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Exosomes have been described as nanoscale membranous extracellular vesicles
that emerge from a variety of cells and tissues and are enriched with biologically
active genomic and non-genomic biomolecules capable of transducing cell to cell
communication. Exosome release, and exosome mediated signaling and cross-talks
have been reported in several pathophysiological states. Therefore, exosomes have
the potential to become suitable for the diagnosis, prognosis and treatment of specific
diseases, including endothelial cell (EC) dysfunction and regeneration. The role of EC-
derived exosomes in the mechanisms of cardiovascular tissue regenerative processes
represents currently an area of intense research activity. Recent studies have described
the potential of exosomes to influence the pathophysiology of immune signaling, tumor
metastasis, and angiogenesis. In this review, we briefly discuss progress made in
our understanding of the composition and the roles of exosomes in relation to EC
regeneration as well as revascularization of ischemic tissues.
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INTRODUCTION

Exosomes are nanometer (30–100 nm) sized membranous vesicles originating during the
formation of multivesicular bodies (MVBs) (Dignat-George and Boulanger, 2011; Ribeiro et al.,
2013; Boulanger et al., 2017; Théry et al., 2018). Biochemically, exosomes are characterized by
the presence of CD63, CD14, TSG101, heat shock protein and flotillin; these exosomes can be
sedimented at 120,000× g (Théry et al., 2006; Vlassov et al., 2012; Kowal et al., 2016). Exosomes and
apoptotic bodies are broadly classified as extracellular vesicles; in contrast to exosomes, apoptotic
bodies are larger (500–5000 nm) (Caruso and Poon, 2018), and they sediment at 1,200–10,000× g
(Théry et al., 2006). Exosomal biogenesis occurs in the endosomal pathway and is characterized
by biochemical properties (Table 1), whereas apoptotic bodies are characterized by membrane
blebbing and their unique cell surface markers, e.g., phosphatidylserine and Annexin-V (Henson
et al., 2001). Exosomes are usually released into the extracellular space when MVBs fuse with
the plasma membrane, and exosomes can transport lipids, mRNAs and proteins that can alter
cellular behavior in a paracrine or autocrine manner (Sahoo and Losordo, 2014; Kishore and
Khan, 2016). Depending on the tissue microenvironment, and the exosome content, these vesicles
mediate an array of cellular functions (Ribeiro et al., 2013). A classic example of an altered tissue
microenvironment is the maintenance and repair of tissues in response to injury. Studies are
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TABLE 1 | Biochemical properties of apoptosis, exosomes and MVBs.

Size (nm) Morphology Sedimentation speed Origin Mechanism of formation Known pathways

Apoptotic bodies 30–100 Heterogeneous 1,200–10,000 × g Plasma membrane Budding from the plasma
membrane

Apoptotic pathway

Exosomes 30–100 Cup-shaped 100,000–120,000 × g Multivesicular body
(MVB)

Exocytosis of MVB ESCRT-dependent,
Tetraspanin, ceramide

Microvesicles 100–1000 Heterogeneous 100,000–200,000 × g Plasma membrane Budding from the plasma
membrane

Ca++-dependent, stimuli-
and cell-dependent

beginning to document cell-cell signaling events that mediate
restorative functions in the tissue microenvironment. In
this context, the mechanisms of exosome uptake by target
cells might be mediated by more than one mechanism. In
cultured cells, exosome uptake can occur through: (a) clathrin-
dependent endocytosis, (b) caveolae-dependent endocytosis, (c)
phagocytosis, and (d) micropinocytosis (McKelvey et al., 2015).
Whether exosome uptake by target cells is a physiologically
regulated process remains incompletely understood.

Tissue repair mechanisms entail effective endothelial cell (EC)
regeneration and reestablishment of blood flow in damaged and
ischemic tissues. To accomplish this repair process, ECs that form
the innermost linings of the blood vessels undergo regeneration
and angiogenesis to support the restoration of tissue homeostasis
(Carmeliet, 2005; Liu et al., 2019; Miyagawa et al., 2019; Williams
and Wu, 2019). EC regeneration is a complex biological process
that include EC migration, EC survival, rapid proliferation,
tube formation, and ultimately reperfusion of injured tissues to
restore homeostasis of the tissue microenvironment (Carmeliet,
2005; Bentley and Chakravartula, 2017; McDonald et al., 2018;
Liu et al., 2019; Williams and Wu, 2019). Although several
studies have attempted to understand the process of EC or
vascular regeneration, the molecular mechanism that drives this
process remains incompletely understood. Given the biological
properties of exosomes and the events that they can regulate,
the idea that exosomes derived from various cell types, including
ECs themselves in the damaged tissue niche, can modulate EC
regeneration remains an active area of research (Ibrahim et al.,
2014; Li et al., 2016; Abid Hussein et al., 2017; Balbi et al., 2017;
Adamiak and Sahoo, 2018; Dougherty et al., 2018; Ju et al., 2018;
Bian et al., 2019; Cheng et al., 2019). In support of this notion,
we describe a compendium of studies conducted over the past
decade that highlight both EC- and non-EC derived exosomal
molecular cargoes which drive this regenerative process. The idea
and the discussions that exosomes might provide therapeutic
benefit in the settings of ischemic cardiovascular diseases
involving physiological injuries that might otherwise transition
to disease states, should be rewarding efforts.

EC REGENERATION LIKELY INVOLVES
MORE THAN ONE MECHANISM

Broadly, there are at least three major types of ECs in mammalian
systems, related to arterial, venous, and lymphatic vessels
(Coultas et al., 2005; Adams and Alitalo, 2007; Park et al., 2013;
Qiu and Hirschi, 2019). These mature ECs are known to be

arrested at the G0-phase of the cell cycle, and they have a limited
turn-over rate, cycling once every 3–5 years in vivo. Thus, ECs are
considered terminally differentiated cells. In principle, ECs could
regenerate from adult EC stem cells; however, there is conflicting
evidence regarding whether adult EC-stem cells actually exist
in vivo. Many studies suggest the existence of adult hemangioblast
and or angioblast, on the basis of CD34 and Flk1 expression
(and other stem cell markers, e.g., Brachyury and Er71/Etv2), and
the ability of these cells to form tube-like structures (Asahara
et al., 1997; Loges et al., 2004; Hirschi, 2012). On the contrary,
others have argued that these cells are likely to be present in low
numbers in adults in vivo (Rafii, 2000; Park et al., 2013; Yoder,
2018; Qiu and Hirschi, 2019). Critiques have noted that bone
marrow-derived monocytes and macrophages might have been
misidentified as endothelial progenitor cells, thus confusing even
the experts (Medina et al., 2017). However, genetic lineage tracing
experiments in mice remain inconclusive regarding the presence
of EC-stem cells. Recent article summarized the proangiogenic
benefit observed in preclinical and clinical studies from over 700
patients in clinical trials of CD34 + cell therapy (Sietsema et al.,
2019). Nevertheless, developmental studies suggest that venous
ECs can be derived from arterial ECs, whereas lymphatic ECs can
be derived from venous ECs (Wang et al., 1998; Yang et al., 2012).
However, depending on the type of injury or damage experienced
by the ECs, more than one mechanism is likely to activate EC
regeneration. Our own studies have suggested that ECs become
proliferative after experimental ischemia or myocardial infarction
(Kohler et al., 2014; Baruah et al., 2017). Another mechanism
is dedifferentiation followed by redifferentiation of ECs in the
aftermath of ischemia, a process that can also be activated by
administration of low-dose small molecule inhibitors of GSK-
3b called BIO (6-bromoindirubin-3-oxime) and tideglusib/NP12
(Kohler et al., 2014; Baruah et al., 2017). Yet another mechanism
might be the endothelial to mesenchymal transition (EndoMT)
(Dejana and Lampugnani, 2018), a biological process that occurs
during the formation of cardiac valves and contributes to the
emergence of several other cell lineages (Monaghan et al., 2016),
and is also a response to ischemia (Manavski et al., 2018).

Thus, it is reasonable to hypothesize that exosome-mediated
regeneration of ECs is likely to include at least three distinct
mechanisms, but not limited to:

• Exosomes that induce EC proliferation and survival, e.g.,
vasculogenesis and angiogenesis.
• Exosomes that induces EC dedifferentiation/

redifferentiation (not a proven mechanism): for
example, exosomes that upregulate Cyclin-D1 and
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down-regulate p53, p21, and p27 mRNAs should induce
EC-dedifferentiation and rapid cell cycle progression.
• Exosomes that mediate EndoMT (not a proven

mechanism); in principle, exosomes containing
microRNAs (miRNAs) that downregulate VE-cadherin
and up-regulate Twist, Slug and Snail, and matrix
metalloproteases (MMPs) could mediate EndoMT.

Thus, genomic and non-genomic cargoes in exosomes
that are capable of inducing signaling to one of the above
events should provide EC regenerative benefit. In addition,
regeneration of ECs might be possible via exosomes that mediate
transdifferentiation of somatic cells or by directly reprogramming
somatic cells into ECs.

In support of this idea, a few groups have addressed the
possibility of using exosome mediated reprogramming of ECs
for vascular regeneration (Cheng et al., 2017; Lee et al., 2017).
For example, exosomes secreted by tumor cells carry a number
of potent pro-angiogenic factors such as VEGF, TGFβ, bFGF,
MMP2, and MMP9, mediated angiogenic activities of ECs
(Skog et al., 2008; Giusti et al., 2016; Ludwig and Whiteside,
2018). This idea is currently being explored further in several
laboratories in the settings of cardiovascular regeneration and
rejuvenation. However, it remains to be seen if the exosome(s)
mediated reprogrammed ECs have the ability to repair effectively
and reestablish blood supply productively, in aftermath of
ischemic episodes.

EXOSOMES WITH NON-GENOMIC
CARGOES THAT MEDIATE EC
REGENERATION

Myocardial infarction represents a major cause of death among
all cardiovascular diseases. Injured cardiac tissues due to
myocardial infarction or ischemic insult trigger a series of
adaptive response, to initiate and drive repair the injured
heart. Therefore, it was surmised that in the aftermath of
myocardial infarction the injured myocardium might release
extracellular vesicles and exosomes that could induce a
regenerative program. Cardiac extracellular vesicles or exosomes
are now known to be present in both normal and infarcted
heart (Chistiakov et al., 2016). Therefore, these exosomes that
are secreted in an infarcted heart mediate various cell to cell
communication events, including exosome biogenesis which
provide cardiovascular regenerative benefits, improved cardiac
function, and normalize tissue homeostasis (Barile et al., 2012;
Waldenström et al., 2012; Wang et al., 2016). In a study,
human pediatric cardiac progenitor cell (CPCs) prepared from
the right atrial appendages from children of different ages
undergoing cardiac surgery for congenital heart defects were
isolated and cultured under hypoxic or normoxic conditions. In
their, study, the authors found that CPC exosomes derived from
neonates improved cardiac function, mediated angiogenesis,
and reduced fibrosis, independent of culture oxygen levels
(Agarwal et al., 2017). However, there are many open questions
that need to be addressed (Bollini et al., 2018). A detailed

overview of exosomes and their regenerative potential in
infarcted heart can be found elsewhere (Bollini et al., 2018;
Shanmuganathan et al., 2018).

At the cellular level, EC proliferation and survival represent
two key events in the process of EC regeneration (Park et al.,
2013; Qiu and Hirschi, 2019). These cells must proliferate rapidly
and survive to make up for the loss of cells or to replace
damaged and non-functional cells. Inadequate proliferation or
enhanced cellular death might initiate or augment pathological
event. Therefore, well-coordinated cellular proliferation and
survival events are quintessential to normalizing damaged tissues
(McDonald et al., 2018).

A study on exosome cargo and EC interaction has
been conducted by Nazarenko et al. (2010) in a tumor
microenvironment. This study has described a role of
Tetraspanin (Tspan8) containing exosomes, which efficiently
induce angiogenesis in tumors and tumor-free tissues. The
authors have found that Tspan8 contributes to selective
recruitment of proteins and mRNAs into exosomes; these
markers include CD106 and CD49d, which have been implicated
in exosome-EC binding and EC internalization. Exosome
uptake induces vascular endothelial growth factor (VEGF)–
independent regulation of several angiogenesis-related genes,
including von Willebrand factor, Tspan8, the chemokines
CXCL5, and MIF, the chemokine receptor CCR1 and, together
with VEGF, VEGF receptor 2 (Nazarenko et al., 2010). EC
uptake of Tspan8-CD49d complex–containing exosomes is
accompanied by enhanced angiogenic activities of EC, such
as proliferation, migration, and sprouting. Several studies
subsequently exploited the potential of exosome cargoes in a
tumor-free environment. Accordingly, one elegant investigation
by Sahoo et al. (2011) has shown that exosomes derived from
human CD34+ stem cells mediate EC proliferation and survival,
thereby stimulating the angiogenic activities of ECs. As expected,
exosomes purified from human induced pluripotent stem cells
have been found to induce angiogenesis and improve recovery
in a mouse model of hind limb ischemia (Hu et al., 2015).
Bian et al. (2013) have examined the effects of mesenchymal
stem cell (MSC) derived extracellular vesicles which also
included exosomes, and found that exosomes mediated efficient
regeneration of ECs in a rat model of acute myocardial
infarction. Although this study did not conclusively identify the
types of molecules involved in this process, it highlighted the
potential role of exosomes in mediating angiogenic processes
in an injured tissue microenvironment (Shabbir et al., 2015;
Teng et al., 2015). The Wnt/b-catenin signaling pathway is
crucial in regulating both developmental and therapeutic
angiogenesis (Dejana and Kühl, 2010). Interestingly, MSC
exosomes express Wnt4, which induces translocation of (β-
catenin into the nuclei of recipient ECs, thereby promoting
angiogenic events in a rat skin burn model (Zhang et al.,
2015). Similar studies have demonstrated that the Sonic
hedgehog signaling pathway, the presence of platelet derived
growth factor receptor in the extracellular vesicles or PKA
signaling might contribute to the proangiogenic activity
(Benameur et al., 2010; Ma et al., 2017; Xue et al., 2018). In
a study, cardiomyocyte derived exosomes containing heat
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shock protein (Hsp20) showed increased EC proliferation by
interacting with VEGF receptor-2 (Zhang et al., 2012). This
finding highlighted the key role of exosomes in tissue restorative
processes. Notch-Dll4 signaling has been extensively studied
in relation to angiogenesis, whereby the expression of Dll4
ligand in tip cells regulates the sprouting of ECs (Gerhardt
et al., 2003; Kangsamaksin et al., 2014; Pitulescu et al., 2017).
In a 3D matrix microenvironment, exosomes containing Dll4
freely moved to target ECs and mediated efficient Notch
activation upon interaction with the recipient ECs (Sharghi-
Namini et al., 2014). In addition, Dll4-containing exosomes
increased EC motility while decreased proliferation. Dll4 is
known to be present during tissue reparative processes, and
targeting Dll4 will be critical to mediating efficient angiogenic
recovery in injured tissues. Angiogenesis is also regulated by
the activities of MMPs, which mediate cell-matrix or cell-cell
interaction during the migratory phase. In this context, MMP14
containing exosomes have been shown to cleave VEGFR1 and
promote VEGF-A induced migration and proliferation of ECs
(Han et al., 2019).

Ding et al. (2019) have studied the effects of exosomes
derived from bone marrow MSCs and found that they have
superior angiogenic properties and enhance cell proliferation.
The authors additionally found that deferoxamine conditioned
exosomes activate the PI3/AKT pathway, thereby enhancing
cell proliferation and decreasing wound lesions (Ding et al.,
2019). Interestingly, exosomes derived from MSCs released
high levels of the proangiogenic molecule stromal cell derived
factor 1 (SDF1), which not only prevented apoptotic cell death
of myocardial cells but also induced cardiac EC regeneration
in a mouse model of myocardial infarction (Gong et al.,
2019). Hypoxia inducible factor-1α (HIF-1α) is an important
mediator of angiogenic activity during ischemic insult. Exosomes
prepared from human umbilical cord MSCs have been found
to enhance fracture repair and angiogenesis in a rat model of
stabilized fracture through HIF1α (Zhang et al., 2019). Beyond
studies of heart and skin injury models, the ability of exosome
mediated regeneration has also been tested in a mouse model
of traumatic brain injury (Gao et al., 2018). Here, the authors
addressed the role of exosomes derived from endothelial colony
forming cells in their ability to restore the blood brain barrier
continuity (Gao et al., 2018). However, whether exosomes can
also mediate EC regeneration via EndoMT in addition to the
above mentioned mechanisms remain incompletely understood.
Figure 1 and Table 2 summarize some of the key genomic
and non-genomic cargoes implicated in the regeneration of ECs
and angiogenesis.

EXOSOMES WITH GENOMIC CARGOES
THAT MEDIATE EC REGENERATION

In addition to transporting growth factors and receptors,
exosomes possess the unique ability to transfer miRNAs to
recipient cells. miRNAs regulate downstream signaling events
through base pairing of their seed sequence with complementary
mRNA (Lu and Clark, 2012). MSCs, as well as ECs, contain

FIGURE 1 | Schematic representation of an exosome and its cargo carrying
growth factors, cytokines, and signaling molecules that have been implicated
in EC regeneration. PDGFR, platelet derived growth factor receptor; Hsp, heat
shock protein; MMP, matrix metalloprotease; SDF, stromal derived factor; HIF,
hypoxia inducible factor.

TABLE 2 | Non-genomic and genomic exosomal constituents and their known
endothelial cell activities.

Cellular activity Cargo References

EC proliferation
and survival

Non-genomic
• Tetraspanin (Tspan8)
• Wnt4
• PDGFR
• Sonic hedgehog pathway
• Protein kinase A signaling
• pathway
• Heat shock protein (Hsp20)
• Notch-Dll4
• MMP14
• Nrf2
• SDF1
• HIF1α

Nazarenko et al., 2010
Zhang et al., 2015, 4
Ma et al., 2017
Benameur et al., 2010
Xue et al., 2018
Zhang et al., 2012
Sharghi-Namini et al.,
2014
Han et al., 2019
Ma et al., 2017
Gong et al., 2019
Zhang et al., 2019, 1

EC proliferation
and survival

Genomic
• miRNA-146a
• miRNA-294
• miR-21-3p
• miR-939
• miR-423-5p
• miR-210
• miR-199-5p

Ibrahim et al., 2014
Khan et al., 2015
Hu et al., 2018
Li et al., 2018
Xu et al., 2019
Ma et al., 2018
Ye et al., 2019)

EC, endothelial cells.

different regulatory miRNAs, which alter cellular function in
target cells (Hromada et al., 2017; Ferguson et al., 2018).
In this context, miRNA-146a enriched exosomes secreted
from cardiosphere-derived cells have been shown to enhance
angiogenesis while simultaneously stimulating proliferation and
inhibiting apoptosis of cardiomyocytes (Ibrahim et al., 2014).
Exosomes derived from embryonic stem cells have also been
exploited in this regard. Accordingly, mouse ESC-derived
exosomes have been shown to provide beneficial effects in
regeneration after myocardial injury via miR-294 (Khan et al.,
2015). Different miRNAs have been implicated in this reparative
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process. In a more recent study, miR-21-3p enriched exosomes
secreted by human umbilical cord blood cells have been
shown to accelerate cutaneous wound healing and promote
angiogenic events (Hu et al., 2018). Yet another interesting
study conducted in a patient population with myocardial
ischemia has reported that coronary serum exosomes regulated
angiogenesis through miR-939 in this sample group (Li et al.,
2018). Human adipose derived stem cell exosomes also exert
similar proangiogenic effects via miR-423-5p and Sufu (Xu
et al., 2019). In addition, exosomes loaded with miR-210
exert beneficial effects favoring EC function and reoxygenation
(Ma et al., 2018). Thus, exosomes can transport different
combinations of miRNAs depending on the tissue environment
and cell type (Kim et al., 2012; Ferguson et al., 2018). We
have listed a select group of miRNA cargoes transported by
exosomes known to regulate EC regeneration and angiogenesis
in Figure 2 and Tables 2, 3. Nevertheless, continued analyses
of the miRNA compositions of various exosomes should
be useful in designing custom exosomes for the induction
of potent EC regeneration in relation to angiogenesis and
revascularization of ischemic cardiovascular tissues. A complete
understanding of the role of exosomes in regenerative process
in the aftermath of myocardial infarction could bridge an
important gap in knowledge of the repair mechanism after
myocardial injury.

FUTURE PERSPECTIVES

The capacity of the exosomes to induce EC regeneration
should benefit organ repair and survival after injury. EC
regeneration and the ways in which therapeutic exosomes
contribute to this process have the potential in treating
ischemic cardiovascular diseases. Thus, substantial progress
has been made in the field of exosome research, providing
insights into exosome composition and function. Ongoing
methodological and technical innovations are beginning
to help further synthesize new knowledge, functional

FIGURE 2 | Schematic representation of a generic exosome and its cargo
carrying miRNAs that mediate EC regeneration. Abbreviation: miRNA,
microRNA.

TABLE 3 | Exosomes in endothelial cell proliferation and angiogenesis.

Key findings References

Improved angiogenesis in rat hind limb
ischemia model

Johnson et al., 2019

Promoted EC repair in a rat model of
balloon –induced carotid artery injury

Hu et al., 2019

Enhanced repair effect in a rat model of
myocardial infarction

Ni et al., 2019

Promoted postnatal angiogenesis in mice bearing
ischemic limbs

Ye et al., 2019

Human induced-pluripotent stem cell-derived
cardiomyocytes promoted angiogenesis

Dougherty et al., 2018

Exosomes derived from ischemia subjected
cardiomyocytes promoted cardiac angiogenesis

Ribeiro-Rodrigues et al.,
2017

Human pericardial fluid derived exosome promoted
therapeutic angiogenesis

Beltrami et al., 2017

Enhanced the density of new functional capillary
and blood flow recovery in rat myocardial
infarction model

Teng et al., 2015

understanding and potential applications. However, detail
studies are needed to address the possible heterogeneity of
exosomes and how this new knowledge could benefit the
understanding of EC regeneration and EC pathology. For
example, are there specific stimuli that induce the release of
“exosomes” that mediate angiogenic activities of ECs, but
do not alter the behavior of any other cell type? Are there
exosomes that induce rapid proliferation of ECs, but not
non-ECs? Are there specific exosomes that inhibit fibrosis,
but induce productive wound healing in the aftermath of
acute myocardial infarction? These are some of the few
questions that come to mind as we ponder the future of
exosomes in applications in EC regeneration and re-establishing
blood flow to the ischemic cardiovascular organs. Studies
have attempted to determine the regenerative ability of
exosomes primarily in inbred (e.g., C57BL/6) mouse strains,
in experiments such as hind limb ischemia and myocardial
infarction. Usually, C57BL/6 mice show robust EC regenerative
activities. The question remains whether exosomes provide
potent EC regenerative responses in a strain-specific manner.
Experiments are also needed in clinically relevant models,
for example, mice with defective revascularization potential,
such as diabetes. Unraveling the molecular and functional
attributes of exosomes and how they may be harnessed
should contribute meaningfully to the pursuit of controlling
the biology of ECs for regenerative therapy. The answers
to these questions and concerns should arrive soon, as new
technological innovations such as organoids, data science,
computational modeling and artificial intelligence are being
incorporated into cardiovascular research (Garikipati et al., 2018;
Trac et al., 2019).

CONCLUSION

In principle, more than one mechanism is likely to be involved
in regulating EC repair and regeneration, and reestablishing flow
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of blood to the ischemic organs. However, there are technical
challenges that must be addressed before exosomes could be used
as therapeutic biologics from bench to bedside. In this review,
we have attempted to summarize how the cargo composition of
exosomes derived from several human and non-human sources
might benefit EC repair and regeneration. It would be a “giant
leap” to be able to reprogram autologous somatic cells directly
to ECs by using exosomes, thereby eliminating the use of viral
vectors. However, continued research will be required before
this interesting idea can be translated into therapy through EC
regeneration and restoration of cardiovascular function.
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