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Abstract
Magnetic Particle Imaging (MPI) is an emerging imaging modality with exceptional promise

for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and

inflammation imaging. Recent publications have demonstrated quantitative MPI across rat

sized fields of view with x-space reconstruction methods. Critical to any medical imaging

technology is the reliability and accuracy of image reconstruction. Because the average

value of the MPI signal is lost during direct-feedthrough signal filtering, MPI reconstruction

algorithms must recover this zero-frequency value. Prior x-space MPI recovery techniques

were limited to 1D approaches which could introduce artifacts when reconstructing a 3D

image. In this paper, we formulate x-space reconstruction as a 3D convex optimization prob-

lem and apply robust a priori knowledge of image smoothness and non-negativity to reduce

non-physical banding and haze artifacts. We conclude with a discussion of the powerful

extensibility of the presented formulation for future applications.

Introduction
Magnetic Particle Imaging is a novel, safe, sensitive, high-contrast, and fast imaging modality
[1–6] with many potential applications in medical imaging including angiography, cell therapy
tracking, cancer imaging, inflammation imaging, and temperature mapping [5, 7, 8]. The MPI

technique detects only magnetic particles and derives no signal from tissue, which gives MPI

unique contrast that is best compared with tracer imaging modalities such as nuclear imaging.
This is in contrast to Computed Tomography (CT) and Magnetic Resonance Imaging (MRI),
which are primarily anatomical imaging techniques. The physics and hardware required for
MPI are completely distinct from existing medical imaging modalities, and MPI images cannot be
acquired using MRI systems.

MPI produces images of magnetic nanoparticle (MNP) concentrations by detecting the nonlin-
ear magnetic response of an MNP distribution to time varying magnetic fields. A strong static
magnetic field gradient or selection field saturates all MNPs in the field of view (FOV) except for a
region near the center of the FOV called a field-free region (FFR), which can be either a field-free
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point (FFP) or field-free line (FFL). A second low-frequency, time-varying (e.g., sinusoidal)
homogeneous magnetic field called the drive field excites the MNPs. The drive field translates
the FFR, which causes a flip in magnetization when the FFR passes over the MNPs. This flip in
magnetization induces a signal in a receive coil. The FOV is extended using a slowly varying
focus field or shift field.

To reconstruct the received signal into an image, two distinct approaches to image recon-
struction have been demonstrated: system function reconstruction [1, 2, 9–15] and x-space
reconstruction [3–5, 16–19]. The system matrix method measures or simulates the MNP

response in a specific MPI system with a pre-defined trajectory to form a system matrix. The sys-
tem matrix is then used to reconstruct an image. In contrast, x-space methods use an image
space continuity algorithm which do not require any simulation or pre-characterization mea-
surements of the MNP response. However, current x-space continuity algorithms operate
sequentially on a single 1D line at a time and do not take advantage of information along the
two perpendicular axes.

Optimization approaches have been used for image reconstruction in MRI and CT to increase
imaging speed, reduce image artifacts, and reduce dose [20–28]. For example, some techniques
formulate the MRI and CT reconstruction process using reliable a priori knowledge regarding the
governing physics and imaging process such as smoothness, non-negativity, data consistency,
sparsity, and multiple imaging channels [20, 21, 24, 25].

These optimization approaches can be applied to MPI, where reliable a priori information
exists and can be used to improve reconstruction accuracy. In this paper we formulate the MPI

1D, 2D, and 3D x-space DC (direct current or zero-frequency) recovery and image stitching pro-
cesses as a convex optimization for the first time while enforcing knowledge that the image
must be both smooth and non-negative. This new optimization approach utilizes additional
information along the two axes perpendicular to the excitation axis to improve on our previous
x-space reconstruction.

Theory
The x-space systems theory for MPI is described in [3–5, 16–18]. The MPI signal equation and
point spread function (PSF) were derived using the assumption that MNPs instantaneously align
with an applied magnetic field [16, 17]. The systems theory was then extended to include the
first-harmonic direct-feedthrough filtering necessary in real MPI systems [18]. The filtered
information was found to correspond to a loss of spatial DC information. X-space theory has
been used to prove analytically and experimentally that this DC loss can be reversed to restore
linearity and shift invariance in MPI [18].

In this work, we demonstrate that the MPI x-space reconstruction process can be improved
in 2D and 3D using convex optimization with the following a priori information: the MNP distri-
bution is non-negative and the MNP distribution is smooth. The validity of these assumptions in
MPI systems is described below.

New a priori information: 2D and 3D smoothness and non-negativity
MPI images the density of MNPs convolved with a strictly positive PSF. Thus it is not possible for
the MPI image, the convolution of two positive functions, to contain negative values except for
those produced by noise. Enforcing non-negativity during image reconstruction is then a phys-
ically justifiable assumption.

The reconstructed MPI image must also be smooth due to a smooth MPI PSF. The native MPI

image is a convolution of the physical MNP distribution with the smooth PSF and is thus smooth.
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If the sampling of the native image adheres to the Nyquist limit (determined by the band-lim-
ited PSF), the reconstructed image must also be smooth.

In a multi-dimensional image reconstruction algorithm, one efficient method of incorporat-
ing non-negativity and smoothness is through convex optimization methods, which can solve
for convex objectives (e.g., the sum of a data consistency term and a 3D smoothness term) and
convex constraints such as non-negativity. The use of these additional terms and constraints
enforces a globally optimal solution that adheres to the physics of the MPI process, thereby
increasing image conspicuity.

Materials and Methods
The reconstruction pipeline can be broken down into two serial processing steps: x-space pro-
cessing and optimized DC recovery (see Fig 1). The x-space processing filters and velocity com-
pensates the raw data acquired by the analog to digital converters (ADCs) and interpolates the
data into partial FOVs. The optimized DC recovery then minimizes the residual error between
partial FOV data and estimated partial FOVs. The estimated partial FOVs are calculated via a for-
ward operator on an estimated image. The linear operators that constitute the forward model
are represented by sparse matrices and/or functions specific to a particular MPI pulse sequence.
The optimization problem includes a priori information such as smoothness and non-negativ-
ity. The problem is solved with a standard gradient descent-based algorithm using a matrix-
free formulation which is fast, robust to noise, and memory efficient. We describe these steps
in detail below.

X-space processing
X-space processing prepares the raw signal for the optimization problem and reduces the size
of the dataset via three main steps: filtering, velocity compensation, and partial FOV gridding.
These steps remain identical to the previously reported x-space reconstruction and are illus-
trated in the left column of Fig 1 [16, 18].

The filtering step of x-space processing recovers signal phase and reduces noise. Phase cor-
rection filters reverse the phase distorted by the hardware filter chain. High pass filters remove
any remaining direct-feedthrough at the fundamental frequency. Digital harmonic filtering
removes signal outside a specified bandwidth of the received harmonics in the Fourier domain.

After filtering, velocity compensation is performed by normalizing the signal intensity to
the instantaneous FFR velocity as required for x-space reconstruction [16, 17].

The signal is then gridded into partial FOV images as detailed in Fig 2. Image data is interpo-
lated onto a discrete grid using the known trajectory of the FFR. The trajectory is redundant and
creates overlapping partial FOV sub-images where one partial FOV is defined as the spatial extent
the FFR travels due to the drive field. The resulting partial FOV data is missing some unknown
portion of the DC component in the partial FOV image (along the z-axis in Fig 2) due to direct
feed-through filtering in hardware [10, 18]. In this work, the remaining unknown DC compo-
nent is removed by filtering DC to zero.

Averaging during interpolation improves the final image signal to noise ratio (SNR) and also
reduces the storage size of the processed partial FOV data when compared to the raw data
acquired by the ADC. The original vector of raw data for the coronary phantom images shown
in this work contain 740 million values of data (6GB) while the partial FOV data, b, contains 14
million values (112MB). Gridding reduced the memory size and optimization problem input
size by a factor of 50 in this example and simplified the forward model employed in the optimi-
zation problem. Problem size reduction depends on spatial density of the sampled trajectory
and the partial FOV interpolation density.

A Convex Formulation for MPI X-Space Reconstruction
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Linear Forward Model
A linear forward model describes the splitting of an image into partial FOVs and the DC signal
loss due to filtering (see Fig 1, right side). The forward model is a simplified description of the
imaging process. The linear forward model allows specification of the data consistency term of
the optimization problem formulated in Eq 6.

Fig 1. Experimental data illustrating proposed image reconstruction. (Left) The measured signal is filtered and velocity compensated before gridding to
partial FOV images. The partial FOV) images become the input to the optimization problem. (Right) The optimization problem formulation of DC recovery is
illustrated. The forward model A consists of the S andD operators, where S is the segmentation operator andD is the DC removal operator. The initial
estimated image is the zero vector, ρ0 = 0. The estimated image, ρ, is calculated and updated with each step of the iterative proximal gradient solver [29]. The
optimization problem is formulated in Eq 6.

doi:10.1371/journal.pone.0140137.g001
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The forward model includes two operators, segmentation S and DC removalD. S is the seg-
mentation operator, which breaks the image into overlapping partial FOV images:

S ¼

Is

Ir

Is
Is

Ir

Is

. .
.

2
666666666666666664

3
777777777777777775

ð1Þ

where Is is an identity matrix the size of the overlap, s, between adjacent partial FOV images. Ir
is an identity matrix the size of r = p − 2s where p is the width of partial FOV. This definition is
specific to the problem with the image vectorized along the rows and partial FOVs shifted by an
integer number of pixels.

Fig 2. Partial field of view gridding detail. The received signal is interpolated to partial FOV images using the
FFR trajectory. Each x-axis traversal is broken into a separate partial FOV image. Varying colors delimit each
partial FOV image. The sinusoidal pattern in the trajectory is formed due to the simultaneous x-axis shift field
and the z-axis drive field.

doi:10.1371/journal.pone.0140137.g002
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The operator,D, removes the average along the drive field direction (here the z-axis) of the
partial FOV:

D ¼

R

R

. .
.

R

2
666664

3
777775

ð2Þ

where

R ¼ Ip �
1

p
: ð3Þ

This operation is equivalent to subtracting the DC component in the spatial Fourier domain.
Operators S andD are composed to form the forward model of the MPI system, A:

A ¼ DS ð4Þ
whereA 2 R

m�n is a matrix, n is the product of the dimensions of the resulting image, andm
is the product of the dimensions of the input partial FOV images. Both operations S andD are
sparse, and their composition results in an Amatrix that is sparse and has a block diagonal-like
structure. The forward model is then described by:

b ¼ Aρ ð5Þ
where b 2 R

m is the input data of vectorized partial FOVs from the scanning system and ρ 2 R
n

is the vectorized image of MNP density convolved with the system PSF. The vectors are built by
stacking the rows of the image or the rows of the partial FOV. Note that no assumptions regard-
ing nanoparticle behavior were made except that the nanoparticles respond to the instanta-
neous position of the FFR.

Reconstruction Formulated as a Convex Optimization
Because we have represented the imaging process as a set of linear operations, we are able to
estimate the native MPI image by solving a convex optimization, expressed below. A convex
optimization formulation guarantees that any minimum reached is a global minimum [30].

minimize
ρ

k Aρ� b k2
2 þa k ρ k22 þbi k rei

ρ k22
subject to ρ≽0

ð6Þ

where ≽ denotes element-wise inequality for non-negativity, ρ and b are as described in Eq (5),
α is a Tikhonov regularization parameter, βi are smoothness parameters, and ei, i 2 {1, 2, 3} is
one of the three coordinate axis basis vectors. The image non-negativity constraint improves
the general robustness of the DC recovery. As noted above, the addition of smoothness and
non-negativity terms are justified by a priori knowledge of the physics.

The smoothness terms βi (which penalize the spatial image gradients) and the Tikhonov
regularization α increase the stability of the image reconstruction. Tikhonov regularization is
used to better condition a problem. This is true of our problem as the Tikhonov term regular-
izes the singular value associated with DC, originally in the nullspace, by forcing the optimiza-
tion to choose an image estimate with the lowest total DC value. For our problem, this has a
strong connection with a priori knowledge that real MPI images are tortuous and sparse.

A Convex Formulation for MPI X-Space Reconstruction
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Eq 3 can be restated more generally:

minimize
ρ

k Tρ�w k2
2

subject to ρ≽0
ð7Þ

where

T ¼
A
ffiffiffi
a

p
Iffiffiffiffi

bi

p rei

2
664

3
775 w ¼

b

0

0

2
64

3
75 ð8Þ

In this form, the image reconstruction problem is a basic least squares problem subject to a
non-negativity constraint. Many tools for solving this basic form of non-negative least squares
are available in common scientific computing platforms; however, these tools do not support
using matrix-free operators to solve optimization problems. Our motivation to use matrix-free
methods is described in the next section. We implemented a proximal gradient algorithm (Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA)) using matrix-free operators, where the
proximal operator is a projection onto the non-negative orthant [29, 31]. With this solver, we
can compare the practical computational advantages and disadvantages of using matrix-free
operator formulations over matrix formulations.

Linear Operator Representation
The image reconstruction problem can be complicated by the need to store very large matrices.
Simply storing these matrices can be a challenge, even with considerable sparsity of approxi-
mately 1:105. For example, the matrix A in Eq 3 requires approximately 32GB of memory for
the 3D data sets acquired in this work when stored in a standard sparse form.

Instead of storing sparse matrices, matrix-free operators can be used. With matrix-free
operators, the matrix-vector multiplication is encoded as a function, and no actual matrix is
stored. These matrix-free operator methods are used in MRI, CT, and geology to reduce the stor-
age requirements of imaging problems [26, 32, 33].

In practice, there are two challenges in converting a given matrix formulation into the
equivalent matrix-free operator formulation. First, one must derive a function for the forward
linear map (A ρ). Then, to solve an optimization problem using this forward model, one must
derive a function for the corresponding adjoint (A> b). Here, matrix-free operator formula-
tions for both the DC removal operator, D, and the splitting operator, S, and by composition, A,
were developed. The functional forms can be checked for correctness by operating on the iden-
tity (returning the linear map in its finite, dense matrix form) and through the dot-product test
[33]. As noted in the results section, going to matrix-free operator methods has improved
reconstruction time seven-fold and greatly reduced RAM requirements.

Imaging Phantoms
To demonstrate the reconstruction method using our MPI system, two imaging phantoms were
created. A double-helix phantom shown in Fig 3 was fabricated from two 0.6mm inner diame-
ter tubing segments injected with MNPs (Micromod Nanomag-MIP 78-00-102, Rostock, Ger-
many). These tubing segments were wound around a 2.7 cm acrylic cylinder with a total length
of 6.5 cm.

A coronary artery phantom 3D model with approximately human sized features was
designed in SolidWorks (Dassault Systems, Maltham, MA). The arteries formed cavities in a

A Convex Formulation for MPI X-Space Reconstruction

PLOS ONE | DOI:10.1371/journal.pone.0140137 October 23, 2015 7 / 15



cylindrical part. The part was printed on a 3D printer (Afinia H480, Chanhassen, MN). The 3D
model is shown in Fig 4. The phantom was designed with 1.8mm by 2.3mmmaximum diame-
ter arteries that were approximately ellipsoidal. Injection holes (shown in black) had a diameter
of 1.0mm and were filled with Micromod Nanomag MIP MNPs diluted 4:1 with deionized water.

The phantoms were imaged with the FFP imaging system shown in Fig 5. The images were
reconstructed using the formulation in Fig 1. The optimization problem formulated in Eq 4
was solved via a proximal gradient method developed in Matlab [29]. To reconstruct the
image, 15 harmonics were used, for a total bandwidth of 300 kHz.

We included comparisons between native x-space reconstructed images and mildly decon-
volved images in the results. Deconvolved images were generated using 3D Wiener deconvolu-
tion [34]. The estimated PSF returned by blind deconvolution, seeded with a calculated

Fig 3. Experimental MPI data from a double helix phantom. The 3D dataset was reconstructed using the previous DC recovery method and the proposed
method. Both datasets are shown as maximum intensity projection images with no deconvolution. Images reconstructed with the proposedmethod contain
less background haze and fewer artifacts. The imaging phantom was constructed by wrapping two 0.6mm ID tubes injected with Micromod Nanomag MIP MNPs
around an acrylic cylinder of OD 2.7 cm. The total imaging time was 10 min with a FOV of 4.5 cm by 3.5 cm by 7.5 cm (x,y,z).

doi:10.1371/journal.pone.0140137.g003

Fig 4. Experimental MPI data from a coronary artery phantom. Images were reconstructed with the proposed reconstruction formulation and contrasted
to the previous 1D DC recovery as well as no DC recovery. The imaging phantom was created by 3D printing an ABS plastic coronary artery model. The
reconstructed 3D dataset is shown as maximum intensity projection images. With no DC recovery, many image intensity dropouts are evident. These dropouts
are corrected with DC recovery algorithms. The optimized 3D recovery contains fewer artifacts (solid arrow) and less background haze than the prior
algorithm. Light deconvolution can be used to remove remaining background haze present in the reconstructed signal; however, deconvolution can lead to
image dropouts (dashed arrow). The total imaging time was 10 min with a FOV of 4.5 cm by 3.5 cm by 9.5 cm (x,y,z).

doi:10.1371/journal.pone.0140137.g004
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theoretical MPI PSF, was used in the Wiener deconvolution. Deconvolution was applied after x-
space reconstruction and independent of the optimization.

Results
In Fig 3, the proposed reconstruction is compared to the previous x-space algorithm using
experimental MPI data from a double helix phantom. Fewer banding artifacts and haze are pres-
ent with the proposed algorithm. No deconvolution is used. The 3D dataset is further illustrated
in the S1 Video.

The following acquisition and reconstruction parameters were used for the images in Fig 3:
46 partial FOVs, partial FOV matrix size of 96 by 128 by 59 (x,y,z) pixels further downsampled
five-fold via averaging along the z-axis, 43.6 pixel overlap between partial FOVs, α of 0.15, βi of
0.04 8i, 10 iterations of the FISTA algorithm, 96 by 128 by 154 (x,y,z) final pixel matrix size, total
imaging time of 10 min, and a FOV of 4.5 cm by 3.5 cm by 7.5 cm (x,y,z).

In Fig 4, the proposed reconstruction is contrasted with the case of no DC recovery as well as
the previous x-space algorithm using experimental MPI data from a coronary artery phantom.
In the image with no DC recovery, the partial FOV images were averaged together to form the
image with no attempt to recover the lost DC information. There are obvious dropouts. When
deconvolution is used, the background haze in the image is reduced; however, deconvolution
has introduced one image signal dropout (marked with a dashed arrow).

The imaging parameters for Fig 4 were: 46 partial FOVs, partial FOV matrix size of 96 by 128
by 59 (x,y,z) pixels further downsampled six-fold via averaging along the z-axis, 43.6 pixel over-
lap between partial FOVs, α of 0.05, βi of 0.04 8i, 30 iterations of the FISTA algorithm, 96 by 128
by 129 (x,y,z) final pixel matrix size, total imaging time of 10 min, and a FOV of 4.5 cm by 3.5
cm by 9.5 cm (x,y,z).

Fig 6 displays the data from the coronary artery phantom in Fig 4 with the proposed recon-
struction at multiple angles of rotation to demonstrate the 3D nature of the dataset. The 3D dataset
is further illustrated in the S2 Video. The images are volume rendered views with deconvolution.

Fig 5. Field free point MPI system photo. This 7Tm-1
FFP MPI system was used to experimentally

demonstrate the effectiveness of the 3D optimized reconstruction.

doi:10.1371/journal.pone.0140137.g005
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Fig 7 shows the singular values and right-singular vectors of the singular value decomposi-
tion (SVD) calculated for the operator A to illustrate the conditioning of the proposed recon-
struction. The operator was created for a 1D image reconstruction to allow the singular vectors
to be shown easily. 15 pixels overlapped between adjacent partial FOVs and the partial FOV
width was 20 pixels. As expected, there is a singular value of zero for the DC image component,
which indicates that an image with only a DC component is in the nullspace of the operator. If
the DC singular value is removed, the condition number of operator A is 6.

Table 1 details reduced memory requirements using matrix-free operators when recon-
structing the coronary phantom images of Fig 4. All reconstruction was performed on a single
core of a computer with four Xeon 5600 processors and 144GB RAM. The conversion ofD to a

Fig 6. Experimental data of a coronary artery phantom from Fig 4 at different angles. The 3D volume-
rendered datasets were reconstructed using the proposedmethod with deconvolution. The total imaging time
was 10 min with a FOV of 4.5 cm by 3.5 cm by 9.5 cm (x,y,z).

doi:10.1371/journal.pone.0140137.g006

Fig 7. Singular values and right singular vectors, V, were calculated on A for a 1D problemwhere 15 pixels overlapped between adjacent partial
FOVs and the partial FOV width was 20. The singular vectors represent the spatial z-axis and are shown in absolute value. The singular values demonstrate
well-posed nature of the proposed reconstruction problem.

doi:10.1371/journal.pone.0140137.g007
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matrix-free operator reduced the reconstruction time 7-fold and reduced the storage require-
ment of the operator to negligible amounts (2 × 108 fold reduction).

Discussion
For clinical acceptance of any medical imaging system, developers must produce a robust sys-
tem that gracefully handles noise and minimizes image artifacts [35, 36]. Here, we have
designed an image reconstruction algorithm with these goals in mind.

In MPI, artifacts include banding and baseline drift. Banding artifacts manifest as ripples along
the horizontal and vertical axes due to discontinuities between partial FOVs. Haze occurs due to
the long tails of the MPI PSF and can be exacerbated by the reconstruction algorithm. Baseline drift
also appears as a hazy background, but this is likely due to component heating in the MPI system.

The proposed reconstruction formulation improves resulting image robustness and reme-
dies many of the artifacts seen in prior x-space algorithms. For example, Figs 3 and 4 show that
the proposed reconstruction has improved conspicuity and reduced artifacts, including sup-
pressing banding and minimizing haze. Because of the a priori information that the image is
smooth, the banding artifacts do not occur in the images reconstructed via the optimization
approach, which takes advantage of image smoothness along all image axes. The alpha term in
the reconstruction optimization problem suppresses haze in the resulting images.

Reconstruction using the proposed formulation is well posed. The robustness of an optimi-
zation problem can be seen in the magnitude of the operator matrix’s singular values. To illus-
trate this, in Fig 7 we calculate the singular values and corresponding right singular vectors of a
one-dimensional reconstruction using partial FOV overlaps with similar properties as those
used in the full 3D Amatrix. We see that the singular value magnitude varies directly with the
amount of signal averages in a reconstructed image region; the singular value plateaus are
equal to the square root of the number of partial FOV overlaps. For example, for singular value
indices 1 to 64, each pixel in the central region is acquired four times in different partial FOVs

and these pixels have singular values of
ffiffiffi
4

p ¼ 2. Note the region of variation (marked with 4
averages along the y-axis) in the singular vectors image corresponds to the section of four over-
lapping partial FOVs where the singular value magnitude is 2.

The proposed algorithm can recover the DC information within a partial FOV, but there is no
a priori information to recover the overall DC value of the image. This problem is common to
all MPI techniques that filter the signal direct-feedthrough. Note in Fig 7 that the right-most sin-
gular value of the SVD is zero; the DC value is in the null space of A. The minimum DC value is
selected out of the null space by the optimization problem regularization term, which will be
correctly selected if there is at least a single pixel value of MNP concentration within each line in
the FOV. Images taken with MPI are sparse and anatomical structures are tortuous by nature,
meaning images contain many zero values. Correct selection can be guaranteed by ensuring
there is no tracer at one edge of the FOV during scan prescription. Furthermore, even with this
condition not guaranteed, tests have indicated that the proposed algorithm still performs well.

A reconstruction algorithm should not cause noise gain. As seen in Fig 7, the 1D SVD con-
tains a small number of singular values less than 1. These singular values represent a noise gain

Table 1. Sparsematrix versusmatrix-free operator computation time and ram requirements.

Sparse Matrix Matrix-Free Operator

RAM 32 GB 0.000 000 2 GB

Computation Time 53 min 8 min

doi:10.1371/journal.pone.0140137.t001
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but the smoothness and Tikhonov terms suppress their noise amplification contributions. Fur-
thermore, the very low frequency and straight line input distributions that would map to these
singular values are not typically found in biological samples.

Beyond reconstruction, SVD analysis can also be applied to the design of MPI pulse sequences.
Inspection of Fig 7 indicates that greater SNR efficiency may be achieved by adding additional
acquisitions near the edge of the FOV to better condition the reconstruction. A larger drive field
will create more image overlap and thus more averaging but will not necessarily greatly
improve the conditioning of the reconstruction. The same can be said about using a finer shift
field pattern.

Reducing the overlap in the pulse sequence does not significantly increase the condition
number until the overlap becomes small (see Fig 8). This indicates that reducing the overlap
does not pose significant reconstruction problems until the overlap is only a small portion of
the partial FOV. Though the conditioning does not significantly decrease, reduced averaging
due to reduced overlap will increase the noise seen in images as discussed above.

The above SVD analysis demonstrates that image reconstruction via the proposed optimiza-
tion method is robust. Furthermore, the proposed method has been shown to produce fewer
artifacts than the the previous x-space approach. We anticipate that improved MPI reconstruc-
tion techniques such as optimized 3D reconstruction will be crucial for the long term accep-
tance of MPI in the clinic. In addition, we believe that these methods, along with advances in
hardware and MNP design, will be important for improved image quality in the future.

The proposed reconstruction technique contrasts with deconvolution, which if not used
carefully and judiciously can degrade SNR and introduce artifacts such as signal dropouts. This
effect is seen in Fig 4, where there is one dropout in the deconvolved image that is not present
in the actual reconstructed image (marked with an arrow). However, deconvolution is able to
reduce the haze present in the reconstructed image when applied minimally. It is thus vital that
the benefits of deconvolution, such as reduction of haze, be balanced with the potential for
introducing artifacts such as signal dropouts and ringing.

Fig 8. Condition number variation with overlap. The condition number is calculated on the matrixA with
the DC singular vector removed (reduced A) for a 1D problem with a partial FOV width of 20. The trend curve is a
least-squares fit to the calculated condition numbers and illustrates the general trend of improved condition
number with increased partial FOV overlap.

doi:10.1371/journal.pone.0140137.g008
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The proposed reconstruction technique is fast and scales well. With matrix-free techniques,
reconstruction occurs in eight minutes for the full 3D volume using only a single processor.
Moreover, many techniques could speed the solution of the optimization problem. Parallel pro-
cessing techniques on multiple core CPUs or GPUs could be used. Also, for real time imaging, a
prior reconstructed frame can be used to seed the optimization problem for rapid convergence.

The proposed optimization approach is extensible in many ways. In general, new a priori
information can be incorporated into the reconstruction formulation. The proposed recon-
struction can be modified for other MPI trajectories, to add multiple simultaneous drive and
receive channels, and to include filtered backprojection for FFL MPI systems. Expansion of the
formulation to include filtering and gridding steps of x-space MPI can be explored. Relaxation
affects could be added to the formulation to improve reconstruction and enable new applica-
tions. Compressed sensing approaches can be explored by reformulating the optimization
problem and including objective terms such as sparsity transforms: wavelet transforms, dis-
crete cosine transforms, or Chebyshev transforms. Many of these techniques have been used in
MRI and CT to improve image quality.

Conclusion
We reformulated DC recovery in x-space reconstruction as a 3D optimization problem. This
represents the first implementation of x-space reconstruction to take advantage of information
along axes perpendicular to the excitation axis during DC recovery on an FFP MPI system. The
reconstruction uses robust a a priori information, non-negativity and image smoothness, to
improve image quality. We applied the reconstruction algorithm to measured data and demon-
strated improved robustness (less banding and haze artifacts) compared to our previous work.
The framework developed here has improved flexibility over our prior 1D-at-a-time technique,
and shows promise for future work in MPI, including generalized trajectories in x-space, projec-
tion reconstruction, filtering incorporation, and compressed sensing.

Supporting Information
S1 Video. Experimental data of a double helix phantom. A video exported from OsiriX (Pix-
meo SARL, Bernex, Switzerland) illustrates the 3D dataset of Fig 3 in rotated maximum inten-
sity projection.
(MP4)

S2 Video. Experimental data of a coronary artery phantom. A video exported from OsiriX
(Pixmeo SARL, Bernex, Switzerland) illustrates the 3D dataset of Figs 4 and 6 in rotated maxi-
mum intensity projection.
(MP4)
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