
����������
�������

Citation: Calabrese, F.M.; Porrelli, A.;

Vacca, M.; Comte, B.; Nimptsch, K.;

Pinart, M.; Pischon, T.; Pujos-Guillot,

E.; De Angelis, M. Metaproteomics

Approach and Pathway Modulation

in Obesity and Diabetes: A Narrative

Review. Nutrients 2022, 14, 47.

https://doi.org/10.3390/

nu14010047

Academic Editors: Eva Untersmayr

and Peter M. Abuja

Received: 28 October 2021

Accepted: 21 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Metaproteomics Approach and Pathway Modulation in Obesity
and Diabetes: A Narrative Review

Francesco Maria Calabrese 1,* , Annalisa Porrelli 1, Mirco Vacca 1 , Blandine Comte 2, Katharina Nimptsch 3,
Mariona Pinart 3 , Tobias Pischon 3,4,5,6,7 , Estelle Pujos-Guillot 2 and Maria De Angelis 1

1 Department of Soil, Plant and Food Science, Aldo Moro University, Bari, Via G. Amendola 165/a,
70126 Bari, Italy; a.porrelli5@studenti.uniba.it (A.P.); mirco.vacca@uniba.it (M.V.);
maria.deangelis@uniba.it (M.D.A.)

2 INRAE, UNH, Metabolism Exploration Platform, MetaboHUB Clermont, Clermont Auvergne University,
F-63000 Clermont-Ferrand, France; Blandine.Comte@inrae.fr (B.C.); estelle.pujos-guillot@inrae.fr (E.P.-G.)

3 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology
Research Group, 13125 Berlin, Germany; Katharina.Nimptsch@mdc-berlin.de (K.N.);
Mariona.PinartGilberga@mdc-berlin.de (M.P.); tobias.pischon@mdc-berlin.de (T.P.)

4 Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin,
Humboldt-Universität zu Berlin, 10117 Berlin, Germany

5 German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
6 Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz

Association (MDC), 13125 Berlin, Germany
7 Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
* Correspondence: francesco.calabrese@uniba.it

Abstract: Low-grade inflammatory diseases revealed metabolic perturbations that have been linked to
various phenotypes, including gut microbiota dysbiosis. In the last decade, metaproteomics has been
used to investigate protein composition profiles at specific steps and in specific healthy/pathologic
conditions. We applied a rigorous protocol that relied on PRISMA guidelines and filtering criteria
to obtain an exhaustive study selection that finally resulted in a group of 10 studies, based on
metaproteomics and that aim at investigating obesity and diabetes. This batch of studies was used to
discuss specific microbial and human metaproteome alterations and metabolic patterns in subjects
affected by diabetes (T1D and T2D) and obesity. We provided the main up- and down-regulated
protein patterns in the inspected pathologies. Despite the available results, the evident paucity of
metaproteomic data is to be considered as a limiting factor in drawing objective considerations.
To date, ad hoc prepared metaproteomic databases collecting pathologic data and related metadata,
together with standardized analysis protocols, are required to increase our knowledge on these
widespread pathologies.

Keywords: metaproteomics; low-grade inflammation; obesity; diabetes; gut microbiota; metabolic diseases

1. Introduction

Gut microbiota modulates the innate and adaptive immune systems both locally in
the intestinal mucosa and outside the gut. Variations in microbial pattern abundance have
been associated with certain autoimmune or inflammatory diseases known as ‘metabolic
diseases’. In this field, type 1 and type 2 diabetes (T1D and T2D, respectively) and obesity
are the most common and prevalent diseases featured by metabolic perturbations also
involving gut microbiota dysbiosis [1,2]. Evidence-based data revealed how changes in
gut microbiome contribute to an increased susceptibility to the onset and development of
several diseases [3]. The main actors of these mechanisms are the colonic microbiota, its
metabolic products, and the host immune system [4].

We are here referring to pathologies mainly featured by an imbalance in the Bac-
teroidetes/Firmicutes ratio [5]. Some species belonging to these phyla are responsible
for the production of short chain fatty acids (SCFAs), such as butyrate, propionate, and
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acetate [6]. The imbalance in these phyla abundance can impact gut epithelial integrity,
leading to an increased permeability and undermining the immune homeostasis and the
inflammatory response [7]. On the other hand, alterations in the abundance of specific
microbial patterns may affect saccharolytic, proteolytic, and lipolytic metabolisms and
may influence the expression of involved enzymatic pathways. However, the crosstalk
interaction among all the mentioned factors has not been completely clarified yet.

Although shotgun 16S rRNA marker gene sequencing delivers interesting insights
on human microbiota communities [8], it does not provide information about microbiome
plasticity, especially when the adaptation to specific and mutable niche conditions is re-
quired [9]. Metaproteomics, instead, provides findings on (i) microbial constituents, (ii) the
interaction between gastrointestinal (GI) microbiota and the host proteome, (iii) signal
transduction, and (iv) metabolic pathways [9]. Functional shifts in microbial and human
protein profiles can be further detected by using specific and curated databases allowing
the identification of novel diagnostic targets and specific disease biomarkers [9,10].

Obesity and diabetes mellitus are both associated with inflammation of different
tissues and organs [11]. Seeking inflammatory factors related to T1D progression, some
studies highlighted findings on C-reactive protein (CRP) levels [12]. An increase in the
monocyte release of interleukin (IL)-1β and superoxide radicals were also reported, sug-
gesting an up-regulation of the inflammatory activity [13]. Besides, inflammatory processes
contribute to insulin resistance in T2D. Considering that obesity is also a risk factor for
the development of T2D, a large number of proteins synthesized during the inflammatory
state as CRP, adipocyte-derived metabolites such as lipids, fatty acids, adipocytokines,
and various inflammatory cytokines (TNF-α, IL-1β, and IL-6), have been linked to the
development of insulin resistance [13–15].

Peripheral blood mononuclear cells (PBMC) are also involved in the crosstalk between
inflammation response and dysbiosis. Pro- and anti-inflammatory activities of PBMC could
be mediated by the exposure to microbial-derived SCFAs [16] or to lipopolysaccharides
(LPS) coating Gram-negative bacteria [17]. Interesting insights about this mutual interaction,
also in individuals affected by metabolic disease as T2D, were reported [18].

Metaproteomics allows us to build a more complete overview on protein composition
at a specific time (fingerprint) and in specific health conditions, especially when used in
combination with the above-mentioned meta-omics approaches [18,19].

However, metaproteomics is facing several methodological challenges due both to
the ever-increasing amount of data constantly produced and the lack of standardized
protocols for downstream data analysis. Advisedly, a standardized workflow is necessary
to compare metaproteomics outputs belonging from different studies. This will lead to
the inspection of specific associations between gut microbiota functional variations and
the obesity/diabetes states. To provide a critical overview on the topic, this narrative
review has been conducted considering those studies that, in the last eleven years, applied
metaproteomics to investigate the onset and progression of diabetes and obesity.

Noteworthy, another milestone topic that needs to be discussed argues about the
possibility to perform a pooled analysis at the individual-level included in enlarged cohorts.
Recently, the Joint Programming Initiative Knowledge Platform-INtesTInalMICrobiomics
(JPI KP-INTIMIC) has collected meta-data from human observational studies on gut mi-
crobiomics [20]. The human gut microbial consortium can be thus jointly analyzed in
federated individual-level meta-analyses using DataSHIELD [21,22], possibly also with
federated standardization of omics data [23].

2. Methods
2.1. Searching Strategy

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2015 guidelines [24], herein, a narrative review was based upon selective search
in electronic databases (PubMed and Scholar) to identify articles in which metaproteomics
was applied to investigate human and microbial metaproteome alterations in subjects
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affected by diabetes and obesity. Search terms included “metaproteomics”, “human”, and
“gut microbiota”, along with the name of the two selected specific pathologies: “obesity”
and “diabetes”. More in depth, the used searching string to query the PubMed database was
“(metaproteomics OR metaproteomic OR proteomic) AND human AND (gut microbiota
OR microbiome) AND (obesity OR diabetes)”. To query the Scholar database, the string
“metaproteomics AND human AND gut microbiota AND obesity or diabetes” was used.
The search was restricted to manuscripts written in English and published between January
2010 and February 2021. We summarized the search and selection process in the flow-
diagram reported in Figure 1. After the screening phase, each paper was checked for the
eligibility and inclusion criteria, consistent with the scope of this narrative review.
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Figure 1. Flowchart study selection using Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) process [24].

2.2. Inclusion and Exclusion Criteria

We used the PECOS format (Patients-Exposure-Control-Outcomes-Study design) to
define the selection criteria of this review. Following this standard, we included studies
arguing a discussion on (P) patients (men and women of all ages) affected by obesity or
T1D or T2D (E) at a different state of progression, comparing their metaproteome with
the healthy control group (C). Based on available information at the date of the analyses,
the primary outcomes (O) were evaluated in order to assess protein variations associated
with T1D, T2D, and obesity. This activity allowed us to elucidate the interactions among
microbiota proteins and the relative involved metabolic pathways. Furthermore, we as-
sessed the associations of gut microbiota functional variations in obesity and diabetes states
as derived from metaproteomics alone or in combination with other omics-technologies.
We here included original research (S) studies of observational design implementing a
metaproteomics approach to investigate the correlation between disease status and gut
microbiota. No constraint existed for the study size or the subject age and sex. Exclusion
criteria included animal studies, in vitro studies, and non-original research (e.g., reviews or
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systematic and narrative reviews). Investigative observational studies, longitudinal or case
studies, were considered, while other reviews were excluded (Figure 1).

2.3. Study Selection

The study selection was conducted according to a systematic search strategy: two
independent reviewers screened titles and full texts of the resulting papers after following
a de-duplication process. Disagreements were resolved by consultation with a third party.
The selection included all studies implementing a metaproteomics approach to investigate
the correlation between disease status and gut microbiota.

2.4. Data Extraction and Risk of Bias

The following data were extracted from each study: authors and year, cohort size and
composition, subject characteristics (sex, age, and country), study design, scope of the study,
omics techniques applied, and limitations (Table 1). Furthermore, the main correlations
between altered proteins and pathways involved in disease status development were
reported in Table 2. The included studies were critically appraised using the “Newcastle-
Ottawa Quality Assessment Scale” [25]. This instrument includes three domains, namely
selection, comparability, and outcomes. The article could receive one star for each item up
to a maximum of nine stars and specifically: a maximum of four stars in selection, up to
two stars in comparability, and up to three stars in outcomes. A high risk of bias occurred
when some domains did not receive stars. In this case, the article was excluded. The NOS
score for each selected study was reported in Table 1.

The evidence about GI microbial taxa diversity and metabolic diseases progressions
was reported narratively due to the lack of available data from selected studies, which
precluded the conduct of quantitative analyses.
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Table 1. Baseline characteristics of the included studies and Newcastle-Ottawa Quality Assessment Scale (NOS).

Authors and Year Size Sample and
Characteristics

Subjects Characteristics
(Sex, Age, Country) Scope of Study Study Design Metaproteomics

Techniques Used
Other “Omics”

Techniques Used Limitations NOS Score

Gavin et al., 2018 101 subjects: 33 NO,
17 SP, 29 SN, 22 CO

Denver, Colorado
46 females and 55 males

Age: 9–12

Investigate functional
interactions

host-microbiota in
subjects with T1D risk

Cross-sectional LC-MS/MS

No information
about dietary intake.

Wide age range. 7

Pinto et al., 2017 6 subjects: 3 healthy
and 3 T1D children

Portugal
2 males and 4 females

Age: T1D children
9.3 ± 1.5 and control

children 9.3 ± 0.6 years

Identify differences in
the activity of intestinal

microbiota between
healthy and T1D children

Case-control
SDS-PAGE and

LC-MS/MS (using
LTQ Orbitrap)

Small number of
T1D children. 6

Heintz et al., 2016

20 subjects from
4 families of at least

2 generations
presenting at least

2 cases of T1D

Luxembourg
7 males

13 females
Age: 5–62

Resolution of the
taxonomic and

functional attributes of
gut microbiota and

evaluation of the effect of
family on gut microbiota

composition

Longitudinal study
(4 month)

LC (Nano-2D-UPLC-
Orbirtap MS system)

and MS
(TopN-MS/MS

method)

Metagenomics and
metatranscriptomics

Need for large-scale
studies. 6

Singh et al., 2017

223 subjects:
110 T1D chil-

dren/adolescents
and 113 healthy

siblings

Washington D.C.
115 males

108 females
Age: 13.9–14.5

Detection of gut
microbial differences and
evaluation of lysosomal

dysfunctions

Case-control LC-MS/MS

Imperfect glycemic
control or subclinical
inflammation in T1D

patients. No
information about
eating habits and

lifestyle.

7

Zhong et al., 2019
254 subjects:

77 TN-T2D, 80
Pre-DM, and 97 NGT

Suzhou, China
173 females

81 males
Age: 41–86

Investigate
compositional and

functional changes of the
gut microbiota to

characterize different
disease stages

Cross-sectional iTRAQ-coupled-
LC-MS/MS Metagenomics

Limitations of
MS-based

proteomics.
Confounding

variables: age, drugs
(CCB, hypertension,
and dyslipidemia),

diet, and health
conditions.

7
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Table 1. Cont.

Authors and Year Size Sample and
Characteristics

Subjects Characteristics
(Sex, Age, Country) Scope of Study Study Design Metaproteomics

Techniques Used
Other “Omics”

Techniques Used Limitations NOS Score

Zhou et al., 2019
106 subjects: healthy

and pre-diabetic
adults

Standford, California
55 females and 51 males

Age: 25–75

Understand how healthy
individuals and those at
risk of T2D, change over

time, in response to
perturbations and in
relation to different

molecules and
microorganism

Longitudinal study
(4 years) SWATH-MS

Metagenomics,
metatranscriptomics,

and metabolomics

Limited studies of
microbial changes.

No information
about diet and

exercise.
Heterogeneous data.

6

Ferrer et al., 2013 2 subjects: 1 lean,
1 obese

Spain
1 female (lean) and

1 male (obese)
Age: 15

Identify and analyze
active bacterial members
and proteins expressed

in lean and obese
microbiota

Case-control

1D-gel
electrophoresis and

UPLC-LTQ
Orbitrap-MS/MS

Metagenetics No information
about dietary intake. 7

Kolmeder et al.,
2015

29 subjects: 9 lean,
4 overweight, 16

obese

Spain
21 females

8 males
Age: 23.1 ± 2.2

(non-obese); 38.6 ± 2.4
(obese)

Characterization of
non-obese and obese
fecal metaproteome

Case-control

1D-gel
electrophoresis

RP-HPLC online
coupled to MS/MS

Regular medication
between obese and
non-obese group.

6

Sanchez-Carrillo
et al., 2020

40 severely obese
adults subjected

to BS

Spain
Age: 47–60

Investigation the impact
of bariatric surgery

Longitudinal study
(3 months)

LC-ESI-MS/MS
analysis Metabolomics

Results biased for
using pooling

strategy.
6

Hernandez et al.,
2013

13 subjects: 2 adults
(β-lactam-therapy),
7 obese adolescents,
5 lean adolescents

Germany
Obese: 3 females and

4 males
Lean: 2 males and

3 females
Age: 13–16

Evaluation of microbial
shifts in relation to

antibiotic treatment and
obesity and

measurement of
carbohydrate activate

enzymes

Cross-sectional

96-well plates using
a BioTek Synergy HT

spectrometer in a
colorimetric assay

No information
about dietary intake.

Wide age range.
Small number of

subjects.

6

Abbreviations: NO, new-onset; SP, seropositive; SN, seronegative; CO, healthy control; BS, bariatric surgery; NGT, normal glucose tolerant; TN-T2D, treatment-naïve type 2 diabetic;
T1D, type 1 diabetes; pre-DM, pre-diabetic; LC, liquid chromatography; LC-ESI-MS/MS, liquid chromatography-tandem mass spectrometry; LTQ, linear trap quadrupole; UPLC,
ultra-performance liquid chromatography; RP-HPLC, reversed phase-high performance liquid chromatography; LTQ, linear trap quadrupole; iTRAQ, isobaric tags for relative
and absolute quantification; SWATH-MS, sequential window acquisition of all theoretical mass-spectra; LC-ESI-MS/MS, liquid chromatography-electrospray ionization tandem
mass spectrometry.
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Table 2. Summary of metaproteome variation in terms of significantly up- and down-regulated
proteins in gathered/filtered studies (n = 10) and other metabolism pathways.

Authors and
Year Disease Protein Origin ↑ Proteins ↓ Proteins Metabolic

Pathway/Functionality

Gavin et al.,
2018 T1DM Microbial

1. Enzymes for mucin
degradation
2. Elongation factor
3. Ferredoxin reductase

4. Transferases (butyrate
synthesis)

3.↑Ferredoxin
catabolism
4. ↑ Butyrate anabolism

Human 1. Galectin-3
2. Fibrillin

3. CELA-3A,
4. CUZD1
5. CLCA1
6. Neutral ceraminidase
7. IGHA1

6.↓ Sphingosine (SPH)
and sphingosine
1-phosphate (S1P)
3.4.5. ↓ exocrine
pancreas functionality
7.↓ IgA

Pinto et al.,
2017 T1DM Microbial

1. ilvE (BCAA transaminase)
2. Glutamate dehydrogenase
(AA degradation)
3. Bifunctional GMP synthase
4. Glutamine amido
transferase
5. Chaperonin GroEL

6. Phosphoketolas
7. Glyceraldehyde-3-
phosphate
dehydrogenase,
8. Transketolase

1.6.8. ↓ Via penthos
phosphate→ ↑ BCAA
synthesis (Shikmic Acid
Pathway)
↓ glycolysis
2.↑ NH4+ (Urea)
7. ↓ Glycolysis→↓
Piruvate
↓ SCFAs

Human MUC2 precursor CELA-3A
↑ Intestinal mucin-2
↓ Exocrine pancreas
functionality

Heintz et al.,
2016 T1DM Microbial Thiamine synthesis

cofactor ↓ Thiamine synthesis

Human ↓ AMY2A, AMY2B,
CPA1, and CUDZ1

↓ Complex sugar
degradation

Singh et al.,
2017 T1DM Human urinary

proteome

1. LGR1
2. CD14
3. CPE
4. CTSB
5. CTSD
6. NAGA

7. Fibronectin-1
8. Pancreatic α-amylase
9. MUC1
10. PTPRN

1. ↑Inflammatory
pathways (TGF-β)
3.↑AA degradation
(↑urea production)
8. ↓ Exocrine pancreas
functionality and ↓
complex sugar
metabolism

Zhong et al.,
2019 T2DM Microbial

1. PTS
2. ABC transporter
3. FMO3 (TMAO producing
enzyme)

4. Ferredoxin
oxidoreductase
5. Bacterial ribosomal
proteins

1.↑Phosphorylation and
transport of sugar in
microbial cells
2.↑ HDL cholesterol
3.↑TMAO synthesis

Zhou et al.,
2019 T2M Human

1. IL-1RA
2. CRP
3. A1C

1.↓IL-1
2.↑immune defense
mechanism
3.↑ glycaemia
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Table 2. Cont.

Authors and
Year Disease Protein Origin ↑ Proteins ↓ Proteins Metabolic

Pathway/Functionality

Ferrer et al.,
2013 Obesity Microbial

1. Glycoprotein containing
FN3
2. Cobaltochelatases
3. B12-dependent
methylmalonyl-CoA mutase
4. PduB
5. 3-hydroxybutyryl-CoA
dehydratase
6. Butyryl-CoA
dehydrogenases
7. Acetyl-CoA
acetyltransferases

7. Pectate lyase
8. Aldose 1-epimerase
9. SOD
10. Pyridoxal
biosynthesis lyases

1.↑ Fibrin and
proteoglycans
2.3. ↑ Vitamin B12 and
propionate production
4.↑ Propanediol
catabolism
5. Butyrate
10. ↓ Vitamin B6

Kolmeder
et al., 2015 Obesity Microbial

1. α-glucosidase
2. Pectate lyase
3. Aminoacyl-histidine
dipeptidase
4. Bacteroidetes proteins

1.2. ↑Starch and pectin
metabolism
3. ↑AA metabolism
4. ↑SCFAs

Human

1. Trehalase (intestinal injury
and inflammation marker)
2. Alkaline phosphatase (AP)
3. Serpins (serina protease
inhibitors)
4. α-amylase

1.↑ Threalosie
4.↑Starch digestion

Sanchez-
Carrillo et al.,

2020
Obesity

Microbial
(pre-BS)

1. Enzymes involved in
gluconeogenesis
(glyceraldehyde 3-phosphate
dehydrogenase, pyruvate
orthophosphate dikinase, PEP
carboxykinase,
fructose-bisphosphate
aldolase, glutamate
dehydrogenase)
2. Enzymes involved in
Acetyl-CoA synthesis
(Formate C-acetyltransferase,
acetyl-CoA synthase,
carbon-monoxide
dehydrogenase)
3. Ferredoxin oxidoreductase

4. Ferritin
5. Ferrous ion transport
protein
6. Porphobilinogen
synthase

1.↑Pyruvate
2.↑ Acetyl-CoA (WL
pathway)
4.5. ↓Iron synthesis

Microbial
(post-BS)

1. AdhE
2. OhyA
3. SOD and perodoxins
(involved in maintenance of
redox balance)

1. ↑ Acetyl Acteyl-CoA
→ ethanol
1. Saturated fatty acid

Hernandez
et al., 2013 Obesity Microbial

1. α-polyglucose (refined
carbohydrate digestion)
2. Proteins involved in
pentose phosphate
metabolism (PPP)
3. Proteins involved in TCA
cycle

1.2. ↑ Fructose, mannose,
galactose, sucrose,
starch, amino sugar, and
nucleotide sugar
metabolism
3. ↑ Via pentose
phosphate



Nutrients 2022, 14, 47 9 of 17

Abbreviations: ABC, ATP binding cassette; AdhE, aldehyde-alcohol dehydrogenase; AMY2A, amylase alpha 2A;
AMY2B, amylase alpha 2B; AP, alkaline phosphatase; CD14, cluster of differentiation 14; CELA3A, chymotrypsin-
like elastase family member 3A; CLCA1, calcium-activated chloride channel regulator 1; CPA1, carboxypeptidase
A1; CPE, carboxypeptidase E; CRP, C reactive protein; CTSB, cathepsin B; CTSD, cathepsin D; CUDZ1, CUB\zona
pellucida-like domain-containing protein; FMO3, dimethylalanine monooxygenase-3; FN1, fibronectin type 1; FN3,
fibronectin type 3; GMP, guanine monophosphate; HDL, high density lipoprotein; IGHA1, immunoglobulin heavy
constant alpha 1; ilvE, branched-chain aminoacid transaminase; LGR1, leucine-rich-alpha-2-glycoprotein; MUC1,
mucin 1; MUC2, mucin 2; NAGA, N-acetylgalactosaminidase; OhyA, oleate hydratase; PduB, 1,2-propanediol
utilization protein; PEP, phosphoenolpyruvate; PPP, pentose phosphate pathway; PTPRN, receptor-type tyrosine
protein phosphatase like N; PTS, sugar phosphatase system; S1P, sphingosine 1 phosphate; SCFAs, short chain
fatty acids; Serpins, serine protease inhibitors; SOD, superoxide dismutase; TGF-β, transforming growth factor
beta; TMAO, trimethylamine oxide; WLP, Wood-Ljungdahl pathway; A1C, glycated hemoglobin.

3. Results
3.1. Literature Search Results and Study Characteristics

The search initially retrieved a total of 3970 records. At the end of the screening
process, 10 articles were selected (Figure 1). Study baseline characteristics are shown in
Table 1 while metaproteome variations are summarized in Table 2. The year of publication
ranged from 2013 to 2020. Eight studies investigated human proteins from fecal samples,
whereas two studies investigated human proteins harvested from plasma [26] and urinary
samples [27], respectively. Four out of ten were case-control studies [27–30] while three
were longitudinal studies [26,31,32]. Only three articles conducted a prospective study
with a cross-sectional analysis [18,33,34]. To better highlight the findings marking T2D‘s
earliest stages, the prospective study from Zhou et al., deeply profiled subjects for a long
term (4 years) evaluating transcriptome, metabolome, serum cytokine levels, and proteome,
as well as changes of the GI microbiome. All studies considered in this review used
metaproteomics technologies based on mass spectrometry (MS). In three records, gel-
free technology was combined with one-dimensional or two-dimensional electrophoresis
technologies (1DE and 2DE, respectively) for protein separation [29–31]. With regard to
the cohort size, three studies included less than 20 subjects. Among them, Ferrer et al.,
conducted an observational study including only two subjects, specifically one obese and
one lean. Among the other seven studies, four included more than 100 individuals while
three analyzed a cohort ranging between 20 and 100 individuals (Table 1). Uniquely
throughout the whole dataset, Pinto et al. considered a group exclusively composed of
children. Moreover, a study did not consider a group of healthy subjects as the control and
instead compared results registered before and after bariatric surgery [32].

Six out of ten selected studies investigated the functional interactions between micro-
biota and hosts affected by T1DM [27,28,31,33] or T2DM [18,26]. The other four research
articles investigated the metabolic and functional alterations in subjects affected by obe-
sity [29,30,32,34]. Three studies out of four on T1D showed a significant alteration in host
proteins of T1D patients detected in fecal samples and associated with exocrine pancreas
output (CELA3A, CUZD1, α-amylase), compared to healthy subjects [28,31,33]. On the
other hand, Sight et al., revealed that the urinary proteome of T1D patients compared to
healthy subjects increased abundances of several lysosomal proteins (e.g., GM2A, CTSD,
NAGA) associated with catabolic functions [35]. As far as it concerns studies on T2D,
Zhong et al., 2019 detected a reduction in exocrine pancreas functionality, probably due
to lower levels of pancreatic enzymes with respect to healthy individuals. Alterations in
cytokines release was evaluated in Zhou et al., 2019, by considering differences between
T2D subjects and healthy individuals. Among the papers studying obesity, only Kolmeder
et al., 2015 identified and analyzed host proteins, while the others deepened only the
microbial ones (Table 2).

The metaproteome quantification strategies herein adopted are based on mass spec-
trometry. The metaproteomics application includes the extraction and the purification
phases before the MS analysis and database searching. Two different protein separation
strategies were used to reduce the heterogeneous complexity characterizing different bi-



Nutrients 2022, 14, 47 10 of 17

ological matrices: the gel-based methods, which include 1DE or 2DE [28–30], and the
gel-free methods. The latter relies on chromatography techniques to separate proteins
and have gradually supplanted gel-based ones. The liquid-chromatography (LC) and
the high-pressure liquid-chromatography (HPLC) are faster and more convenient than
electrophoresis for separating peptide mixtures [36]. Among MS analyses, ion sources of
electrospray ionization (ESI), also combined with LC, and linear trap quadrupole (LTQ)
Orbitrap, were adopted in four studies [28,29,31,32]. Moreover, Zhou et al., 2019 [26] used
a sequential window acquisition of all theoretical fragment ion spectra-MS (SWATH MS)
to evaluate the quantitative characterization of proteins (i.e., cytokines) from plasma of
healthy and pre-diabetic individuals (Table 1).

3.2. Metaproteome Alteration in Obesity

A total of four studies assessed metaproteome variations in obesity (Table 2).
Both metagenomics and metaproteomics data in Ferrer et al. revealed an increase of the
relative abundances of Firmicutes and a decrease of Bacteroidetes in obese patients com-
pared with lean individuals [29]. However, in line with Kolmeder et al., 2015, the relative
amounts of expressed proteins from both phyla were very similar in obese and lean individ-
uals. In addition, differences between the two subject groups were observed for proteins
involved in cell motility, butyrate production, vitamin synthesis (B6 and B12), and starch
metabolism (Table 2). The same study showed that most of the detected alterations were
associated with an increased energy production by the obese gut microbiota, as indicated
by butyrate production and some pili-forming proteins and flagellins that might facilitate
the microbial access to carbohydrates [29]. Moreover, Kolmeder et al., 2015 reported how
peptides derived from proteins involved in C5 and C6 carbohydrate metabolism, (e.g.,
enolase, ribulokinase, xylulokinase, phosphoketolase, and a specific glycoside hydrolase)
were more abundant in non-obese individuals. Additionally, obese subjects had much more
proteins involved in starch and pectin metabolism (glucosidase and pectate lyase).

On the other hand, fructose, mannose, galactose, and sucrose metabolisms resulted
up-regulated in subjects belonging to the obese cohort investigated by Hernandez et al.,
2013 [34]. In detail, a higher total sugar metabolism, assessed by a colorimetric assay with
a set of 23 structurally diverse sugars, and a major activity of glycosidase were detected
in extracted proteins from stool samples of obese individuals compared to those of lean
subjects. Moreover, both Hernandez et al., 2013 and Sanchez-Carrillo et al., 2020 [32,34]
highlighted a significant alteration in the expression of proteins linked to metabolic derange-
ment, intestinal damage, and chronic inflammation state (alkaline phosphatase, serpins,
and α-amylase more expressed in obese patients than healthy individuals or individual
post bariatric surgery). Additionally, Sanchez-Carrillo et al., 2021 found ferritin and ferrous
transport protein to be expressed in lean adults (0.46–1.0 ng/g) while both proteins resulted
below the detection threshold in individuals with severe obesity.

3.3. Metaproteome Alteration in T1D

As above described, four studies investigated the metaproteome of subjects affected
by T1D [27,28,31,33] (Table 1).

Pinto et al., 2017 found that microbial metaproteome variations of children affected by
T1D were originated from Eubacterium, Faecalibacterium, and Bacteroides. The presence of
these bacterial taxa is mainly linked to amino acids transport, metabolism and transcription,
protein turnover, and chaperones. Specifically, the branched-chain amino acid transaminase
(ilvE) and the glutamate dehydrogenase enzymes were detected among those proteins
found to be more abundant in T1D subjects than healthy individuals. These proteins are
involved in amino acids transport and metabolism. Additionally, regarding host proteins,
T1D patients exhibited an increased expression of mucin-2 and a reduction in elastase
3A expression with respect to healthy individuals, suggesting both an increased mucin
synthesis in charge of gastrointestinal epithelium protection and a reduction in exocrine
pancreas functionality (Table 2).
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Singh et al., 2017 considered 223 children and adolescents (age range 5–22) and
observed a significant depletion of the genus Enterococcus in T1D subjects with high
levels of HbA1c compared with healthy individuals. In this study, the metaproteomics
was used to investigate the urinary proteome alterations in T1D subjects compared to
their healthy siblings. Increased levels of lysosomal enzymes were associated with HbA1c
levels. Together with these, some other proteins involved in inflammatory responses were
more expressed in T1D patients. Specifically, LRG1 and CD14 resulted in the adipose
tissue inflammation.

The study conducted by Gavin et al., 2018 described the alterations of both host
and microbial proteins collected from children and adults affected by T1D. Five human
proteins exhibited a lower level in new-onset diabetics (NODs) and seropositive individ-
uals (positive for islet autoantibodies) compared to control subjects; the same trend was
reported for three proteins secreted by the exocrine pancreas (Table 2). Moreover, two
human proteins associated with inflammation, fibrillin-1, and galectin-3, were overex-
pressed in the T1D group. As far as concerns microbial proteins, several were differentially
expressed in diseased and control individuals. The relative KEGG assignment to specific
categories showed how the great part of them belongs to the phosphotransferase system,
thermo-unstable elongation factors, ferredoxin hydrogenase class, and butyrate synthesis
metabolism. These data revealed that proteins altered in NODs and seropositive individ-
uals were involved in the inflammation onset, increasing the mucus secretion and the
defective mucosal barrier function.

Finally, Heintz and co-workers [31], by applying a multi-omics approach to resolve
the taxonomic and functional attributes of gut microbiota at the metagenomic level, found
lower levels of specific human exocrine pancreatic proteins in T1D subjects (α-amylase
proteins AMY2A, AMY2B, and carboxypeptidase CPA1) compared to the healthy ones.
At any rate, the study was unable to identify taxa whose abundance levels correlated with
those relative to pancreatic enzymes.

3.4. Metaproteome Alteration in T2D

Zhong et al., 2019 [18] investigated the compositional and functional changes of gut
microbiota in pre-diabetic (Pre-DM), treatment naïve T2D (TN-T2D), and healthy indi-
viduals cross-sectionally to elucidate different mechanisms linked to the disease stages
(Table 2). A reduction of pancreatic enzymes in Pre-DM and TN-T2D, compared to healthy
individuals, was detected and implied a reduced exocrine pancreas functionality. A sub-
stantial number of Pre-DM associated microbial and human proteins were identified at the
metagenomics and metaproteomics level. In fact, an enrichment in the structural domains
of microbial proteins modules involved in the sugar phosphotransferase system (PTS),
ATP-binding cassette (ABC) transporter of amino acids, and bacterial secretion system was
detected in Pre-DM compared to normal glucose transport (NGT) individuals.

Besides, alterations in human protein production among the three groups of analyzed
individuals were highlighted. The trimethylamine-N-oxide producing enzyme (FM03)
was exclusively detected in the TN-T2D group. In the same group, a loss of rasGTPase-
activating-like protein (IQGAP1) and unconventional myosin-Ic (MYO1C), related to the
impairment of insulin signaling, were detected.

The longitudinal study by Zhou et al., 2019 [26] aimed at understanding the early
disease stages of diabetes profiles by inspecting transcriptomes, metabolomes, cytokines,
proteomes, and changes in the microbiome of 106 healthy subjects and individuals with
pre-diabetes for four years. Correlations between microbial taxa and specific cytokines were
highlighted and microbial–cytokine correlations resulted in being significant in insulin-
sensitive but not in insulin-resistant participants. Barnesiella was positively associated
with IL-1β (q = 0.0054), Faecalibacterium was inversely associated with TNFA (q = 0.0244),
and Butyricimonas was negatively associated with four lipids only in insulin-resistant
participants (q < 0.05). The study revealed that many host biochemical and microbial com-
ponents are stable over time in healthy individuals even though they can undergo dynamic
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and marked changes in response to viral infection or other perturbations. These changes
differed between insulin-sensitive and insulin-resistant individuals. By integrating in-
formation provided from proteins, cytokines, and metabolites, the pathways associated
with defense responses, such as interleukin signaling pathways, mTOR signalling23, and
B and T cell receptor signaling, were identified. Furthermore, during a viral infection,
inflammatory pathways were differently altered in insulin-resistant participants with re-
spect to insulin-sensitive individuals. This would suggest the presence of alterations in
defense responses.

4. Discussion

This review was aimed at collecting the most recent scientific evidence in the field of
metaproteomics to provide an overall view of the functional changes induced by interaction
mechanisms occurring between the gut microbiota and host in metabolic disease conditions.

The herein selected studies highlighted proteins whose level of expression changed
with respect to the health condition. These proteins were mainly involved in carbohydrate
metabolism and inflammation response, but other metabolic pathways appeared also to
be involved. Therefore, metaproteomics evidence may enhance the consistency of insight
about host–microbiota interconnections in pathological states and may clarify how this
established crosstalk can affect the inflammatory state (e.g., PBMC activation, cytokines
release, inflammation serum peptide, and metabolite productions).

The great presence of bacterial strains able to ferment (metabolize) unabsorbed carbo-
hydrates in the obese leads to an uptake of bioavailable SCFAs for the host and, therefore,
an additional energy source [18,35,36]. This agrees with the currently available human
case-control studies that report the association between obesity and high SCFA levels [37].
As a matter of fact, most of the metaproteome alterations were associated with the aug-
mented energy bioavailability in the obese gut, as indicated by the increased expression of
proteins involved in the refinement of carbohydrate (α-polyglucose) and starch digestion
(α-glucosidase). This condition contributes to an increased SCFA production, mainly consis-
tent in propionate and butyrate, that in obese subjects are used as an extra source of energy.
Noteworthy, a controlled production of these volatile compounds in healthy subjects helps
in preserving colonocyte functionality and regulates the inflammatory response [36,38].
The metaproteome of obese subjects, as reported in Kolmeder and Ferrer [29,30], is enriched
in microbial proteins involved in SCFAs metabolism (e.g., butyryl-CoA dehydrogenases)
compared to the metaproteome of non-obese subjects.

Ferrer et al. showed how other metaproteome variations can also affect vitamin
production [29]. In this study, two microbial cobaltochelatases involved in vitamin B12
synthesis were detected in the obese gut metaproteome but not in the gut metaproteome
of non-obese. This is in line with previous observations that reported higher levels of
propionate in obese subjects compared to lean individuals, since propionate fermentation is
mediated by a B12-dependent methylmalonyl-CoA [39]. Along with a marked metabolism
of carbohydrates, an enrichment in inflammation-linked proteins (e.g., trehalase, serum
C-reactive protein, and alkaline phosphatase) can be considered another discrimination
element of obese metaproteome.

Ferritin and ferrous transport proteins are less expressed in obese individuals com-
pared to lean, and this outcome is supported by studies that defined iron deficiency as a
disease emerging risk factor [40]. Iron deficiency in obese subjects could be due to multiple
factors that, together with a poor-quality diet, can result in a reduced iron absorption due
to an increase in circulating hepcidin that, in turn, is a negative regulator of the intestinal
iron absorption and the release of iron by macrophages [40].

Moreover, a substantial number of host and microbial proteins also featured the Pre-
DM condition. These proteins are mainly enzymes involved in sugar transport and in the
absorption from microbial cells. As with obesity, T2D is associated with an increase in
carbohydrate catabolism, monosaccharide release, and with a higher amount of proteins
correlated with insulin resistance (pectate lyases and sensory kinase class protein).
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As a signature typical of this disease, along with hyperglycemia and insulin resistance,
the T2D altered metaproteome showed a possible association between changes in the gut
microbiota and low-grade inflammation (e.g., CRP synthesis).

Correlations between microbial taxa abundance and cytokine production (e.g., IL-1β,
TNFA) in insulin-sensitive subjects, and the lack of these associations in insulin-resistant
participants, suggest that insulin resistance may affect interactions between gut microbiome
and host cytokines’ release.

This evidence is supported by the gut microbiota ability in driving stimulatory mecha-
nisms of monocytes [11]. Moreover, inflammatory marker increases (e.g., CRP and IL-6)
have been detected in apparently healthy individuals who, later, develop T2D. This sug-
gests that inflammation occurs early, specifically during the period of impaired glucose
tolerance and, therefore, prior to the diagnosis of T2D. This finding further supports the
potential predictive role that metaproteomics may have in the early diagnosis of diabetes,
by detecting the level of specific disease biomarkers. Undoubtedly, a better and deeper
understanding is necessary on this dynamic crosstalk; therefore, the hidden mechanisms
behind it need to be thoroughly investigated.

Although a negative correlation between T2D and HDL cholesterol is reported in litera-
ture [41], an unexpected and intriguing aspect emerges in T2D metaproteome. An enrichment
in the ABC transporter involved in the translocation of HDL cholesterol was reported.
The limited availability of information, together with the low number of studies on the T2D
metaproteome investigation, suggests the need for other studies to reach a consistent view.

However, the evidence available and registered in adults and children affected by
T1D showed alterations in both the host and the microbial proteins involved in specific
functional categories [41], likewise those involved in pancreatic activities.

Concerning human protein alterations, the hypothesis that T1D is a combined endocrine-
exocrine disease was made [42]. Exocrine dysfunction in T1D is linked to a reduction in
exocrine pancreas output, as emerging from studies collected in this review that reported a
decrease in the total amount of exocrine pancreas proteins both in new-onset patients and
seropositive individuals affected by T1D [43–45]. On the other hand, in healthy subjects
the expression of these proteins was positively correlated with taxa linked to gut health,
suggesting a functional relationship between exocrine proteins and bacterial taxa such as Al-
istipes and F. prausnitzii [46]. The low abundance of these species in T1D individuals seems
to highlight their contribution towards the gut epithelial integrity, undermining the immune
homeostasis and the inflammatory response [47]. In T1D, profound metabolic changes
occurred, mainly characterized by a shift from a high-level of carbohydrate metabolism
to a protein metabolism. This is supported by a reduction in the expression of enzymes
involved in glycolysis and, consequently, SCFA production, while human and microbial
enzymes involved in proteins and amino acid metabolism increased [45,48]. Consequently,
since the aromatic amino acids promote whole-body protein synthesis and inhibit protein
breakdown [48], insulin-deprived T1D people show a greater abundance in circulating
branched-chain amino acids (BCAA) and ketones. This could be linked to a higher expres-
sion of enzymes involved in BCAA synthesis, also in children who are T1D affected [49].

The lysosomal protein abundance in the urinary proteome of T1D patients, regis-
tered in Singh et al., 2017 [27], is in line with the increase of catabolic functions associated
with T1D individuals compared to healthy subjects. Moreover, lysosomal enzymes were
reported to be released from leukocytes via fusion with plasma membranes during in-
flammatory responses; specifically, lysosomal proteases have been implicated in diabetes
associated inflammatory processes [37]. Furthermore, the disturbed lysosomal function in
renal tubular cells was linked to the generation of glycotoxins (AGEs), with pathogenetic
significance in diabetes [37]. These changes in lysosomal function may exert metabolic
memory effects in frequent hyperglycemia [50] but, until now, no evidence has supported a
possible implication in modulating the gut microbiota structure.

Certainly, the effect of diabetes and obesity on the metaproteome has been investigated
in a limited number of studies and more information is necessary to evaluate the possible
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influence of other factors, such as dietary intake, age, or sex. As a take-home message,
we reported the possibility of using a standardized metaproteomics method in clinical
research. This can provide valid information about the influence of the disease on human
and microbial metaproteomes. Moreover, interesting insights come from molecules that can
be used as specific biomarkers to predict the onset of disease and rely on specific signatures.

Alone or in combination with other omics technologies, metaproteomics still faces
methodological challenges and lacks standardization protocols. Nowadays, several ap-
proaches are available to standardize peptide identification and protein annotation pro-
cesses in a way to maximize the scientific value of the obtained data and, at the same time,
handle redundant protein hits [51]. Newly bioinformatic pipelines allow the reduction of
protein inference issues due to the assignment of redundant proteins [52,53]. The standard-
ization does not concern only protein annotation/identification, but also gives the chance
to reduce the error frequency by standardizing the spectrum pick interpretation process.
In this light, since LC-MS/MS is an increasingly powerful tool for studying proteins in
the context of diseases, a rigorous standardized approach to validate individual peptide-
spectrum matches (PSMs) is needed and, a method like PSM Validation with Internal
Standards (P-VIS) reduces the subjectivity when evaluating the validity of PSMs [54].

Once the data are produced and made available, a standardized workflow is needed
to compare metaproteomics data among different studies. The comparison is essential,
especially considering an ever-increasing amount of metaproteomics findings. For this pur-
pose, KP-INTIMIC has a huge potential in performing a pooled analysis of individual-level
data following an a priori data standardization and harmonization. Herein, we conducted
a narrative review on the associations of gut microbiota functional variations with the
obesity and diabetes states, exploiting the metaproteomics approach or a combination of
metaproteomics with other omics-technologies. Hitherto, to our knowledge, this is the first
narrative review that merges literature results, derived from applying mass spectrometry
to obtain protein profiles in diabetes and obesity.

5. Conclusions

To our knowledge, this is the first review offering an overview on metaproteomics
studies in the low-grade inflammatory pathologies, diabetes, and obesity. Although metage-
nomics can provide a deep knowledge of the link between microbiota and disease state,
the new metaproteomics field allows us to extend the comprehension of this complex
dynamic interaction. Metaproteomics gives the opportunity of studying the functional
proteomic profile under specific conditions, highlighting variations in healthy and diseased
states; among these, the reduction of the activity of the exocrine pancreas in diabetics,
and the alteration of iron absorption in obesity, emerged. Moreover, metaproteomics can
provide information on specific biomarker expression (e.g., peptides, cytokine) that can be
used as diagnostic targets in low-grade inflammation pathologies. However, the lack of
comparability and heterogeneity of study designs precludes a patient or population-based
conclusion. Ad hoc prepared metaproteomics databases collecting pathologic data and
related metadata, together with standardized analysis protocols, are strongly required.
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