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Anderson Localization in 
Degenerate Spin-Orbit Coupled 
Fermi Gas with Disorder
Sheng Liu1,2, Xiang-Fa Zhou1,2, Guang-Can Guo1,2 & Yong-Sheng Zhang1,2

Competition between superconductivity and disorder plays an essential role in understanding the 
metal-insulator transition. Based on the Bogoliubov-de Gennes framework, we studied an 2D s-
wave fermionic optical lattice system with both spin- orbit coupling and disorder are presented. We 
find that, with the increase of the strength of disorder, the mean superconducting order parameter 
will vanish while the energy gap will persist, which indicates that the system undergoes a transition 
from a superconducting state to a gapped insulating state. This can be confirmed by calculating the 
inverse participation ratio. We also find that, if the strength of disorder is small, the superconducting 
order parameter and the energy gap will decrease if we increase the strength of spin-orbit coupling 
and Zeeman field. In the large disorder limits, the increase of the strength of spin- orbit coupling will 
increase the mean superconducting order parameter. This phenomenon shows that the system is more 
insensitive to disorder if the spin-orbit coupling is presented. Numerical computing also shows that the 
whole system breaks up into several superconducting islands instead of being superconductive.

Metal-insulator transition is a long standing topic in condensed matter physics. Understanding the mechanism of 
metal-insulator transition will be of great help in designing electronic devices. In 1949, Mott1 proposed a simple 
model shows that metal-insulator transition can be induced by electron-electron interaction, and this kind of 
insulator that called Mott insulator nowdays covers a lot of materials. The Mott’s theory is a marvellous theory, but 
it is not the whole story. In 1958, Anderson2 took a different angle to study this problem, he considered disorder in 
the system. He showed that, when the disorder is increased, the system will undergo a phase transition from metal 
to insulator. Later, in the famous paper written by the ‘gang of four’3, it was shown by using scaling theory that in 
1-dimensional and 2-dimensional system there will always exist localization as long as the disorder presents, no 
matter how small the disorder is. It is a different case in 3-dimensional system that there exists a critical disorder 
strength, under which the system is in extended state while above it the system is in localized state.

Since the discovery in 1958, Anderson localization has been studied extensively in a lot of obviously different 
systems including ultracold quantum gases4–6 that attracting a lot of attentions recently. Among them, it is amaz-
ing when the disorder is introduced into the superconductor, as superconductivity and Anderson localization 
have the opposite effects. In superconductors, electrons are bounded into Cooper pairs that then condense into 
a zero-resistance, macroscopic quantum state. In contrast, disorder induces localization of the electrons’ wave 
function that will transform the metal into an insulator with diverging resistance.

Over the years, precise theoretical study of the Anderson model has not been conducted because the inter-
action in real system is not negligible. However, a lot of experiments7,8 have been realized in ultracold quantum 
gases that the interaction has been tuned to be zero using Feshbach resonance and the localized wave function has 
been visualized. If attractive interaction between fermions are turned on in a system without disorder, this system 
will be in the superconducting state under a critical temperature Tc. This superconducting state can also exist in a 
2-dimensional disordered system below a critical disorder even when all single-particle states are localized9. The 
superconductor-insulator transition has been studied very extensively10–16. One of the most important aspects 
of ultracold quantum gases is that the interaction can be tuned, which enable the realization of mobility edge in 
3-dimensional quantum gases5.
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The superconducting-localization transition in a system without spin-orbit coupling (SOC) has been stud-
ied9,12,14,15,17,18 by other researchers. It is shown that, with the increase of the strength of disorder, the mean order 
parameter ∆ = ∑ ∆N i

1  will decrease to zero. Surprisingly, the energy gap Eg continues to show a finite value. 
This non-zero energy gap at larger disorder is due to the breakup of the system into several superconducting 
islands14,15. The same system has also been investigated with spin-dependent disorder19,20. It is found that, with the 
increase of the strength of disorder, the energy gap and the mean order parameter both approach to zero, which 
is significanly different from the system with spin-independent disorder. The scaling theory predicts that there 
will be an Anderson transition in d >  2 dimensional systems which is lacked in 2D system. The system with SOC 
has been studied by several groups21,22. In ref. 21, they found that SOC can lead to a mixing of localized states and 
extended states and lead to the appearance of mobility edge which indicates there will be an Anderson transition 
in 2D system.

In this paper, we investigate the effect of SOC and Zeeman field along with spin-independent disorder on 
an s-wave superconductor in a 2D optical lattice defined by Eq. (1) in the section of Results, and analyze it in 
detail based on the Bogoliubov-de Gennes framework14,23,24. Our goal is to find how the mean order parameter 
Δ and the energy gap Eg vary in the presence of both SOC and disorder. We find that, with increasing of disorder 
strength, Δ tends to zero while Eg remains a finite value which confirms the results in ref. 13. Meanwhile, the 
distribution of Δ broadens very much. When we increase the strength of SOC, it shows that the speed of the 
decreasing of Δ is reduced. We also find that Δ and Eg are reduced if we fix the disorder strength while increasing 
the strength of SOC or Zeeman field which is consistent with ref. 25. In the absence of disorder and with small 
Zeeman field, increasing the strength of SOC reduces both Δ and Eg

26. While for larger Zeeman field, the increase 
of the strength of SOC only has large effect on Δ and small effect on Eg. To study the localization effect in this sys-
tem, we also calculated the inverse participation ratio. It shows that, for small strength of SOC, the system will go 
to localized state with increasing disorder. And for large strength of SOC, with the increase of disorder, the system 
will go to a mixed state that consists of both extended states and localized states.

Results
We consider fermionic cold atoms confined in a 2D optical lattice with Rashba-type SOC, an out-of-plane 
Zeeman field24 and uniformly distributed disorder. The system’s Hamiltonian is

= + + +H H H H V, (1)so z0

which contains the single particle term
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and the disorder

∑= .ˆV V n
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Here t is the hopping energy, μ is the chemical potential, U >  0 is the attractive interaction strength, α is the 
strength of SOC, h is the strength of Zeeman field, ij  denotes the summation is for the nearest-neighbour sites, 
Vt is the disorder strength which is uniformly distributed in [− W, W], and ix±1, iy±1 mean the hopping is occurred 
in the x and y direction, respectively. σ = ↑ ↓σ σ

†c c{ , , ( , )}i i  are the Fermion annihilation and creation operators. 
=σ σ σˆ †n c ci i i  is the number operator.
We employed the mean-field theory to decouple the interaction term which itself is quadratic. And then we 

introduced the quasi-particle operators to study the superconducting phase. The detailed derivation is in the 
Methods section. In our numerical calculation, we keep density fixed 〈 n〉  =  0.875 which is near half-filling, and 
hopping energy t =  1.0. We choose the on-site interaction strength to be U =  4.0 which is large enough to ensure 
that the coherence length is within the system so our numerical calculation is trustful. In order to reduce the 
fluctuations caused by one single random on-site disorder, we obtain the results averaged over 15 disorder reali-
zations. Finally, we set our system size to be N =  12 ×  12 and choose the periodic boundary condition to reduce 
the finite size effect.

In Fig. 1 we calculated the energy bands for the non-interacting system (we set h =  0 and μ =  0), the degener-
ated bands are lifted by SOC and the bands are
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In Fig. 1(b), we plotted the zero energy Fermi surface for α =  0.75 at half filling. We see there is a particle 
Fermi pocket around Γ  and a hole Fermi pocket around K26. There are always two zero energy Fermi points 
located at M, this can be found if we let E+ =  E− =  0. And we see that, as increasing of SOC, both the two pockets 
shrinks to Fermi points (Γ  and K) where the energy is zero.

Figure 2 shows the evolution of the energy gap Eg and mean order parameter Δ as functions of disorder width 
W for different strength of SOC and Zeeman field. We find that, with increasing of the strength of disorder, Δ will 
vanish while Eg remains a finite value. This is just like the system without SOC14,15. In the absence of disorder, Eg 
and Δ will decrease if we increase the strength of SOC or Zeeman field, respectively. This is in contrast different 
from other results27. In ref. 28, they found that, as increasing of SOC, the superconducting order parameter will 
increase. To understand this difference, we need the help of the energy bands of the non-interacting system. For 
the filling number n =  0.875 we considered, as we increase SOC, the Fermi pockets around Γ  and K both shrinks 
to Fermi points which are located exactly at points Γ  and K. This suppresses the density of states and reduces the 
pairing26. For small Zeeman field, the reducing is very significant for both Eg and Δ. For large Zeeman field, the 
reduction of Δ is significant while Eg is barely affected by SOC.

Although the increase of the strength of SOC will reduce Δ and Eg, it is still different from the system without 
SOC. From Fig. 2(a,c), with the same Zeeman field h =  0.3 but different SOC strength, we find that the mean 
order parameter Δ is more robust against the disorder for large SOC. With the same strength of disorder, Δ of 
system with large SOC is lower compared to the system with small SOC. This means that the superconducting 
density is lower than the system without SOC, but the superconducting capability is much enhanced by SOC.

In all the cases, the energy gap Eg persists even at very high disorder strength in spite of growing number of 
sites with Δt =  0. They barely change in the whole range of disorder strength we have considered. Actually, we 
have =Eg

U
2

 if W > >  U, t. Because, as the single-particle states become more localized as indicated by Δ, the 
effective attraction is more enhanced, leading to a larger energy gap Eg

29. To understand how the energy gap 
evolves as the local order parameters become highly inhomogeneous, we computed the disorder averaged density 
of states (DOS) as follows
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{En} is the eigenenergy of the BdG matrix. In Fig. 3 we ploted the DOS for different strength of disorder 
and SOC. From all the figures presented in Fig. 3, it can be seen that the energy gap will not vanish no matter 
SOC is presented or not. It indicates that the system undergoes a transition from a gapped superconductor to a 
gapped insulator25. Under small strength of disorder, there is a sharp peak near the energy gap, which indicates 
that the states are piled up near the energy gap and the system is in superconducting state. The reason is that, in 
the absence of disorder, energy gap Eg equals the average of order parameter Δ. When we increase the strength 
of disorder, the sharp peak is smeared out, but the energy gap remains finite. This means the system undergoes 

Figure 1.  (a) Energy bands of non-interacting system. (b) Zero energy Fermi surface (corresponding to half-
filling). We set h =  0 and μ =  0, and choose α =  0.75. In (a) we plotted the zero energy surface. In (b) the red 
circle is the intersection of zero energy plane and the lower Rashba band, the four black half-circles are the 
intersection of zero energy plane and the upper Rashba band.
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a transition to a gapped insulator which is also conformed by other group30. For large strength of disorder, the 
states of the system are distributed in the whole eigenenergy interval. Actually, SOC will broaden the energy dis-
tribution as we can see from Fig. 3. From this we can say that the whole system is not superconducting but forms 
several superconducting islands. This can be explained as follows: SOC and Zeeman field induce a mismatched 
Fermi surface, so spin-up (spin-down) particles with a particular momentum can not find spin-down (spin-up) 

Figure 2.  Energy gap Eg and mean order parameter Δ as a function of disorder width W. We choose four 
sets of parameters. (a) α =  0.75, h =  0.3. (b) α =  0.75, h =  0.6. (c) α =  1.5, h =  0.3. (d) α =  1.5, h =  0.6.

Figure 3.  Density of states. Zeeman field h =  0.3. The corresponding strength of SOC are labelled in the 
figures.
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partners to form a Cooper pair. Hence there exist many paired and unpaired particles. Under the influence of 
disorder, the paired particles are localized and form superconducting islands.

Although SOC does not change the physical pictures qualitatively, it still causes some quantitative difference. 
As we can see from Fig. 3, SOC reduces the energy gap Eg under the same conditions compared to the system 
without SOC.

As we can find from Fig. 2, in the presence of SOC, Δ is more insensitive to the disorder. In Fig. 4, we plotted 
the histogram of local order parameter Δt as a function of local site disorder Vt. We first analyse the system with-
out SOC and Zeeman field. When the strength of disorder is small (W =  1), the whole order parameters {Δi} are 
lowed compared to the disorder-free system. The maximum of Δi is smaller than the mean order parameter of 
the disorder-free system. On the sites with large disorder, the local order parameters are suppressed. The order 
parameters increase for sites with small absolute value |Vi|. When the strength of disorder is moderate (W =  2), 
the order parameters with large disorder are suppressed significantly, some of them are zeros, which indicates 
that the superconducting is totally suppressed. In the condition of strong disorder (W =  4), the fluctuations of 
local order parameter Δi in the region of small |Vi| are very strong. There even exist some sites whose local 
order parameter are larger than the disorder-free system. The system breaks up into clusters with non-zero order 
parameters surrounded by some zero order parameter sites. This indicates the existence of superconducting islands 
as we plotted in Fig. 5. Although the disorder will always have the effect of breaking the superconducting pairing, 
but in the strong disorder limit, when two localized particles with opposite spin form a Cooper pair, the strong 
disorder will protect the Cooper pair from being affected by other particles outside the superconducting island. 
These kinds of Cooper pairs are only accumulated on the sites with strong disorder, this explains why the whole 
system is not superconducting while there exist some superconducting islands.

If we turn on SOC, it shows that, for small and moderate strength of disorder, the fluctuations are significantly 
suppressed. The fluctuations of large |Vi| and small |Vi| are comparable. Although the fluctuations are suppressed, 

Figure 4.  Histogram for local superconducting order parameter Δi as a function of local lattice disorder 
strength Vi. (a) α =  0, h =  0, W =  1. (b) α =  0, h =  0, W =  2. (c) α =  0, h =  0, W =  4. (d) α =  1.5, h =  0, W =  1. 
(e) α =  1.5, h =  0, W =  2. (f) α =  1.5, h =  0, W =  4. (g) α =  1.5, h =  0.6, W =  1. (h) α =  1.5, h =  0.6, W =  2. 
(i) α =  1.5, h =  0.6, W =  4.
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the mean order parameter is not zero but remains a finite value which is larger than the system without SOC. For 
large strength of disorder, the fluctuations near small |Vi| are more significant than the fluctuations near large 
|Vi|. As we can see from the third column of Fig. 4, SOC smooths the fluctuations of Δi, and we also find that the 
Zeeman field has limited effect on the local order parameters Δi.

All the findings show that SOC has the opposite role compared to the disorder. Disorder makes the particles 
more concentrated while SOC makes the particle more mobile. This is because SOC can make fermions hop 
between the nearest-neighbor sites with spin flipping and thus has a strong effect on the number difference. In 
Fig. 6, we plotted the number density for spin-up (n↑) and spin-down (n↓) particles. In the absence of disorder, 
increasing of SOC or Zeeman field increases the difference between n↑ and n↓31. This is obvious because Zeeman 

Figure 5.  Spatial distribution of local superconducting order parameters {Δι} for α = 0.75 and h = 0.3. 
(a) W =  0.2, (b) W =  2.0, (c) W =  4.0.

Figure 6.  Number density for spin-up and spin-down particles with different strength of SOC and Zeeman 
field. (a) α =  0.75, h =  0.3. (b) α =  0.75, h =  0.6. (c) α =  1.5, h =  0.3. (d) α =  1.5, h =  0.6.
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field causes energy level splitting between spin-up state and spin-down state. And SOC will cause the transfer 
between spin-up and spin-down particles. From Fig. 6(a,c), we can see that Zeeman field is the main reason for 
causing the difference between the two kind of particles, increasing strength of SOC will barely change the dif-
ference32. If we turn on the disorder, in all cases, the difference between n↑ and n↓ will decrease. This decreasing 
means that the disorder neutralizes the effects caused by SOC and Zeeman field. This explains why the system 
with SOC is more insensitive to disorder.

As we can see from above analysis, when we increase the strength of disorder, the system will undergo a tran-
sition from a gapped superconductor to a gapped insulator. To demonstrate this effect, we calculate the inverse 
participation ratio (IPR) P as follows

= ∑
| | + | |

∑ | | + | |
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In Fig. 7 we ploted the IPR as a function of disorder width W. For small SOC, with increasing disorder width, 
P increases from 0 to nearly 1. This is a strong evidence of Anderson localization. From Fig. 7(a,b), we find that 
Zeeman field has limited effect on the IPR, which indicates the localization is insensitive to Zeeman field. This is 
because Anderson localization is mostly single-particle physics. For large SOC, the maximum of IPR is signifi-
canltly smaller than 1, this means some parts of the system are in localized states and others are in extended states. 
Since large SOC changes the single-particle dispersion relation and causes the particles more mobile, the system is 
less localized than the system without SOC. We can understand this way, in the presence of SOC, the momentum 
distribution for spin-up and spin-down particles are broadly extended compared to the no-SOC case31,33. For 
small SOC, the two energy bands nearly degenerate, and the two bands are both partly occupied. As increasing of 
SOC, the Fermi pockets in Fig. 1 shrinks to Fermi points, the occupation of upper Rashba band becomes less, and 
the momentum distribution of spin-up and spin-down particles broadens a lot. This also reveals the fact that there 
will exist Anderson transition even in the 2-dimensional system if SOC is presented22,28. Although the system 
studied previously22,28 has no interaction, in this work we have considered the interaction, and find the similar 
results. These confirm the findings that SOC has opposite effect of disorder.

Conclusion
In summary, in this paper we have studied a 2D spin-orbit coupled degenerate Fermionic optical lattice system 
with uniformly distributed random disorder and with Zeeman field. We find that, with increasing of disorder 
strength, the mean order parameter Δ will vanish while the energy gap Eg will persist. Meanwhile, the system 

Figure 7.  Inverse participation ratio P as a function of disorder width W. For localized states, P →  1; for 
extended states, P →  0. (a) α =  0.75, h =  0.3. (b) α =  0.75, h =  0.6. (c) α =  1.5, h =  0.3. (d) α =  1.5, h =  0.6.
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undergoes a transition from a superconducting state to a gapped insulating state. We calculated the density of 
state to show that the energy gap will never be closed no matter how strong the disorder is. In the presence of 
disorder and without SOC, local superconducting order parameter {Δi} has very strong fluctuations on those 
sites whose local lattice disorder |Vi| are small. If we turn on SOC, we find the fluctuations have been suppressed. 
Although the maximum of local superconducting order parameter {Δi} is reduced, the mean order parameter Δ 
remains a finite value which is larger than the value of system without SOC. Lastly, we calculated the inverse par-
ticipation ratio, it shows that the system with SOC and disorder has a mixed state: some parts of the system are in 
localized states and others are in extended states. This confirms the same findings in the interaction-free system 
by other groups. All the findings show that SOC makes the particles more mobile and causes the opposite effect 
of disorder. And strong SOC will make the system more insensitive to the disorder.

Methods
Under the mean-field approximation, the on-site interaction term can be written as

− ∆ + ∆ +
∆
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Here we only consider the Hartree correction term +↑ ↓ ↓ ↑ˆ ˆ ˆ ˆU n n U n ni i i i  and the local order parameter is 
∆ = − ↓ ↑U c ci i i .

To diagonalize the Hamiltonian, we use the usual Bogoliubov-de Gennes transformation23
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where {Γ n} and Γ†{ }n  are the quasi-particle operators, N is the number of sites.
Substitute above equations to the Hamiltonian, we can obtain
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We solve the Bogoliubov-de Gennes equation self-consistently at temperature T =  0. The self-consistence 
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Here f E( )n  is the Fermi-Dirac distribution. Since we only consider the case of T =  0, we have
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