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Abstract

The spectral reflectance function of a surface specifies the fraction of the illumination
reflected by it at each wavelength. Jointly with the illumination spectral density, this function
determines the apparent colour of the surface. Models for the distribution of spectral reflec-
tance functions in the natural environment are considered. The realism of the models is
assessed in terms of the individual reflectance functions they generate, and in terms of the
overall distribution of colours which they give rise to. Both realism assessments are made in
comparison to empirical datasets. Previously described models (PCA- and fourier-based) of
reflectance function statistics are evaluated, as are improved versions; and also a novel
model, which synthesizes reflectance functions as a sum of sigmoid functions. Key model
features for realism are identified. The new sigmoid-sum model is shown to be the most real-
istic, generating reflectance functions that are hard to distinguish from real ones, and
accounting for the majority of colours found in natural images with the exception of an abun-
dance of vegetation green and sky blue.

Introduction

A viewer sees an illuminated surface—the light arriving at their eye being determined by the
intensity of the illuminant and the reflectance of the surface, both as a function of wavelength—
and declares it ‘green’. The causal sequence underlying this threads through Popper’s three lev-
els of reality [1]: world I, matter and sensation; world II, perception and cognition; world III,
language and culture. Theories that link Popper’s worlds, are an important goal of science [2—
4]; and colour presents a ‘goldilocks’ case study for this: not too simple, like temperature; nor
too complex, like shape [5, 6].

There is more than one way to link Popper’s levels. Most prized are mechanistic models
linking adjacent levels, and much has been achieved in colour science: electromagnetic models
describe the interaction of the illumination with the scene [7]; optical ones, the formation of
the retinal image [8]; electro-physiological, the retinal cone transduction of light into a nerve
impulse [9-11]); and neuronal, the re-coding of sensory responses into opponent channel rep-
resentations [12]. When levels are skipped, mechanistic models are not feasible, but accurate
predictive models may still be; for example, colour naming atlases [13, 14] that link sensory
responses to language. Sketchier yet, consistency between distant levels can be shown, for
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example between the cognitive similarity structure of the Basic Colours Terms [15] and the
spectral sensitivities of retinal cones [16].

This study aims for a consistency linkage—to establish a generative model of spectral reflec-
tances functions. We will evaluate the fidelity of the model in two ways -

o that its reflectance functions should look like natural ones, and

o that the colours of those reflectances when illuminated should be distributed like those in the
natural environment -

using machine learning and statistical methods to quantify and to compare rival models. As
well as contributing to the scaffold of colour science that links across Popper’s levels, such a
model may be useful for other studies. For example in understanding colour constancy, in
which illumination and sensation vary, while reflectance and perception are stable [17]; or in
determining optimal gamut transformations between devices [18].

The relationship between the statistics of natural reflectance and natural colour has previ-
ously been studied using Principal Components [19, 20] and Fourier Analyses [21]. PCA
methods were used to synthesize reflectance functions as the weighted addition of a small (~6)
number of components. The realism of these functions was assessed only informally but,
ignoring that a few percent of such generated functions will have reflectance values outside the
valid range [0,1], was clearly good. The distribution of colours of these reflectances was not
assessed for naturalness. While PCA is conceptually simple, the model is not compact, requir-
ing ~200 values to be specified (mean + 6 components x number of wavelengths sampled).

The same study [19] that considered PCA for analyzing spectral reflectance also proposed
that natural reflectances were effectively band-limited in the frequency domain. A fuller analy-
sis [19, 21] of the frequency domain characteristics of reflectance functions showed that they
were better considered to have a power-law form decrease of energy with frequency, rather
than a sharp cut-off. This led to a very compact model of spectral reflectance functions with
only a few parameters (mean reflectance, spectral power, power-law exponent fall-off). This
work only informally assessed the realism of the generated functions and their distribution of
colours. As we will show later, with some adjustments they can both be very good.

In this paper we will introduce methods objectively to quantify the realism of models of
spectral reflectance, in terms of individual functions and in terms of the distribution of their
colours. We will apply these methods to previous PCA and fourier-based models, to under-
stand their weaknesses, and will propose new models that are more realistic. We will achieve a
model that is simple and realistic, which we hope will find use in future research.

The paper is organized as follows. In section 2 we present datasets of spectral reflectance
and natural colour. In section 3 we describe the methods we use to assess the realism of a
model of spectral reflectance. In 4 we describe formation models for the colour-from-reflec-
tance process. Using these formation models we show that the reflectance and colour datasets
are not very consistent. In 5 we describe previous models (PCA, fourier) of the distribution of
spectral reflectance, and show that neither produce both realistic spectra and colours. In 6 we
extend these previous models (PCA+, fourier+) which improves their realism, and we present
a new sigmoid-sum model which is the most realistic. In 7 we discuss the key features needed
for models to be spectrally and colour realistic, and the realism of the sigmoid-sum model. In 8
we summarize and conclude.

Data

We describe the datasets, collected by others, of natural spectral reflectance functions and col-
ours that we use to evaluate realism.
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2.1 Spectral reflectance functions

A spectral reflectance function maps from the visible spectral interval A:=[380,720] nm to the
reflectance range [0,1]. It specifies, as a function of the incident illumination wavelength, the
energy of the light reflected by a surface as fraction of that reflected by a white lambertian
surface.

For statistics on spectral reflectance we merge nine collections from two sources [22, 23]
(Fig 1). These collections vary in their wavelength range and sampling, but we extrapolate and
interpolate them into a common scheme. Where extrapolation has been used (for example
from 400nm to 380nm for the ‘natural’ collection) we consider this harmless for further
analysis.

The collections vary in the type and number of materials measured. We presume that each
collection was assembled with an eye to diversity, rather than as a random sample of a natural
population. Overall, we consider the total dataset as informative of the appearance of reflec-
tance functions (smoothness etc.) but not as a reliable model of their natural distribution.

We make a few informal observations on the functions shown in Fig 1.

« Increasing segments are more common than decreasing.

« Most functions have fewer than five extrema. The ‘natural’ collection has additional high-fre-
quency structure presumed to be measurement noise.
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Fig 1. Shows twelve random examples from each of nine collections of spectral reflectances functions. Plot labels indicate the theme and size of each collection.
Reflectance functions are plotted in the colour they would appear under daylight (D65) illumination.

https://doi.org/10.1371/journal.pone.0223069.9001
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o The functions can be parsed as mostly made of plateaus and slopes, occasionally sigmoid
steps, less frequently humps, and rarely dips.

The collections vary in their wavelength sampling. For consistency all functions were re-
sampled (cubic interpolation) at 128 wavelengths equally-spaced across A. When appropriate
each collection is weighted equally, nullifying the variation in their size.

We have studied the frequency power spectra of the functions, revisiting the analysis per-
formed in [21]. Numerical frequency analysis assumes periodic signals, which is clearly not the
case here. If unaddressed, the resulting spectra are strongly influenced by the wraparound dis-
continuity. We deal with this by removing a linear trend from each reflectance and then apo-
dizing it with a Gaussian window (4 = 550nm, 0 = 50nm). The removal step is computed so
that the apodized function is free of linear trend. After detrending and apodization we use an
FFT to compute frequency power spectra, remove the three lowest frequency terms (because
corrupted by the detrending), normalize each power spectra to unit sum, average across a col-
lection, and then square root to obtain an overall frequency amplitude spectrum.

In Fig 2 we plot the results as log amplitude vs. log frequency. As the figure shows, on such
plots the amplitudes have a decreasing linear form for low to medium frequencies, and then a
constant value for higher frequencies. The linear part arises from a power law form depen-
dency of amplitude on frequency (i.e. acxf "), while the constant part arises from measurement
noise. We have fitted a model of this to the data (see Fig 2) which recovered a power law coeffi-
cient of ¥ = 2.3. Our results thus confirm the power-law frequency amplitude model proposed
in [21], but there the estimate of y = 1.8 was lower-larger coefficients corresponding to
smoother functions.

individual collections

m—— empirical mean

} 1 ! Il ! Il Il } I T R B R B B B A A A A NSNS ERERERRERARRINE]
T T T T T T T T LI S B B B S HE B N R R R EEREREEEEIEE]
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Fig 2. Frequency amplitude spectra for individual collections (blue), averaged over collections (red), and modelled (green).

https://doi.org/10.1371/journal.pone.0223069.9002
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2.2 Colour

For data on the colours present in the natural environment we use the RGB values of a large
collection of images. This is a convenient alternative to the use of spectroradiometers [24] or
hyper-spectral imaging systems [25]. While those methods do allow accurate prediction of the
colour sensations provoked by scenes, their technical complexity makes it difficult to assemble
large datasets. In contrast, RGB digital cameras are a simple to use, widely-available technology
from which large datasets already exist. The detraction of using digital cameras is that the accu-
racy of colour estimation is limited by the agreement between the null space of the camera and
cone spectral sensitivities, but increasingly the compromise of RGB cameras has been accepted
for statistical studies [26, 27].

Any image database that we could use is open to criticism as to its ‘naturalness’, since the
term is vague and, to the extent that it is not, is surely variable with time and place. We
acknowledge this but choose the THINGS dataset [28] which has been assembled for research
in psychology, neuroscience and computer science. This dataset consists of 26,107 images
organized into 1,854 common object categories according to the main object present within
them. Each image is 800x800 pixels and has been manually cropped from a larger source
image. The source images were collected by internet search for each category, and selected
from the results according to quality, variation and absence of artefacts such as text or borders.
Examples are shown in Fig 3.

Although the variation across images in their RGB content is a topic of great interest, here
we simply compute the overall histogram for the entire dataset (equivalently the arithmetic
mean of the per-image histograms). The image data is all 8-bit depth in each channel, but to
ease later computations we compute the histogram at 5-bit depth, hence with 2°x2°x2°~30K
bins. Since even 2-bits per channel is sufficient roughly to segregate the 11 Basic Colour cate-
gories [29] we are confident that this is adequate resolution. This mean histogram is visualized
in Fig 4, with observations:

o There is a high-density core around the achromatic axis [27] containing 80% of the colours
present in the images (Fig 4, top row).

« The core has roughly the shape of a thick, asymmetric, elliptic leaf with the central vein run-
ning along the achromatic axis. The plane of the leaf extends in the orange-blue direction,
further into orange than blue. The thickness of the leaf is in the purple-green direction [27].

« Against the plane of the leaf, lies an additional ‘worm’ of higher density extending from ‘leaf
green’ towards black, presumably due to the commonality of vegetation in the environment;
and along one edge, a ‘fringe’ extending from ‘sky blue” towards white, presumably due to
sky.

o The tails of the histogram (Fig 4, bottom row) are not a simple extension of the core.

Assessing realism

Our aim is to develop a model which produces individually realistic spectral reflectance func-
tions, with a realistic distribution of colours. We describe how we quantify realism.

3.1 Spectral functions

We assess the realism of a model of reflectance functions by how well they can be distinguished
from empirical functions. We measure this using machine learning methods. Specifically, we
train a classifier to distinguish between empirical and synthetic functions, and then test how
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Fig 3. Example images from the THINGS dataset.

https:/doi.org/10.1371/journal.pone.0223069.9003

well it performs on a test set. If the test classification is correct at chance (50%) levels we con-
sider the synthetic functions to be realistic, but if performance is higher the classifier must
have discovered distinguishing features so we consider them as unrealistic.

We use both random forest [30] and elastic-net regularized logistic regression [31] for clas-
sification, reporting the better performing of the two. We train a classifier using: as examples
of empirical reflectances, 12 randomly selected from each of all but one of the collections (thus
96 = 12x(9-1) examples); and, as examples of synthetic reflectances, 96 functions randomly
generated by the model. The size of each training set (only 12 reflectances per collection) is
determined by the smallest collection, and the desire to represent the collections equally, to
best capture the cross-collection variation.

We test the classifier using 12 random reflectances from the left-out collection and 12 ran-
domly generated synthetic reflectances. We score the classifier by the rate at which it gives a
higher confidence for an empirical test reflectance than for a synthetic (equivalent to the area
under the ROC curve). We repeat the assessment hundreds of times, leaving out different col-
lections, and take the overall average score as the final measure. We perform two modes of
assessment. One as described, and one colour-balanced in which, in both train and test sets,
each model-generated reflectance is colour-matched to an empirical reflectance. Colour-
matching is achieved by creating model reflectances until one of the correct colour is
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Fig 4. The mean RGB histogram of the THINGS dataset. All views show iso-density surfaces of the histogram, coloured according to the corresponding RGB Value.
The top row shows views of the iso-density surface that encloses 80% of the mass of the histogram, the bottom row enclosing 96%.

https://doi.org/10.1371/journal.pone.0223069.9004

generated. The colour-balanced mode prevents the classifier using the diversity of reflectance
functions as a cue, forcing it to attend only to their individual form.

3.2 Colour

We assess the colour realism of a model of reflectance functions by using a formation model
(section 3) to compute the image colours of the reflectances; compiling those colours into an
RGB histogram; and comparing that histogram to the mean image histogram. We use three
well-known measures to compare RGB histograms.

The simplest measure is the Intersection Distance (ID) which focusses on how much mass
the two histograms have in common. It measures the percentage of histogram density that is
specific to one of the histograms; the lower it is, the more similar the histograms. ID focusses
on the size of histogram bin count mismatches, ignoring colour distance.

A measure that does considers colour distance is the Earthmover’s Distance (EMD) which
measures the mean distance that mass must be transported optimally to transform one histo-
gram into the other. We express the EMD relative to the side length of the RGB cube.
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The third measure is Jensen-Shannon Divergence (JSD) which tells how much information
(measured in bits) is on average gained about which was the originating histogram given a sin-
gle colour picked randomly from one or other of the histograms compared. Like ID, JSD
ignores colour distance, but unlike ID it is particularly sensitive to bin count mismatches in
the tails of the histograms.

To further introduce the measures we compute them for an example pair of histograms,
one derived from the top half of the THINGS image dataset, and the other from the bottom
half. These ‘half histograms’ are visualized in Fig 5 which also introduces swatches, an alterna-
tive to iso-density visualization. The figure shows that the top histogram (T) has extra pale
blue and white colours, and the bottom (B) extra black and brown. This is due, no doubt (Fig
3), to more frequent sky/clouds above and shadows/earth below (see also [27]). The distance
measures between these half histograms are: ID = 8%, EMD = 3.5% and JSD = 0.01. We will
focus on ID in the remainder because of its easy interpretation.

Colour-from-reflectance formation models

Our aim is to assess the consistency between reflectance and colour natural statistics. To do
that we predict the distribution of colours that will arise from a sample or distribution of
reflectances, and compare that to the distribution of colours observed in images. To predict
colours from reflectances we require formation models. We consider two: a simple uniform-
illumination model and a more complex Ostwald shading+specularity one.

The simple formation model assumes uniform average daylight illumination [32] specified

as a spectral energy function D, : A — R™; Lambertian surfaces; the CIE 2012 2° xyz colour
matching functions 77 (1):=(x(1) y(2) z(1))" (derived from [33]); and the standard conver-
—3.2406 —1.5372 —0.4986

sion matrix M:=| —0.9689 1.8758  0.0415 [, non-linearity and clipping function
0.0557  —0.204  1.057

12.92z z < 0.0031308
n(z):=clipy, to convert to SRGB [34]. The model
‘ 1.055z"/% — 0.055 z > 0.0031308

produces a colour ¢ :=(r g b)" from a reflectance function p:A—[0,1] according to:

p— ¢ =1 <M</ m’(z).D%(z).p(z)) / (/ y(i)-D%(l)))

The simple formation model ignores shading (non-uniform illumination intensity) and
highlights (specular reflection) which are ubiquitous in natural scenes (see Fig 3). Fig 6 illus-
trates how these processes effect colour: shading shifts colour towards black, and specularity
towards white, neither process effecting hue [35].

The Ostwald formation model incorporates shading & specularity by making use of the
Ostwald triangle representation [36] which organizes the possible effective colours of a homo-
geneous surface (Fig 6 right). The effective colours arise as partitive mixtures of the full colour,

black and white-a partitive mixture being a weighted additive mixture, where the weights are
positive with unit sum [37].

The Ostwald triangle can also be considered as organizing the effective reflectances of a sur-
face. Let p be a surface reflectance function; ¢, b ,w € R? the vertices of the Ostwald triangle
corresponding respectively to full illumination, shadow and specularity; and let (0.,04,0,,) be
barycentric coordinates [38] (constrained by 0,,04,0,,>0, o.+0,+0,, = 1) indexing a point
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image top halves image bottom halves

Fig 5. Visualizes RGB histograms using swatches, which are random samples of colour from the density. The top swatch is for the mean image histogram. The
bottom row compares the top (T) and bottom (B) half-image histograms. The central swatch is for the intersection histogram (min(T,B)); the left and right swatches for
the excesses (clip,(T-B) and clip,(B—T)). The swatch sizes reflect the density mass in the intersection and excess histograms, so the left and middle swatches combined
are a swatch for the top-half histogram. The ratio of sizes is 0.08:0.92 so the intersection distance (ID) between the half histograms is 8%.

https://doi.org/10.1371/journal.pone.0223069.9g005

0, ¢ 40, b +o, win the triangle. The effective reflectance associated with that point is Peff=0cp
+0,,.

We model the effects of shading and specularity in the colour-from-reflectance process using
a distribution over the Ostwald triangle to capture how often different degrees of shading and/
or specularity occur during the formation of an image. We represent that distribution using a

bivariate normal distribution over a latent variable domain I € R?, which transforms to Ostwald

coordinates according to | — (0_,0,,0,) = (€', &, e/} /(e + " + &"*). Fig 7 (left) shows
Ostwald coordinates as a function of the latent domain, with an example bivariate normal
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Fig 6. The left and centre panels illustrate the colours arising from shading and specularity in the case of an object with homogeneous spectral reflectance. At
right is shown an example page from the Ostwald Atlas, which can be considered a chart of the colours that can arise in this way.

https://doi.org/10.1371/journal.pone.0223069.9006

distribution superimposed (green). This distribution over the latent domain transforms to a dis-
tribution over the Ostwald triangle (Fig 7, centre). In the example shown most of the mass is
along the shadow series from full illumination to black, while the remaining mass is near the
white specularity corner of the triangle. Fig 7 (right) shows a swatch for that distribution. It cor-
responds roughly to the distribution of colours arising from the sphere in Fig 6 (left).

Using the simple and Ostwald formation models, we have computed the RGB histograms
that result from the dataset of empirical reflectances. As previously noted, we sample equally
from the nine collections that form the dataset, even though they have different numbers of
members. The process is (i) randomly sample a reflectance from the dataset, (ii) compute its
colour according to the formation model, (iii) accumulate a count in the corresponding cell of
the RGB histogram, (iv) repeat 1M times. Step (ii) is deterministic when using the simple
model, and stochastic when using the Ostwald model. In the latter case we generate a sample
from the bivariate normal Ostwald distribution, and convert it to Ostwald triangle coordinates;
from these coordinates and the sampled reflectance we compute an effective reflectance; then
compute its colour as per the simple model.

Fig 7. An example Ostwald distribution. Left: Ostwald triangle coordinates as functions of the latent domain; with an example bivariate normal distribution
superimposed (green). Middle: the bivariate normal distribution transformed to the Ostwald triangle. Right: a swatch from the Ostwald triangle distribution.

https://doi.org/10.1371/journal.pone.0223069.9007
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Here, and whenever we use the Ostwald formation model, the five parameters of the bivari-
ate normal distribution (Fig 7, left, green) have been tuned to minimize the ID between the
resulting histogram and the mean histogram. Though the exact parameters vary, in all cases
the optimized distribution is similar to the example shown in Fig 7.

Fig 8 shows the mean image histogram and the empirical histograms from the reflectance
dataset when using the two formation models. For each histogram we use a gallery of visualiza-
tions that we will use throughout, with notes:

o the huexsaturation marginal is plotted with grey-level indicating log density, greatly exagger-
ating the higher saturation flanks, but allowing them to be seen;

« saturation marginals typically peak at low, but non-zero, saturation; even though the huexsa-
turation marginal density peaks at achromatic. This can happen because there are more low-
saturation histogram bins than achromatic.

« The Basic Colour Category marginal is computed using a soft assignment of histogram bins
to Basic Colours computed from a large corpus of colour naming data [39]. In detail, ~20K
unconstrained colour naming responses to 600 RGB specified colours were collected in an
online experiment from ~1K subjects. A gaussian-form model of the response rate for each
produced colour named was fitted as a function of RGB coordinates. Response functions for
variants of individual basic colour (e.g. ‘red’, ‘strong red’, etc.) were summed. Colour terms
that involved multiple basis colours were allocated to the involved colours depending on the
syntax of the term (e.g. for ‘orange-red’ 50% of the weight went to ‘orange’ and 50% to ‘red’,
whereas for ‘reddish-orange 66% went to ‘orange’ and 33% to ‘red’). The combined basic col-
our response functions allowed a distribution of basic colour responses to be determined for
any RGB value. For many RGB triples this was a sharp correspondence (e.g. 100% ‘red’)
whereas for others it was fuzzy (e.g. 70% ‘red’, 20% ‘orange’, 10% ‘pink’). The fuzzy assign-
ment of RGB to basic colours has been included in the downloadable material for this publi-
cation. The area of the square indicates the mass in a bin.

Comparing the histograms in Fig 8 we observe:

« With the simple formation model the empirical histogram is too spikey as the number of
reflectance functions is small compared to the number of histogram cells; this is improved
by using the Ostwald formation model.

o With the simple formation model the empirical histogram has much fewer very dark colours
(and to a lesser extent) very light colours than the mean histogram; this is improved by using
the Ostwald formation model.

o The saturation marginal of the empirical histogram is a good match to the mean histogram
with the simple formation model, but becomes too low in saturation when using Ostwald
shading.

o The hue marginals are all in fairly good agreement, except purples are rarer and blues more
common in the mean histogram.

o The Basic Colour marginals are in fairly good agreement, except for achromatic colours with
the simple formation model.

In Table 1 we give distances between the mean histogram and the empirical histograms
computed using the two formation models. As context, recall that the distances between the
top- and bottom-half histograms were JSD = 0.01, EMD = 3.5% and ID = 8%. The figures in
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Fig 8. Each row shows a gallery of visualizations for an RGB histogram. Reading left-to-right these are: a swatch; the 80%-mass-containing iso-density surface; the
huexsaturation marginal (grey-level indicating log-density); the lightness marginal; the saturation marginal; the hue marginal; the Basic Colour Category marginal.

https://doi.org/10.1371/journal.pone.0223069.9008

the table show that distances are much smaller with the Ostwald than the simple formation
model. These reduced distances, together with the fact that the tuned Ostwald distribution

(Fig 7, middle and right) agrees with expectation, validate the use of the Ostwald formation
model as a necessary improvement over the uniform-illumination model.

Previous reflectance models

Instead of using a dataset of reflectance functions directly as a model of the distribution of nat-
ural reflectances, one can generalize from it in the form of a generative model. Two such mod-
els have previously been described. The best-known of these (PCA) uses Principal
Components Analysis [40] to construct a high-dimensional normal approximation [19, 20,

Table 1. Distances between the mean image histogram and empirical histograms. JSD = Jensen-Shannon Diver-
gence; EMD = Earthmover’s Distance; ID = Intersection Distance. The ‘+5’ is a reminder of the number of parameters
tuned to minimize the ID.

formation model

uniform-illumination Ostwald (+5)
JSD i EMD ; ID JSD ; EMD i ID
0.53 i 4.2% ; 69% 0.16 ; 2.1% i 36%

https://doi.org/10.1371/journal.pone.0223069.t001
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Fig 9. The PCA model of spectral reflectance. Top-left: the mean reflectance function. Top-middle: standard deviations of principal components. Top-right: first six
principal components, colouring corresponds to the top-middle panel. Bottom-left: reflectances generated by the PCA model; a fraction (red and blue) have values
outside the legitimate [0,1] range. Bottom-right: generated reflectances after clipping to [0,1].

https://doi.org/10.1371/journal.pone.0223069.9009

41]. Fig 9 shows such a model built using our empirical dataset (giving equal weight to each
collection). A few things are of note:

o The mean reflectance has a positive slope.
o There is a power-law like decay in the magnitude of components.
« Components are roughly sinusoidal with frequency increasing with rank.

o A fraction of generated components have values outside the legitimate [0,1] range for reflec-
tance, but this can be remedied by clipping.

The second previous model (fourier) [21] builds on the regularities observed in PCA: specif-
ically that components are sinusoidal of increasing frequency, and their amplitudes follow a
simple pattern. Like PCA it models the distribution of reflectance functions as a high-dimen-
sional normal distribution but, rather than data-determined components, it uses sinusoids of
increasing frequency (integer number of cycles over A), amplitude which decays in a power
law fashion with frequency, and random phase. The fourier model is very compact-all that is
needed to specify it is (i) the value of the DC component, (ii) the overall amplitude of the fou-
rier components, (iii) the exponent of the power law decay.

In the original description of the fourier model [21] it is argued that it is advantageous to
represent reflectance r€[0,1] using an unbounded latent variable ¢t € R related by t—r=(1+-
tanht)/2 and r—t = tanh™'(2r—1) (see Fig 10). This removes the need to clip out-of-range func-
tions that occurs otherwise (Fig 9, bottom), and more significantly allows better representation
of functions with extreme reflectance values. We have implemented the fourier model from
[21] using the parameter values there specified: a DC value of -1.0, a stochastic standard devia-
tion of 1.2 per wavelength (both values in latent domain units) and a power law exponent of
1.8.
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Fig 10. The latent variable () representation of reflectance (r). Functions from wavelength to ¢ (left) can be converted to functions from wavelength to r (right) using
the sigmoid transfer function (middle, top), or back the other way using its inverse (middle, bottom).

https://doi.org/10.1371/journal.pone.0223069.9010

In Fig 11 reflectance functions generated by the PCA and fourier models are compared to
empirical reflectances. The top row of the figure shows random model functions, while the bot-
tom row shows random model functions chosen to colour-match the empirical reflectances.
Visualizing the two types (unconstrained and colour-matched) of model reflectances allow
one to assess whether the agreement of model to empirical data is in their detailed form and

empirical PCA fourier

Alnm

400 500 600 7oo  Anm ~400 500 600 7op ~ A/nm =200 500 600 700~ A/nm

Fig 11. Comparison of empirical (left) and modelled (middle and right) reflectance functions. All functions are plotted in their colour under the uniform-illumination
formation model. Left column: one function randomly chosen from each of the nine collections (same in top and bottom panels). Top row: unconstrained model
reflectance functions. Bottom row: colour-matched model reflectance functions.

https://doi.org/10.1371/journal.pone.0223069.9011
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distribution (top), or just in their detailed form (bottom). The figure shows that, to informal
inspection, the PCA reflectances are a reasonable match in both aspects while the fourier ones
are not.

In Fig 12 we compare the amplitude spectra of synthetic and empirical reflectance func-
tions. In the low- to mid-frequency range the amplitude fall-off is slower for synthetic func-
tions than empirical, corresponding to their rougher appearance in Fig 11. In the high-
frequency range the empirical spectra have higher amplitude than the synthetic-this could eas-
ily be improved by adding synthetic measurement noise to the model reflectance functions but
we consider this not worth modelling.

In Fig 13 we compare the RGB histograms that result from the PCA and fourier models
(when using Ostwald formation) to the mean histogram. The PCA histogram is quite similar
to the mean histogram but its saturations are too low; the fourier histogram is very different
from the mean histogram, especially in its equal extension in the blue and orange hue
directions.

In Table 2 we summarize the realism scores for the PCA and fourier models. We consider
the most important scores to be reflectance realism as measured by the colour-balanced score,
and colour realism as measured by the intersection distance (ID) score when using the Ost-
wald formation model. Based on these we consider PCA to be a modest improvement over
using the reflectance dataset directly as a model; while fourier is slightly worse.

Improved and new reflectance models

We have developed PCA+ which aims to be an improved version of PCA. The differences are
(i) it operates in the latent (¢) rather than the reflectance domain (r), as innovated by [21] (ii)
after transformation to the latent domain, empirical reflectances are normalized to zero mean,

log amp

— empirical

EE—— fourier

log f

Fig 12. Average fourier amplitude spectra for empirical and synthetic reflectance functions.

https://doi.org/10.1371/journal.pone.0223069.9012
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Fig 13. Same layout as Fig 8 but comparing the RGB histogram from the images (top row) to the histograms from two existing models of the distribution of
reflectance.

https:/doi.org/10.1371/journal.pone.0223069.g013

mean image

before computation of the PCA components, (iii) a tunable normally-distributed DC compo-
nent is used, (iv) a tunable gain factor on the stochastic components is applied. Thus PCA+
has three tunable parameters which are optimized to minimize the intersection distance
between the resulting colour histogram and the mean histogram.

We have developed fourier+ which aims to be an improved version of fourier. The model
has a normally-distributed DC term (two parameters), a normally distributed linear slope

Table 2. Realism scores comparing the empirical dataset approach with the two existing models of spectral reflectance. For all metrics lower numbers indicate greater
realism. The shaded columns contain the most important realism metrics. The left concerns individual reflectance functions, and the right the distribution of colours aris-
ing. The ‘+5’ note for Ostwald-shading reminds of the number of parameters tuned to minimize the ID scores.

realism scores
spectral reflectance colour histogram
uniform-illumination Ostwald-shading (+5)
colour balanced JSOD | EMD | ID JSOD | EMD ! ID
model empirical (50%) (50%) 053 | 42% 1 69% 016 | 21% | 36%
PCA 74% 55% 032 | 68% ! 53% 013 1 22% 1 30%
fourier 92% 86% 049 | 7.8% |  68% 014 | 35% I  33%

https://doi.org/10.1371/journal.pone.0223069.t002
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Fig 14. Shows computation of a sigmoid-sum reflectance. In this example, the random number of sigmoid components (left) was 10. These are summed and
normalized to zero-mean (middle, solid) then added to a random DC component (middle, dotted). The sum is then transformed to the reflectance domain (right).

https://doi.org/10.1371/journal.pone.0223069.g014
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term (two parameters), and tunable stochastic magnitude. As described in section 2.1, we have
independently estimated the power-law coefficient from the reflectance dataset as 2.3, different
from the original published estimate of 1.8 [21]. The five tunable parameters are optimized as
for PCA+.

We have developed a new sigmoid-sum model of reflectance functions, inspired by the qual-
itative appearance of our empirical dataset. The model is explained in Fig 14. It operates in the
latent domain. Multiple sigmoid components are summed; each of the form axerf((A—c)/0),
where the error function erf() is the version with the range [-1,1], and the amplitude (a), cen-
tre (¢) and width (o) are chosen randomly. Each sigmoid is constructed by first choosing its
width using a log-normal distribution, then choosing its the centre uniformly in the interval
[380—20, 720+20] nm; the amplitude is chosen as a normally-distributed random variable
independently of the width and centre, and can be positive (increasing sigmoid) or negative
(decreasing). The number of sigmoid components in the sum is a random poisson-distributed
variable. The sum of sigmoids is normalized to zero-mean before a normally-distributed DC
component is added. Finally, the sum is transformed from the latent to the reflectance
domain.

The sigmoid-sum model has six tunable parameters: mean number of components; mean
log-width; mean and sd of the amplitudes; mean and sd of the DC component. These were
tuned as for PCA+ and fourier+. The optimal values were: DC component N[-0.51, 1.03], 4 =
10.5 for number of components, widths distributed as e">!4], and amplitudes distributed as
N(0.11, 0.36). The distribution of amplitudes is such that 62% of sigmoid components are
increasing. The sd of the width distribution was chosen (given the tuned mean) so that the fou-
rier spectra of the resulting reflectance functions had a power-law law fall off with exponent
2.3, as per the empirical data

In Fig 15 we compare reflectance functions for the three new models and in Fig 16 their
average fourier amplitude spectra-both figures confirm that all models produce reflectance

PCA+

fourier+ sigmoid-sum

e

L

Fig 15. Synthetic reflectance functions (columns 2-4) colour-balanced with the same randomly chosen empirical reflectance functions as in Fig 11 (right).

https://doi.org/10.1371/journal.pone.0223069.9015
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Fig 16. Average fourier amplitude spectra for empirical and synthetic reflectance functions.

https://doi.org/10.1371/journal.pone.0223069.9016

functions that are more realistic than the previous models. In Fig 17 we show the colour histo-
grams that result from the new models, and all can be seen to be roughly equally similar to the
empirical colour histogram.

Figs 15-17 show that the new models are difficult to rank by eye according to their spectral
and colour realism. The quantitative assessments of realism presented in Table 3 do allow us to
objectively compare them. Observations are:

o PCA+ produces less realistic reflectances than PCA, but slightly more realistic colours.

o fourier+ is a considerable improvement over fourier, and has more realistic reflectances and
colours than PCA+.

o sigmoid-sum is the most realistic model in both key metrics, and in fact has the best scores in
all metrics.

o Although sigmoid-sum with Ostwald shading has the most tuned parameters (6+5), even
with only uniform illumination (6 parameters) it is more realistic than fourier+ with Ostwald
shading (5+5 parameters).

Discussion
7.1 Key features for realism

Looking across the results we draw conclusions about the key model features needed for
realism.

Spectral
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Fig 17. Same layout as Figs 8 & 13.
https://doi.org/10.1371/journal.pone.0223069.9017

o Variation in the mean reflectance as well as variability about that mean is important. fourier
fails to very realistic (Fig 11) because its functions have the form of excursions from a fixed
low reflectance, rather than variations about an intermediate value that itself varies from
function to function.

Reflectance functions need to have the correct frequency content. PCA and fourier have an
excess of mid-frequency power which causes them to be obviously too rough. PCA+, fourier
+ and sigmoid-sum have correct frequency content and look more realistic as a consequence.

Correct frequency content alone does not lead to the localized transitions that are visible in
some empirical reflectance functions. That requires coordination of phases to align compo-

nents. Only the sigmoid-sum model is able to reproduce these transitions, though possibly to
slight excess.
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o The explicit modelling of localized step transitions in sigmoid-sum gives rise to occasional
localized peaks and troughs, in sufficient number to model their rare appearance in empiri-
cal functions.

Colour

« As previously observed in [21], the smoothness of empirical reflectance functions leads to
orange and blue peaks in the hue marginal. We further note that the orange peak is much
higher than the blue (Fig 12), and explain it as due to the greater frequency of positive reflec-
tance slopes than negative. The PCA and PCA+ models capture this tendency in their mean
reflectance functions. fourier fails to capture the tendency (observe the equal peaks in the
hue marginal in Fig 13). This is fixed in fourier+, with its explicit modelling of a stochastic
linear term which gives a positive slope for the majority of reflectances; and in sigmoid-sum,
with its preference for individual sigmoid components to be increasing rather than
decreasing.

o Purple is notably rare in natural images (Fig 8, top row, hue and Basic Colour marginals). It
is more common in the empirical reflectance dataset, possibly because purple samples were
included for diversity. PCA and PCA+, being derived from the empirical reflectances, have
too much purple compared to natural images (Figs 13 & 17).

7.2. Realism assessed

The new sigmoid-sum model scored most highly for both aspect of realism, with the fourier+
model a close second. The sigmoid-sum realism scores are not perfect though, so it needs to be
considered how realistic the model is in absolute terms.

First consider the realism of the individual reflectance functions. This was assessed by the
performance of a machine learning classifier trained to discriminate between empirical and
synthetic functions. The best classifier found was able to do this correctly 53% of the time. This
is certainly a low success rate—one would need to observe ~500 trials to become fairly certain
that the rate was above chance. However the performance is limited by the ability of the classi-
fier to identify distinguishing features, and while machine learning classifiers are capable of
identifying distinguishing features that humans might miss, the same is true vice versa. Ulti-
mately this quantitative assessment of realism should only be considered a supplement to eye
measure. In Fig 18 we compare empirical and synthetic functions to allow the reader to make
this assessment. The task is certainly possible but not easy, and the most obvious cues are mea-
surement artefacts in the empirical data such as plateaus at short wavelengths or high fre-
quency noise-we could easily simulate these and make the task very difficult. (Empirical
functions are in the top row in the outer columns).

Next we consider the realism of the colour histogram for sigmoid-sum (Ostwald). Fig 17
visualized this and Table 3 quantified it as an intersection distance of 20%, a Jensen-Shannon
Divergence of 0.06 bits, and an Earth Mover’s Distance of 1.0%. In Fig 19 we give a side by side
comparison of swatches for the sigmoid-sum and mean image histogram. They are visually
very similar but some differences can be seen. The difference becomes more apparent in the
intersection and excess histograms in the same figure.

The similarities and differences between the model and empirical histograms can be under-
stood from Fig 17 (2™ column). The figure shows that the sigmoid-sum model does a good job
of accounting for the main leaf-shaped region of high density in the natural image histogram;
thus colours from this region can thus be understood as arising from a simple statistical model
of reflectance. The sigmoid-sum model however fails to model the additional ‘worm’ of green
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Table 3. Realism scores for all models. The shaded columns are the key metrics. Figures in parentheses indicate the number of parameters tuned to minimize ID scores.
The best scores in each column are bolded. Final row of table reminds of the difference between top and bottom half-image histograms, given as context.

realism scores

spectral reflectance colour histogram
uniform-illumination Ostwald (+5)
colour balanced JSOD | EMD ! ID JSOD | EMD ! ID
model empirical (50%) (50%) 053 1 42% | 69% 016 | 21% ¢ 36%
PCA 74% 55% 032 | 68% | 53% 013 | 22% 30%
fourier 92% 86% 049 | 78% |  68% 014 | 35% |  33%
PCA+ (3) 79% 60% 017 | 20% | 38% 010 | 21% | 28%
fourier+ (5) 78% 55% 015 | 1.8% |  34% 008 | 15% i 23%
sigmoid-sum (6) 68% 53% 007 | 15% | 22% 006 | 10% !  20%
image top halves vs. image bottom halves 0.01 E 3.5% E 8%

https://doi.org/10.1371/journal.pone.0223069.t003

(hypothesized to arise from vegetation) and a ‘fringe’ of light blue (hypothesized to arise from
sky) that the mean histogram exhibits. As shown by the excess histograms in Fig 19, it under-
shoots for the worm and overshoots for the fringe, capturing other blues along with sky blue.
No doubt the sigmoid-sum model could be made more complex to capture both elements cor-
rectly, but we do attempt that here. The model already has five tuned parameters for shading
and specularity, and six for the reflectance model. The total count of eleven tuned parameters
is not excessive given that a tri-variate normal distribution has nine degrees of freedom, and
the mean histogram has a more complicated form than that.

Summary & conclusions

We have considered models of the distribution of spectral reflectance functions in the natural
environment. Assessing them by whether (i) they generate individually realistic functions, and
(ii) the distribution of their colours is realistic. For both tests we assess realism by comparison
with datasets that we take as representative of the natural environment. We found that a data-
set of actual empirical reflectance functions while necessarily individually realistic did not have
a distribution of colours that was an excellent match to natural images. A common existing
model of reflectance (PCA) produced fairly realistic functions and a better distribution of

Fig 18. In each column, one panel shows a random selection of reflectance functions (one per collection), the other panel shows colour-balanced sigmoid-sum
reflectance functions.

https://doi.org/10.1371/journal.pone.0223069.g018
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Fig 19. Compares the empirical and model image histograms (top) and shows the breakdown into intersection and excess histograms that give rise to the intersection
distance of 20% (bottom). The failure of the model to capture the abundance of vegetation green is apparent in the empirical excess histogram (bottom-left). The models
broader range of blues than required to capture sky-blue is apparent in its excess histogram (bottom-right).

https://doi.org/10.1371/journal.pone.0223069.9019

colours than the empirical reflectance dataset, while another existing model (fourier) was
worse. We were able to slightly improve the PCA model (PCA+), and significantly improve the
fourier model (fourier+) by incorporating stochastic constant and linear components. While
the fourier+ model can be considered to produce realistic reflectances and colours, we were
able to slightly improve on it with a novel sigmoid-sum model. We make available for down-
load a large dataset of pre-computed model reflectance functions at doi.org/10.5281/zenodo.
3385047 as well as the fuzzy membership functions needed to compute basic colour marginals.

Our model accounts simultaneously for the statistics in two realms of the colour phenome-
non-Popper’s World I of physics, where spectral reflectance functions belong-and Popper’s
World II of perception, where colours do. Our model raises questions whose answers could
extend the theory further down and up. Down into chemistry—why is there a tendency for nat-
ural reflectance to increase with wavelength; and up into cognition-are some colours more sta-
ble than others under illumination change, and does this correlate with colour categorization
as has been suggested [42].
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