNF111) (Ma et al., 2013),
inhibitors of apoptosis (IAPs) (Broemer et al., 2010), TFB3
(TFIIH/NER complex subunit TFB3) (Rabut et al., 2011), and
tripartite motif containing 40 (TRIM40) (Noguchi et al., 2011).
The RING-type neddylation ligase acts as a scaffold to bind the E2
ubiquitin complex directly to the substrate, enhancing ubiquitin
transfer to the substrate protein (Metzger et al., 2014). Different
from RING-type neddylation ligases, HECT-type neddylation
ligases act catalytically by constituting a thioester bond with
the C-terminal lobe of the HECT domain before the transfer
of ubiquitin to its intended substrate (Berndsen and Wolberger,
2014; Zheng and Shabek, 2017). HECT-type neddylation ligases
remain less defined than RING-type neddylation ligases, such as
Yeast Rsp5, Itch (Li et al., 2016) (E3 ubiquitin-protein ligase Itchy
homolog), Smad ubiquitination regulatory factor 1 (Smurf1) (Xie
et al., 2014), Smad ubiquitination regulatory factor 2 (Smurf2)
(Shu et al., 2016), NEDL1 (NEDD4-like E3 ubiquitin-protein
ligase 1) and NEDL2 (NEDD4-like E3 ubiquitin-protein ligase
1) (Qiu et al., 2016) (Table 1). Furthermore, all NEDD8 E3
ligases identified thus far can be used as ubiquitin E3 ligases
(Zhao et al., 2014).

NEDD8 regulates the activities of substrates and participates
in various signaling pathways, including cell proliferation,
autophagy and transformation. Cullins are the most typical
target proteins for neddylation. Typical substrates of cullin-RING
ligases (CRLs) include proteins related to cell cycle regulation
(e.g., Cyclin D/E, p21, p27, and WEE1) (Jia et al., 2011; Luo et al.,
2012; Gao et al., 2014; Li et al., 2014; Hua et al., 2015; Paiva et al.,
2015; Han et al., 2016; Lan et al., 2016; Xie et al., 2017; Zhang
et al., 2016), apoptosis (e.g., BIM, NOXA, BIK, Bcl-xL, Mcl-1,
and c-FLIP) (Jia et al., 2011; Dengler et al., 2014; Godbersen
et al., 2014; Yao et al., 2014; Knorr et al., 2015; Chen et al., 2016;
Czuczman et al., 2016; Leclerc et al., 2016; Tong et al., 2017;
Wang et al., 2017) and signal transduction pathways (e.g., HIF1α,
REDD1, β-catenin, and Deptor) (Milhollen et al., 2010; Swords
et al., 2010; Zhao et al., 2012; Godbersen et al., 2014). Activation
of CRLs contributes to cancer progression and degradation of
their substrates (Xirodimas, 2008). In addition to cullins, several
other targets of neddylation, involving tumor suppressor p53
(Xirodimas et al., 2004), Hu antigen R (HuR) (Stickle et al.,
2004), von Hippel-Lindau protein (pVHL) (Stickle et al., 2004;
Embade et al., 2012), epidermal growth factor receptor (EGFR)

TABLE 1 | Classification of NEDD8 E3 ligases.

Neddylation E3 ligases

HECT E3s RING E3s

Itch
NEDL1
NEDL2
Smurf1
Smurf2
Yeast Rsp5

CBLs
DCN1
IAPs
MDM2
RNF111
Roc1/2

SCFFBXO11
TFB3
TRIM40

(Oved et al., 2006), oncoprotein mouse double minute 2 (Mdm2)
(Xirodimas et al., 2004), ribosomal proteins (Xirodimas et al.,
2008), AKT, liver kinase B1 (LKB1) (Barbier-Torres et al., 2015),
and PTEN (Xie et al., 2020), also effectively affect disease onset
and progression. Therefore, targeting neddylation is an effective
treatment for treating disease (Figure 1).

The substrate properties dictate the critical effect of
neddylation in regulating biological processes and disease
management. Recent studies have proposed the relevance
of neddylation modifications in cell cycle control, DNA
replication regulation, cell cycle progression and cell division.
The neddylation pathway is hyperactivated during human
cancer evolution (Zhou L. et al., 2019). Blocking the neddylation
pathway has become an appealing anti-cancer treatment (Jiang
and Jia, 2015). However, inhibiting the neddylation pathway
significantly upregulates the expression of the T-cell minus
modulator programmed death-ligand 1 (PD-L1), possibly
explaining the underlying resistance by evading immune
surveillance checkpoints (Zhou S. et al., 2019). In this review, we
summarize and analyse the promising potential of the targeted
neddylation pathway as a new therapeutic method and effects
of MLN4924/pevonedistat/TAK-924 treatment combined with

FIGURE 1 | The process of neddylation modification of proteins.
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other anticancer therapies, particularly those targeting the
antitumor immune axis.

TARGET PROTEINS OF NEDDYLATION

After activation by neddylation, CRLs are the largest group of
multi-unit E3 ubiquitin ligases responsible for ubiquitination,
with roughly 20 percent of cellular proteins targeted then
degraded by the ubiquitin-proteasome system (UPS) (Petroski
and Deshaies, 2005). The connection between NEDD8 and
the lysine residues at the C-terminus of cullins activates CRLs
(Sakata et al., 2007; Merlet et al., 2009), resulting in a structural
alteration in the CRL complex: it adopts an open conformation
to increase the entry of ubiquitinated substrates (Zheng et al.,
2002; Duda et al., 2008; Saha and Deshaies, 2008). CRL is
a multi-unit E3 comprising the following four components:
cullin, a substrate recognition receptor, an adaptor protein,
and one RING protein. There are eight cullins, including
CUL1-3, CUL4A, CUL4B, CUL5, CUL7, and CUL9, which are
the optimal substrates of the NEDD8 pathway; they have an
evolutionarily conserved cullin homology domain (Petroski and
Deshaies, 2005). Every cullin protein is regarded as a molecular
framework that promotes the combination of an adaptor protein,
an N-terminal substrate receptor protein and a C-terminal RING
protein (RBX1 or RBX2) to assemble a CRL (Feldman et al.,
1997; Deshaies, 1999; Seol et al., 1999; Petroski and Deshaies,
2005). CRLs regulate many important biological processes, such
as cell survival, apoptosis, genomic integrity, tumourigenesis
and signal transduction, by facilitating the ubiquitination and
degradation of critical zymolytes (Feldman et al., 1997; Nakayama
and Nakayama, 2006; Deshaies and Joazeiro, 2009).

Cullin neddylation activates CRLs, but some non-cullin
proteins are also protein substrates of neddylation. In 1979, p53
was originally recognized as a factor related to transformation,
and researchers have gradually discovered that it is closely
associated with the tumor process. In vivo, p53 modifications
occur mainly in pathways that promote ubiquitination,
phosphorylation and acetylation (Brooks and Gu, 2003).
Research has indicated that p53 is an essential target for
neddylation as well. The stability and function of p53, a
tumor suppressor, are tightly regulated by post-translational
modifications, including ubiquitylation and neddylation, in
which the MDM2 oncoprotein plays a critical role. Mdm2, as
an E3 ubiquitin ligase, binds directly to p53, thereby promoting
its polyubiquitination and proteasomal degradation (Nakamura
et al., 2000). Furthermore, Mdm2 and F-box protein 11
(FBXO11) facilitate the combination of NEDD8 with p53, thus
inhibiting p53 activity (Xirodimas et al., 2004; Abida et al., 2007).
Several ribosomal proteins have been identified as potential
NEDD8 substrates (Xirodimas et al., 2008). L11 was found to
be neddylated by Mdm2 and deneddylated by NEDP1. MDM2-
mediated L11 neddylation protects L11 from degradation, and
both L11 (Lohrum et al., 2003; Zhang et al., 2003) and S14
(Zhou et al., 2013) bind to MDM2 and regulate p53 stability.
Furthermore, the expression level of the RNA-binding protein
HuR is associated with MDM2. HuR could be protected
from degradation by neddylation through Mdm2-dependent

stabilization (Embade et al., 2012). Other non-cullin substrates
of neddylation have been reported, including the following: the
tumor suppressor pVHL (Stickle et al., 2004); receptor proteins
such as EGFR (Oved et al., 2006) and TGF-β type II receptor (Zuo
et al., 2013); and transcriptional regulators such as HIF1α/HIF2α

(Ryu et al., 2011), breast cancer-associated protein 3 (BCA3) (Gao
et al., 2006), APP intracellular domain (AICD) (Lee et al., 2008),
E2F-1 (Loftus et al., 2012), HECT-domain ubiquitin E3 ligase
SMURF1 and RBR ubiquitin E3 ligase Parkin (Xie et al., 2014;
Enchev et al., 2015). Additionally, new potential neddylation
targets exist for LKB1 and Akt (Barbier-Torres et al., 2015).

In addition to the substrates mentioned above, Vogl et al.
(2020) recently developed a series of NEDD8-ubiquitin-substrate
spectra (sNUSP) that can be used to identify new substrates,
such as COF1. The identification of a growing number of
substrates suggests that neddylation plays an extensive role in
cells with more complex cancer-promoting mechanisms than
previously thought, providing a theoretical basis for targeting the
neddylation pathway in the treatment of various diseases.

TARGETING PROTEIN NEDDYLATION AS
AN ANTICANCER STRATEGY

NEDD8 was initially identified as a gene whose expression is
downregulated during development in the mouse brain (Kumar
et al., 1992). However, it was demonstrated subsequently to
exist in various mouse tissues and is highly conserved in
vertebrate species and somewhat conserved in yeast (Kumar
et al., 1993), suggesting that the neddylation pathway is
essential during species evolution. Neddylation is a type of
posttranslational modification that modulates substrate protein
activity. Neddylation modification is catalyzed by an NAE (E1),
a NEDD8-conjugating enzyme (E2), and a NEDD8 ligase (E3);
these factors link a ubiquitin-like molecule, NEDD8, to the lysine
residues of the substrate protein. Accumulating evidence shows
that NEDD8 is overexpressed in some human diseases, such as
neurodegenerative disorders (Dil Kuazi et al., 2003; Mori et al.,
2005) and cancers (Chairatvit and Ngamkitidechakul, 2007; Salon
et al., 2007). Thus, targeting protein neddylation has recently
been recognized as a popular anticancer method (Watson et al.,
2011; Zhou et al., 2018). We summarized previous and recent
findings in Table 2.

NEDD8-Activating Enzyme (NAE)
NEDD8 is activated through an ATP-dependent reaction via
NAE and then is transferred to NEDD8-conjugating enzyme
E2. MLN4924 is a selective, effective, first-rate inhibitor of NAE
(Gong and Yeh, 1999). This micromolecule inhibits the protein
neddylation pathway and is currently under multiple clinical
investigations of its anticancer effect against solid tumors and
leukemia (Soucy et al., 2009; Godbersen et al., 2014; Swords
et al., 2018). The MLN4924 antitumor activity is mediated by
its ability to induce cell-associated autophagy, apoptosis and
senescence (Milhollen et al., 2010; Han et al., 2016). For example,
in liver cancer, MLN4924 induces the DNA damage response
(DDR) and apoptosis to inhibit hepatoma cell development
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TABLE 2 | Neddylation modification as an inhibition.

Ligase Product Name Mechanism and Principal Action Target References

E1 MLN4924 Pevonedistat (MLN4924) inhibits NAE activity more selectively than the closely related
ubiquitin-activating enzyme (UAE, also known as UBA1) and SUMO-activating enzyme (SAE; a
heterodimer of SAE1 and UBA2 subunits), in purified enzyme and cellular assays. MLN4924
exhibits potent cytotoxic activity against a variety of human tumor-derived cell lines.

NAE1 Soucy et al., 2009

E2 WS-383 WS-383 is a potent, selective and reversible inhibitor of the DCN1-UBC12 interaction. WS-383
inhibits Cul3/1 neddylation and induces the accumulation of p21, p27 and NRF2.

DCN1-UBC12
interaction

Wang et al., 2019

DI-591 DI-591 binds to purified recombinant human DCN1 and DCN2 protein and disrupts the
DCN1-UBC12 interaction in cells. Treatment with DI-591 selectively converts cellular cullin 3 into
an un-neddylated inactive form with no or minimum effect on other cullin members.

DCN1-UBC12
interaction

Zhou H. et al., 2017

NAcM-OPT NAcM-OPT is an orally bioavailable cullin neddylation 1 (DCN1) inhibitor, which potently inhibits
the DCN1-UBE2M interaction.

DCN1 Hammill et al., 2018

in vitro and in vivo and also induces autophagy, whereas
MLN4924 induces autophagy mediated by accumulating the
mTOR inhibitory protein Deptor and inducing reactive oxygen
species (ROS)-mediated oxidative stress (Peterson et al., 2009;
Luo et al., 2012). Identical to its effect in liver cancer, MLN4924
effectively suppresses lymphoma cell growth by inducing cycle
arrest of G2 cells and subsequent cell line-dependent apoptosis
or senescence. Apoptosis induced by MLN4924 is mediated by
the apoptotic signaling pathway, with significantly upregulated
pro-apoptotic proteins Bik and Noxa and downregulated anti-
apoptotic proteins XIAP, c-IAP1 and c-IAP2, while aging
induced by neddylation suppression seemingly depends on the
expression of tumor suppressors p21/p27 (Brownell et al., 2010).
Mechanistically, when tumor cells are treated with MLN4924,
MLN4924 blocks the activities of NAE by binding to its active site
to constitute a covalent NEDD8-MLN4924 adduct. Therefore,
CRLs are inactivated, leading to the accumulation of tumor-
suppressive substrates of CRLs and apoptosis or senescence
induction to inhibit cancer cell progression (Karin et al., 2002;
Wang et al., 2015).

Consistent with NAE inhibition, MLN4924 treatment of
cultured tumor cells results in the inhibition of CRL neddylation
and a reciprocal rise in the levels of foregone CRL substrates
such as p-IκBα (Soucy et al., 2009). The accumulation of
p-IκBα in the cytoplasm inhibits the nuclear translocation
of NF-κB transcription factors and suppresses the NF-κB
pathway, affecting tumourigenesis and development through
transcriptionally controlling genes related to cell growth,
angiogenesis, apoptosis, metastasis and cell migration (Karin
et al., 2002). For example, in activated B-cell-like diffuse large
B-cell lymphoma (ABC-DLBCL), MLN4924 causes G1-phase
cell cycle arrest and apoptosis induction by blocking the
classic NF-κB pathway. Thus, MLN4924 treatment leads to G1
phase arrest, P-IκBα accumulation and decreased inhibition of
NF-κB target genes, significantly affecting MLN4924-mediated
antitumor effects (Milhollen et al., 2010).

Autophagy plays a critical role in maintaining cellular
homeostasis and is closely associated with the development of
many human diseases (Wang and Zhang, 2019). MLN4924
significantly inhibits CRL neddylation modifications
and effectively induces autophagy in both dose- and
time-dependently in multiple human cancer cell lines (Zhao
et al., 2012). MLN4924 inhibits the activity of CRLs, induces

the accumulation of its substrate IκBα, blocks the activation of
NF-κB and expression of catalase, and promotes the expression
of ATF3, thereby inducing autophagy in oesophageal cancer cells
(Liang et al., 2020). mTOR is a well-established negative regulator
of autophagy (Kim and Guan, 2015). By inactivating CRLs/SCF
E3s, MLN4924 can inhibit mTORC1 activity by causing DEPTOR
accumulation directly and DEPTOR and HIF1α accumulation
via the HIF1-REDD1-TSC1 axis (HIF1α) (Zhao et al., 2012).
MLN4924 also triggers autophagy in colon cancer cells by
suppressing the PI3K/AKT/mTOR pathway (Lv et al., 2018).
Autophagy may be a novel anti-cancer mechanism for MLN4924
in cancer treatment, providing conceptual evidence for the
strategic combination of MLN4924 with autophagy inhibitors to
maximize tumor cell killing through enhanced apoptosis.

MLN4924 leads to DNA re-replication, which triggers
checkpoint activation, apoptosis, and senescence in cancer cells
(Soucy et al., 2009). The replication of genetic material is a
critical process of the cell cycle. Re-replication is a known signal
that induces DNA damage and causes DNA damage signaling
in cells (Zhu et al., 2004; Archambault et al., 2005). Cdt1 is
the initiation factor for the induction of DNA re-replication
in cells treated with MLN4924 (Lin et al., 2010). Similarly,
the DNA damage signaling factors P21 and P53 are important
substrates of the NEDD8-mediated neddylation pathway. P21
is crucial in the S-phase of the cell cycle, DNA replication
and the cellular senescence pathway (Pérez-Yépez et al., 2018).
MLN4924-induced senescence in human colorectal cancer cells
relies on recruiting p53 and its downstream adaptor P21 (Lin
et al., 2010). For other human tumor-derived cell lines, including
HCT116 (colon), Calu-6 (lung), SKOV-3 (ovarian), H460 (lung),
DLD-1 (colon), MCF-7 (mammary gland), CWR22 (prostate)
and OCI-LY19 (lymphoma), MLN4924 treatment also inhibits
proliferation and migration.

Currently, phase I trials for MLN4924 are ongoing in cancers,
such as metastatic melanoma (Bhatia et al., 2016), advanced solid
tumors (Bhatia et al., 2016), acute myeloid leukemia (Swords
et al., 2015), myelodysplastic syndromes (Shah et al., 2016),
lymphoma and multiple myeloma (Shah et al., 2016), and these
studies have revealed that critical therapeutic effects can be
obtained by antagonizing NEDD8-mediated protein degradation
(Supplementary Table 1).

Although excellent activity of MLN4924 was observed in
early trials, drug resistance was also found in large number of
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patients. Early preclinical studies have shown that treatment-
emergent NAEβ mutations promotes resistance to MLN4924.
Additionally, in human leukemic cells, UBA3 mutations increase
the enzyme’s affinity for ATP while decreasing its affinity for
NEDD8 (Milhollen et al., 2012; Xu et al., 2014); these mutations
effectively contribute to decreased MLN4924 potency in vitro. In
TCGA, PanCancer Atlas, the frequency of mutations in UBA3
is about 20%, that may suggest that mutations in UBA3 are
not the main cause of MLN4924 resistance. Mutations of key
molecules are often associated with drug resistance, and in
addition to mutations of NAEβ and UBA3, the upregulation of
ABCG2 transcription in resistant cells drives clinical resistance
(Kathawala et al., 2020; Wei et al., 2020). Thus, MLN4924 is
widely used as an anti-cancer drug in clinical practice but still has
some limitations.

NEDD8-Conjugating Enzyme
Activated NEDD8 can be transferred to the subunits of the
substrate by the NEDD8-conjugating enzyme E2, which includes
two members: UBE2F and UBE2M/Ubc12. RBX proteins can
be divided into RBX1 and RBX2 in humans (Nakamura et al.,
2000; Brooks and Gu, 2003; Nakayama and Nakayama, 2006;
Abida et al., 2007). UBE2F pairs with RBX2 to modulate cullin
5 neddylation dependent on E2 RING, while UBE2M functions
through RRB1 to mediate the neddylation of cullin 1, 2, 3,
4a, 4b, and 7 (Zhou W. et al., 2017). The E2-RBX-cullin
interaction combination determines the in vivo selectivity of
neddylation (Huang et al., 2009). The cellular levels of different
RBX partners determine the cellular levels of distinct cullins.
The two NEDD8 E2s exert different effects in cullin neddylation
in vivo (Huang et al., 2009).

Inhibition of E2s, which inhibit one subset of NEDD8
substrates compared with all neddylation substrates, may
provide better cytotoxic selectivity than inhibition of E1s, which
inactivates the entire neddylation pathway. In lung cancer,
targeting UBC12 causes accumulation of the CRL substrates p21,
p27, and Wee1, inactivating CRL ubiquitin ligase and arresting
the cell cycle in the G2 phase (Li et al., 2019). Therefore,
targeting E2s to inhibit neddylation modification blocks the
protein neddylation pathway and deactivates CRLs, triggering the
aggregation of tumor-suppressive CRL substrates, stopping the
cell cycle and impeding tumor growth and metastasis.

NEDD8 E3 Ligases
E3 ubiquitin ligases based on Cullin are activated by NEDD8
binding to Cullins. Therefore, targeting E2s to inhibit
neddylation modification blocks the protein neddylation
pathway and deactivates CRLs, triggering the aggregation
of tumor-suppressive CRL substrates, stopping the cell cycle
and impeding tumor growth and metastasis (Kurz et al.,
2008). Human cells express 5 DCN1-like (DCNL) proteins,
termed DCNL1–DCNL5 (also named DCUN1D1–5), each
encompassing a C-terminal potentiating neddylation domain
and an N-terminal ubiquitin-binding (UBA) domain, which
we termed the PONY domain, with distinct amino-terminal
extensions (Kurz et al., 2005; Kurz et al., 2008; Meyer-Schaller
et al., 2009). For example, in various human tumors, activation

of squamous cell carcinoma-associated oncogene (SCCRO)
triggers its function as an oncogene, and the UBA domain in
SCCRO (also called DCUN1D1) works as a feedback regulator
of biochemical and oncogenic activity (Huang et al., 2015).
Conversely, DCNL3 levels are downregulated in the liver,
bladder, and renal tumors (Ma et al., 2008) compared with those
in normal controls, indicating that DCNL regulation is critical
for human cancer development. Considering the conserved
binding characteristics of the UBA domain, targeting these
vital proteins could possess therapeutic implications for human
cancer treatment.

TARGETING PROTEIN
NEDDYLATION-BASED COMBINATION
THERAPIES

NAE Inhibitor MLN4924 Combined With
Chemotherapy Drugs
The effectiveness of radiotherapy for cancer is limited by
some of the toxic side effects of dose increases, although
existing radiotherapy remains the preferred problem for local
cancer control (Lyons et al., 2011; Venur and Leone, 2016).
Chemotherapy can improve the efficiency of ionizing radiation
by inhibiting DNA repair and overcoming apoptotic resistance
(Bandugula and N, 2013). Among anticancer drugs, 2-deoxy-
D-glucose (2-DG) is the most effective inhibitor of glycolysis,
glucose metabolism and ATP production (Dwarakanath, 2009).
2-DG increases the efficacy of chemotherapy drugs (such as
doxorubicin [DOX] and paclitaxel) in human osteosarcoma
and non-small cell lung cancer in vivo (Kern and Norton,
1987). 2-DG + DOX and buthionine sulfoximine (BSO)
dramatically promotes cytotoxicity by regulating oxidative stress
and interfering with thioethanol metabolism in breast cancer
cells (Tagg et al., 2008). MLN4924 can sensitize drug-resistant
pancreatic, lung and breast cancer cells to ionizing radiation,
although it has little effect on normal lung fibroblasts, indicating
that MLN4924 is a new radiation sensitizer (Wei et al., 2012; Yang
et al., 2012; Sun and Li, 2013). Therefore, 2-DG plus MLN4924
could be an anti-proliferative and radiation-sensitizing strategy
for various human cancers, providing insights on breast cancer
treatment (Oladghaffari et al., 2017).

NAE Inhibitor MLN4924 Combined With
Targeted Drugs
Endocrine therapy is the standard treatment for oestrogen
receptor (ER)-positive breast cancer and can significantly
reduce the risk of disease recurrence and mortality (Anbalagan
and Rowan, 2015). However, nearly one-third of patients still
experience disease recurrence and metastasis mediated by
endocrine resistance at the beginning of treatment or during
treatment (deConinck et al., 1995; Anbalagan and Rowan, 2015).
Fulvestrant has been approved as a selective oestrogen receptor
downregulator (SERD) to cure locally advanced or metastatic
breast carcinoma and significantly extends the progression-
free survival of patients (Johnston and Cheung, 2010). The
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neddylation modification pathway is activated in breast
carcinoma and is associated with ER-α expression. In anti-breast
cancer treatment, the neddylation pathway can downregulate
ER-α expression and inhibit ER inactivation, which can have a
synergistic anticancer effect with fulvestrant (Jia et al., 2019).

Inhibitors of apoptosis proteins (IAPs) are anti-apoptotic
regulators that prevent apoptosis and are often overexpressed
in many human tumors, in which they promote apoptosis
evasion and cell survival (Gyrd-Hansen and Meier, 2010).
IAP antagonists, also regarded as second mitochondria-derived
activator of caspase (SMAC) mimetics, have been recognized
as new apoptosis-inducing agents for treatment, either alone
or in combination with other antitumor drugs (Dineen et al.,
2010; Sumi et al., 2013). MLN4924 activates stress-response
signaling and works synergistically with IAP antagonists and
DNA damage-inducing chemotherapies. The oral IAP antagonist
T-3256336 synergistically promotes the anti-proliferative results
of the NAE inhibitor MLN4924 in cancer cells (Sumi et al., 2016).
The combination of IAP antagonists with MLN4924 inhibits
tumor proliferation, demonstrating the promise of a novel cancer
combination treatment.

NAE Inhibitor MLN4924 Combined With
Drugs Targeting the Antitumor Immune
Axis
Because the FDA approved the anti-PD-1 (programmed
death-1) antibodies nivolumab and pembrolizumab, as well
as the anti-PD-L1 antibodies atezolimuab, durvalumab and
avelumab, the signaling pathway involving PD-1 and its
ligand PD-L1 has become a research hotspot in the field
of tumor immunology and oncology (Dong et al., 2002).
However, not all tumors are sensitive to these compounds.
Inhibitors of neddylation are potential cancer treatment and
may promote cancer-related immunosuppression. Increasing
evidence has demonstrated that some traditional and targeted
cancer therapies modulate antitumor immunity (Galluzzi et al.,
2015; Patel and Minn, 2018), suggesting that cytotoxic anticancer
drugs combined with immune checkpoint blockade therapy
may be an effective combination. Thus, the combination of
MLN4924 and anti-PD-L1 therapy might significantly increase
the therapeutic efficacy in vivo compared with that with
either agent alone.

CONCLUSION

MLN4924/pevonedistat/TAK-924, as a micromolecule inhibitor,
inhibits NEDD8-activating enzyme (NAE), which impedes
the ubiquitination modification cascade, inactivating CRLs.
MLN4924 is the critical element of the dynamic protein
homeostasis pathway. Many clinical studies have shown the
impressive antitumor activity of MLN4924, but single-drug
treatment has some limitations. Clinical trials have demonstrated
that MLN4924 alone or combined with chemotherapy has
a good treatment effect. MLN4924 is currently under phase
II/III clinical trials for antitumor treatment and shows good
safety and tolerability, indicating its good development

prospects. We summarize the previous and recent findings
in Supplementary Table 1.

Recent studies have shown that MLN4924 has good anti-
ubiquitination activity and several activities independent of its
ubiquitination effects. MLN4924 induces EGFR dimerization,
thus triggering AKT1 activation. However, AKT1 and EGFR
inhibitors can eliminate MLN4924’s inhibition of cilia formation
(Mao et al., 2019). These results suggest that MLN4924
may have new applications in human cancer therapy that
exhibit cilia-dependent increase or drug resistance (Zhou et al.,
2016). MLN4924 can also promote glycolysis, and MLN4924
significantly increases the activity of pyruvate kinase (PK),
which could improve the survival rate of breast carcinoma cells.
Therefore, PKM2 activation, which promotes glycolysis and cell
survival, is an adverse outcome of MLN4924 for cancer treatment
and careful monitoring is required when using this drug (Zhou Q.
et al., 2019). The dosage of MLN4924 is also worthy of our
attention. Studies on various signal inhibitors have shown
that the tumor sphere stimulation of MLN4924 is primarily
regulated by the RAS/MAPK pathway. In mouse skin, MLN4924
accelerates EGF-induced injury recovery. Therefore, a low dose
of MLN4924 controls the proliferation and differentiation of
stem cells and has different anticancer properties than the
high dose. Additionally, MLN4924 has promising application
in stem cell treatment and tissue regeneration. In addition
to the dosage of MLN4924 that requires caution, the drug
resistance of MLN4924 also deserves our attention. In TCGA,
PanCancer Atlas, the frequency of mutations in UBA3 in all
tumors is approximately 20%, which may suggest that there are
other reasons for MLN4924 resistance and that no key gene
mutations but the upregulation of ABCG2 transcripts were found
in relapsed/refractory patients with MLN4924. Therefore, we
can use this hint to look for other causes of drug resistance in
MLN4924, and that bring new understanding to the resistance
of MLN4924 to better overcome it. To overcome resistance to
MLN4924, refining the drug combination may be a more routine
and convenient clinical tool, in contrast to the development
of a new generation of NAE inhibitors. In parallel, mutant
molecules or ABCG2 can be used as clinical biomarkers to predict
therapeutic resistance to MLN4924.

Immunotherapy has become a hot topic in cancer precision
medicine and has gradually developed into the fourth tumor
treatment mode after surgery, chemotherapy and radiotherapy.
However, it is not universally effective, and even the most
popular PD-1/PDL-1 therapy only leads to a good response
in approximately 20% of patients. The body’s immune system
has the function of immune surveillance. When malignant
cells appear in the body, the immune system recognizes and
specifically clears these “non-self ” cells. However, tumor cells
can still grow in the body, suggesting that they can either
evade attack by the host immune system or somehow modulate
the body’s effective antitumor immune response. The inhibition
of cell activation caused by tumor cell modification is an
important mechanism of tumor immune escape. According to
recent research progress, targeted therapy is expected to inhibit
tumor immune escape, improve the therapeutic effect of tumor
treatment and improve the prognosis of patients.
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