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Data driven inference for the 
repulsive exponent of the Lennard-
Jones potential in molecular 
dynamics simulations
Lina Kulakova1, Georgios Arampatzis1, Panagiotis Angelikopoulos   1,3, Panagiotis 
Hadjidoukas1, Costas Papadimitriou2 & Petros Koumoutsakos   1

The Lennard-Jones (LJ) potential is a cornerstone of Molecular Dynamics (MD) simulations and among 
the most widely used computational kernels in science. The LJ potential models atomistic attraction 
and repulsion with century old prescribed parameters (q = 6, p = 12, respectively), originally related 
by a factor of two for simplicity of calculations. We propose the inference of the repulsion exponent 
through Hierarchical Bayesian uncertainty quantification We use experimental data of the radial 
distribution function and dimer interaction energies from quantum mechanics simulations. We find 
that the repulsion exponent p ≈ 6.5 provides an excellent fit for the experimental data of liquid argon, 
for a range of thermodynamic conditions, as well as for saturated argon vapour. Calibration using the 
quantum simulation data did not provide a good fit in these cases. However, values p ≈ 12.7 obtained 
by dimer quantum simulations are preferred for the argon gas while lower values are promoted by 
experimental data. These results show that the proposed LJ 6-p potential applies to a wider range of 
thermodynamic conditions, than the classical LJ 6-12 potential. We suggest that calibration of the 
repulsive exponent in the LJ potential widens the range of applicability and accuracy of MD simulations.

The Lennard-Jones (LJ) potential is one of the centerpieces in Molecular Dynamics (MD) simulations, the key 
computational method for studying atomistic phenomena across Chemistry, Physics, Biology and Mechanics. 
Despite the widespread use of MD simulations, an often overlooked fact is that the classic LJ potential involves a 
century old and rather ad-hoc prescribed repulsion exponent. In this study we demonstrate that this parameter 
needs to be modified in order to enhance the predictive capabilities of MD simulations.

The structure of the LJ potential depends on the inter-atomic distance r( ) and consists of two parts: an attrac-
tive term −r−q that models the Van der Waals forces and a repulsive term r−p that models the Pauli repulsion. 
While the exponent =q 6 has a theoretical justification1, the p = 12 exponent was chosen for computational 
efficiency as the square of the attractive term. In addition, two scaling parameters σ and ε control the shape of the 
potential. The ε and σ parameters have been the subject of numerous calibration studies2–5 and more recently the 
subject of Bayesian inference techniques6,7. Bayesian Uncertainty Quantification (UQ) employs experimental data 
and provides a probability distribution of the parameters. The parameter uncertainty can then be propagated by 
the model in order to obtain robust predictions on a quantity of interest7,8. In cases where the data sets correspond 
to different inputs for the system, e.g. different thermodynamic conditions, the use of Hierarchical Bayesian (HB) 
methods provides a stable method for UQ9,10.

Here we employ a HB method to infer the parameters p( , , )ε σ  of LJ 6-p force-field. In the past, several values 
of the exponent p of the LJ 6-p potential, ranging from 10 to 20, have been considered11. The authors calibrated 
using pressure and viscosity data for various thermodynamic conditions and concluded that the exponent 12 is 
the best choice.

We perform  the HB inference for the LJ 6-12 and LJ 6-p parameters of argon based on experimental RDFs of 
liquid argon and saturated argon vapor for six different temperature and pressure pairs, as well as on one dataset 
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from quantum calculations, representing gaseous argon. We present a rigorous model selection process for the LJ 
6-12 vs LJ 6-p potentials for each of the cases and perform robust posterior predictions for the diffusion coeffi-
cient and density.

We find that the most likely values for the LJ repulsive exponent for liquid argon are ≈ .p 6 5, strongly differing 
from the value of p = 12 that is being used, while the gaseous argon is simulated best with the exponent p 12 7≈ . , 
much closer to the conventional one. We remark that our results have been obtained in the case of a simple sys-
tem. However, we consider that they offer significant evidence that the repulsive exponent should be reconsidered 
when the parameters of the LJ potential are being fitted to data.

Results
In our work, we perform several inferences of the parameters of the classical and modified LJ potentials for argon 
at different thermodynamic conditions. Here and further, ϑ denotes a set of parameters to be calibrated.

We first calibrate the parameters ,ε σ of the classical LJ 6-12 potential, as well as the LJ model error parameter 
σn, which accounts for the inadequacy of the LJ description, even with the best possible parameters, as compared 
to the physical reality. The parameter set ϑ is thus equal to { , , }nε σ σ . We use RDF as data and denote this inference 
as B R12, . Subsequently, we include the exponent p of the repulsion term into the parameter set (inference Bp R, ) and 
perform model selection for the LJ 6-12 and LJ 6-p force fields.

We then perform a non-hierarchical and a hierarchical Bayesian inference for each of the potentials using the 
methodology from ref.10. In the non-hierarchical inference the parameters for each data set are being inferred 
completely independently with a common prior information, encoded in ϑ|p( ) , see Supplementary Fig. S1c. 
In HB inference the parameters corresponding to each data set are being connected to a hyper-parameter ψ, see 
Supplementary Fig. S1b. In this approach the prior information of the model parameters is data dependent, 

ϑ ψ
→

| dp( , ), where d
→

 denotes the set of all available data, allowing information to flow between the different data 
sets leading to more robust and accurate predictions for the model parameters. The aim of this procedure is to 
infer the hyper-parameters ψ governing the variability of the parameters ϑ between the different sets of data and 
to subsequently update the distributions of the parameters ϑ (see Supplementary Material S1 for details). These 
inferences are denoted HB12,R and HBp,R.

The experimentally measured RDFs are taken from ref.12. The RDFs are computed for 6 temperature/pressure 
pairs T P( , ).  We denote the pairs as follows: = . .L (84 4, 0 8)1 ,  = . .L (91 8, 1 8)2 ,  L (126 7, 18 3)3 = . . , 

= . .L (144 1, 37 7)4 , = . .L (149 3, 46 8)5 , V (149 3, 43 8)= . . , where L stands for “liquid” and V  stands for “vapor”. 
The corresponding datasets (RDFs) are denoted as RLi for liquid and RV  for vapor.

Finally, we perform the inference with LJ 6-p using quantum dimer energy calculations from ref.13 as data, 
which corresponds to the gaseous argon. We then compare the obtained parameter distribution with those com-
puted for the liquid argon and saturated argon vapour from the RDF data. The quantum dimer dataset is denoted 
as Q and the corresponding inference is denoted as Bp Q, .

Calibration of LJ 6-12.  We present results of parameter calibration for , , nε σ σ , while p is fixed to 12. We use 
a wide enough uniform prior for each of the parameters and each of the datasets RLi, RV (ϑ ∈ . × ×[0 05, 3] [3, 4]

−[10 , 1]6 ). We observe that the values which were obtained in the calibration process are close to those found in 
literature (Table 1). In Fig. 1 the most probable values (MPV) of the parameters along with 5–95% quantiles is 
presented (light red). Notice that results are only presented for the four out of six datasets as the LJ 6–12 potential 
failed to simulate the liquid argon for conditions L1 and L2. By “failed” we mean that there were no parameters for 
LJ 6-12 within the prior bounds which would produce liquid argon, the MD simulation was trapped in either gas 
or solid phase.

A large difference in the values of ε for liquid and vapor is observed, which implies that one cannot perform 
the simulations using the same parameters for the two phases. We define the uncertainty in a parameter as the 
ratio of the 5–95% quantile spread to the MPV. The uncertainty in ε varies from 14% to 20% depending on the 
dataset, while the value of σ is identified more precisely with uncertainty of 2–6%. This difference is attributed to 
the type of data used in the inference process: the location of the RDF peak, which gives the most significant 
contribution to the sum of squared errors (SSE) in the log-likelihood, is more sensitive to σ. On the other hand, ε 
affects the height of the RDF peak which has a smaller contribution to the log-likelihood. Despite the generally 
small uncertainty in σ, we observe it to be quite big for L5, as compared to the other liquid cases. The reason for 
this lies in the shape of the RDF for L5. Fig. 2 shows that the RDF for L5, unlike for the other liquid cases, is very 

Ref.3 Ref.2 Ref.4 Ref.5

ε 0.2385 0.2824 0.2381 0.2498

σ 3.4000 3.3605 3.4050 3.3450

T 94.4 86.64–168.86 137.77 88–127

ρ 1.374 0.435–1.479 0.156, 0.972 0.283–3.897

Phase liquid gas, liquid, solid gas + liquid gas + liquid

Data RDF P , E TP , ρ, L P , B

Table 1.  LJ parameters for argon used in literature. The last row shows the data used for fitting. Notations: 
T (temperature), P (pressure), ρ (density), B (second virial coefficient), E (energy), TP (gas-liquid transition 
pressure), L (latent heat of evaporation).
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flat. The RDF peak location is controlled by σ, and since the peak is not well defined for L5, the sampling algo-
rithm allows for a wide variety of σ values.

Next, we infer the LJ parameters using the HB approach. We select the prior ϑ ψ|p( )i  by using Bayesian model 
selection (see Supplementary Material S2 for details).

Figure 1.  Posterior parameter values: MPVs along with 5–95% quantiles obtained in B R12,  (light red), HB R12,  
(dark red), Bp R,  (light blue), HBp R,  (dark blue). Horizontal lines for LJ 6–12 indicate the reference values: ref.2 
(magenta dashed line), ref.5 (purple solid line), ref.3 (cyan solid line), ref.4 (blue dashed line). Horizontal line for 
LJ 6-p indicates the MPV for Bp Q, .

Name Symbol Unit

Temperature T K

Pressure P atm

Distance r Å

LJ well depth ε kcal/mol

LJ well location σ Å

LJ repulsion exponent p —

RDF model error σn —

Density ρ g/cm3

Diffusion coefficient D cm2/s

Table 2.  Units used in this work.
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The values of the LJ parameters are presented in Fig. 1 (dark red). The MPVs and the quantiles of the parame-
ters are almost the same as in the B R12, , which means that for each dataset d R R R{ , , , }i L L V1 5∈ …  no information 
about the parameters can be extracted from the other datasets.

The full set of the MPVs and distribution quantiles for each dataset RLi, RV  is given in Table 3, while the full 
posterior distributions are shown in Supplementary Fig. S3.

Calibration of LJ 6-p.  Dataset R.  Here we include the LJ exponent p into the parameter set ϑ. As in the LJ 
6-12 case, we choose a uniform prior with wide enough bounds ( . × × . × −[0 05, 10] [3, 4] [6 01, 15] [10 , 1]6 ). 
Note that with LJ 6-p the sampling algorithm dictated much wider bounds for ε compared to the LJ 6-12 case. As 
will be seen later, this is due to a strong correlation between ε and p. We observe again the non-transferability of 

Figure 2.  Robust posterior predictions: MPVs along with 5–95% quantiles obtained in HBp,R (blue), HB12,R 
(red), MPV obtained in Bp,Q (purple). Black line with dots: experimental data for RDF. Grey bars: experimental 
data for ρ, analytically computed values for D.
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the LJ parameters from liquid to vapor simulations: the values of σ lie in disjoint domains for Li and V  (Fig. 1). 
Being a more flexible potential, LJ 6-p can simulate a wider range of thermodynamic conditions, including L1 and 
L2, which result in the values of LJ parameters similar to those obtained for the other three liquid conditions. We 
observe that the 95% quantile of p, as well as its MPV, is for four out of six RDF datasets below .7 5 and for all the 
datasets below 10, which is much smaller than the conventional 12. This can be explained by the fact that the 
repulsion energies predicted by the standard 6-12 LJ potential are very high for the liquids. The configurations 
with such energies happen with probability close to zero, and the MD simulation is not able to sample them. As 
in the LJ 6-12 case, the parameter ε exhibits significant variation within each dataset RLi, RV  (uncertainty 110–
216%, computed the same way as for LJ 6-12), while p and σ are well-defined with the uncertainty of 5–30% and 
1–6%, respectively. In addition, ε differs substantially among the RDF datasets, but always in accordance with p: 
the higher the p, the lower the ε (see Fig. 3). We observe that the uncertainty in σ is once again bigger for L5, as 
compared to the other liquid cases, which is consistent with the LJ 6-12 inference.

Similarly with the inference of the LJ 6-12 parameters, we proceed by calibrating the parameters using the HB 
approach. Details for the selection of the prior can be found in Supplementary Material S2. The results of the 
inference are given in Fig. 1. We observe that the uncertainty in ε gets significantly reduced for conditions L1, L2, 
L5 and V  indicating that the inference benefited from the information contained in the two remaining datasets RL3 
and RL4 with narrow posterior distributions of ε (Supplementary Figs S2 and S4). On the other hand, the uncer-
tainty in ε for L3 and L4 increases adjusting to the wide ranges in the other four cases. A similar situation can be 
seen for p, where narrow distributions for L1, L3, L5, V  shift the posterior values for L2 and L4. The RDF is, as 
noticed before, very sensitive to the changes in σ, which controls the location of the LJ potential well, and there-
fore σ is well determined for each of the datasets RLi

, RV  and extracts almost no information from the other data 
sets.

Figure 3.  Posterior samples of Bp,R projected onto (p, ε) subspace: yellow circles correspond to V, green circles 
correspond to Li in the temperature increasing order from the lightest to the darkest color, purple circles 
correspond to Q. Note that the ε scale is logarithmic.

εb( ) q( )ε b( )σ σq( ) b( )nσ q( )nσ

B R12,

L3 0.286 [0.284, 0.323] 3.305 [3.250, 3.332] 0.168 [0.158, 0.314]

L4 0.255 [0.254, 0.266] 3.314 [3.301, 3.353] 0.089 [0.080, 0.140]

L5 0.263 [0.255, 0.309] 3.266 [3.110, 3.536] 0.317 [0.292, 0.586]

V 0.144 [0.083, 0.184] 3.109 [3.029, 3.213] 0.147 [0.119, 0.304]

HB R12,

L3 0.283 [0.283, 0.303] 3.300 [3.226, 3.327] 0.177 [0.156, 0.310]

L4 0.253 [0.254, 0.267] 3.333 [3.301, 3.367] 0.073 [0.073, 0.147]

L5 0.262 [0.256, 0.296] 3.269 [3.108, 3.523] 0.337 [0.301, 0.579]

V 0.190 [0.140, 0.242] 3.075 [3.001, 3.229] 0.180 [0.192, 0.385]

Table 3.  Posterior values of each parameter { , , }nε σ σϑ ∈  of LJ 6-12: MPV ϑb( ) and 5–95% quantiles ϑq( ). The 
values are rounded from 16-digit precision.
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Dataset Q.  We examine the suitability of the repulsion exponent 12 by performing a calibration using as data the 
calculated quantum dimer scans of argon. These data describe the behavior of the gaseous argon. We infer the LJ 
6-p parameters by fitting the LJ potential to the binding energy of the quantum dimer (Fig. 1). The resulting value 
of p is much closer to the conventional 12 (Table 4), suggesting that for the gaseous argon, unlike for the liquid 
one, LJ 6-12 is a reasonable choice.

The full set of MPVs and distribution quantiles of the LJ parameters for RLi, RV  and Q is given in Table 4 and 
the full posterior distributions are plotted in Supplementary Figs S2, S4 and S5.

LJ 6-12 vs LJ 6-p: Comparison.  Model selection.  We choose between the LJ 6-12 and LJ 6-p potentials by 
applying the Bayes selection criterion. We observe that LJ 6-p is significantly better than the LJ 6-12 for L3 and L5 
(Table 5). Recalling that LJ 6-12 is not able to produce a liquid for L1 and L2, we conclude that LJ 6-p is preferred 
for four RDF datasets out of six. In the case of L4 the two potentials provide results that are indistinguishable by 
the Bayesian model selection. The only dataset on which the LJ 6-12 potential produces better results (3 times 
more probable than LJ 6-p) is V , the vapor case. That brings us to the conclusion that LJ 6-p is either much better 
or not worse than LJ 6-12 for all the liquid cases considered. For the vapor case, the LJ 6-p is over parametrized, 
as compared to LJ 6-12.

LJ potentials.  Studying the reasons for LJ 6-p being more plausible than LJ 6-12, we take a closer look at the 
inferred shapes of the potentials. We observe a very stable correlation in the p( , )ε  subspace (Fig. 3) for all the 
datasets used. This result is expected as p regulates the strength of the repulsion and ε alters the strength of both 
repulsion and attraction simultaneously. The difference between the Ri and Q datasets shows up in the region of 
the subspace which gets populated. The quantum dimer-based calibration prefers high values of p, which corre-
spond to the tails of the distributions inferred using the RDF data. We performed a calibration with L3 and narrow 
prior bounds ( ∈p [12, 14]) to see whether this is indeed a tail of the full posterior distribution (Supplementary 
Fig. S6). The narrow posterior values are below .3 95, while the values of the full posterior start from 4 18. , which 
explains why the tails of the full distributions for Li and V  have a negligible number of samples in the region 

∈p [12,14] preferred by the Q-based inference. As the parameters ε and p are highly correlated, one could expect 
that the inference will be able to recover values of ε for LJ 6-12 such that the resulting potential is close to the 
inferred LJ 6-p. However, the effect that p and ε have on the LJ potential is not entirely the same. As ε acts as a 
scaling factor for the whole potential, it is not able to make the potential less deep and at the same time flat enough 
to avoid switching to the gas phase (compare simulations with MPVs for L5, V  in Fig. 4). The same reasoning can 

εb( ) q( )ε σb( ) σq( ) b p( ) q p( ) b( )nσ q( )nσ

Bp R,

L1 2.286 [2.193, 4.794] 3.431 [3.422, 3.464] 6.644 [6.292, 6.647] 0.157 [0.185, 0.302]

L2 3.134 [0.712, 4.416] 3.369 [3.319, 3.428] 6.370 [6.293, 8.313] 0.222 [0.215, 0.518]

L3 1.250 [0.914, 2.700] 3.322 [3.301, 3.395] 6.715 [6.332, 7.068] 0.098 [0.080, 0.159]

L4 0.337 [0.322, 1.060] 3.325 [3.325, 3.398] 9.501 [6.900, 9.842] 0.057 [0.066, 0.153]

L5 5.928 [0.794, 7.318] 3.328 [3.190, 3.395] 6.116 [6.102, 7.126] 0.164 [0.168, 0.326]

V 1.065 [0.625, 3.611] 3.117 [3.037, 3.122] 6.604 [6.151, 6.923] 0.100 [0.099, 0.190]

HBp R,

L1 4.561 [3.890, 4.626] 3.454 [3.408, 3.471] 6.302 [6.296, 6.366] 0.422 [0.450, 0.602]

L2 2.081 [1.333, 3.515] 3.387 [3.335, 3.424] 6.565 [6.340, 7.051] 0.211 [0.178, 0.351]

L3 2.506 [0.941, 4.325] 3.345 [3.295, 3.382] 6.324 [6.198, 6.996] 0.093 [0.081, 0.186]

L4 2.588 [0.892, 3.676] 3.403 [3.358, 3.432] 6.339 [6.226, 7.063] 0.082 [0.075, 0.146]

L5 2.055 [0.992, 4.281] 3.252 [3.194, 3.382] 6.364 [6.169, 6.837] 0.183 [0.159, 0.316]

V 1.371 [0.582, 1.896] 3.129 [3.082, 3.194] 6.422 [6.277, 7.025] 0.111 [0.103, 0.233]

Bp Q, 0.252 [0.239, 0.261] 3.370 [3.367, 3.375] 12.703 [12.333, 13.309] 0.006 [0.006, 0.010]

Table 4.  Posterior values of each parameter ε σ σϑ ∈ p{ , , , }n  of LJ 6-p: MPV ϑb( ) and 5–95% quantiles q( )ϑ . 
The values are rounded from 16-digit precision.

E R12, E p R, e E p R E R12, ,−

L1 — −7.05 —

L2 — −14.8 —

L3 −9.72 2.81 2.74 × 105

L4 5.10 5.18 1.09

L5 −15.8 −8.76 1.18 × 103

V −3.83 −4.94 3.31 × 10−1

Table 5.  Log-evidences E R12,  (Ep R, ) for B R12,  (Bp R, ).
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be applied to explain the inability of LJ 6-12 to drive L1 and L2 to the liquid phase: the potential is too repulsive, 
frustrating the liquid packing, and the system behaves either like a gas or like a solid (note that L1 is close to the 
argon triple point). The full set of the inferred LJ 6-12 and LJ 6-p potentials is given in Fig. 4.

Robust posterior prediction.  The quality of the pred ictions, made for a quantity of interest (QoI) different than 
the one used for the inference, quantifies the predictive power of the model (see Supplementary Material S1.2). 
We obtain robust predictions of the RDF, density ρ and diffusion coefficient D of argon by propagating the poste-
rior LJ parameters uncertainty into these quantities.

We measure the error Δg of the prediction of the scalar quantity g  as

g
N

g r
r

1 ,
k

N
k k

k1

2

∑∆ =





− 


=

where N ≤ 6 is the number of thermodynamic conditions for which the prediction can be made, gk is the predic-
tion made using the MPV and rk is the reference value. The reference values for ρ are experimental measurements 
taken from ref.12. The reference values for D are computed analytically using the equations from ref.14. The accu-
racy of the fit for these computations is 0.7%. The error of the RDF is computed as an average over all the thermo-
dynamic conditions of the mean squared error between the computed and the experimental RDF. The predictions 
are compared on three different sets of conditions: (1) the conditions which can be simulated using MPVs 
obtained in all the three inferences HB R12, , HBp R, , and Bp Q,  (L4, L5), (2) the conditions which can be simulated 
using MPVs obtained in the inferences HB R12,  and HBp R,  ( −L L3 5, V), (3) the conditions which can be simulated 
using MPVs obtained in the inference HBp R,  ( −L L1 5, V).

Figure 4.  Posterior LJ potentials comparison: MPVs along with 5–95% quantiles obtained in HBp,R (blue), 
HB12,R (red), Bp,Q (purple). Black line with dots: quantum dimer calculations.

Δ RDF ∆ρ ∆D

S1 S2 S3 S1 S2 S3 S1 S2 S3

Bp Q, 0.087 — — 0.118 — — 0.136 — —

HB R12, 0.071 0.050 — 0.029 0.108 — 0.009 1.573 —

HBp R, 0.016 0.024 0.027 0.011 0.068 0.049 0.043 1.230 0.898

Table 6.  Errors of robust posterior predictions of RDF, density and diffusion coefficient using LJ 6–12 and LJ 
6-p. We denote =S L L{ , }1 4 5  (all inferences produce the correct argon phase), S L L V{ , }2 3 5= −  (Bp Q,  produces 
wrong phase), = −S L L V{ , }3 1 5  (Bp Q,  and HB R12,  produce wrong phase).



www.nature.com/scientificreports/

8Scientific REPOrTs | 7: 16576  | DOI:10.1038/s41598-017-16314-4

The predictions made using the results of HBp R,  are the most accurate for all the QoIs considered and for all 
but one case where HB R12,  gives a better result (see Table 6). On the other hand, the predictions made using the 
results of Bp Q,  are the least accurate for all the QoIs. Additionally, the inferences HB R12,  and Bp Q,  result in LJ poten-
tials which cannot be used to simulate all the thermodynamic conditions. We conclude that the HBp R,  produces a 
better LJ model than HB R12, , and that Bp Q,  does not result in a good model for liquid argon or saturated argon 
vapor.

We note that the values of D differ by an order of magnitude for liquid and vapor which explains the huge 
deterioration of the predictions on the sets of conditions that include V .

The MPVs of D and ρ along with the corresponding quantiles are presented in Fig. 2. The same values for RDF 
are given in Fig. 2.

Discussion
We have performed a systematic study of the modified 6-p Lennard-Jones potential for liquid and gaseous argon 
using Hierarchical Bayesian inference with data from experiments and quantum mechanics simulations. Our 
results show that the value p = 12 of the repulsive exponent needs to be calibrated together with the other LJ 
parameters. In the case of liquid argon we obtain much better predictions with a smaller value p 6 5≈ . , while for 
the gaseous argon the classical =p 12 or a slightly bigger ≈ .p 12 7 results in a better agreement with the data.

Our results contradict the conclusion of ref.11, where LJ potentials with p ranging from 10 to 20 with a step 2 
were fit to viscosity and pressure data, and the potential with p 12=  showed better predictions for different ther-
modynamic conditions. Even though the conclusion of ref.11 formally contradicts our findings, we still consider 
it a good match, for the following three reasons. Firstly, in ref.11, the average errors of pressure and viscosity pre-
dictions for argon strictly increase with the increase of the exponent from 12 to 20, which is consistent with our 
results (in the sense that exponents smaller than 14 are preferred by all our inferences). Secondly, for the expo-
nents =p 10 and =p 12 the authors of ref.11 report quite close errors of approximately 2% and 4%, respectively. 
Finally, different data was used in the calibration process, which may, at least partially, account for the observed 
difference.

Taking into account the differences in ε and σ (Fig. 1), as well as in p, we conclude that one cannot use the 
same values of the LJ parameters for liquid, saturated vapor and gas. This issue is attributed to the simplicity of the 
LJ description: the potential, and thus the underlying physical model of the intermolecular interactions is not 
flexible or accurate enough to allow for the transferability of the same parameters between different physical 
environments. The model can be potentially improved by including more complex physics in it, such as 
many-body interactions with geometrical considerations or quantum corrections. For argon however, the quan-
tum corrections are not expected to be significant15. At the same time, including the triple-dipole interactions was 
found to provide better results than the LJ 6-12 for all thermodynamic states of argon2. We emphasize however 
that ab-initio derived forcefields including multi-body terms have also suffered from non perfect transferability 
of their parameters between gaseous and condensed phase environments. AMOEBA16,17 has been an example of 
a hybrid force-field that includes additional physics, and it was also calibrated using both quantum and experi-
mental data. In the limit of a perfect model, perfect transferability should be anticipated between all physical 
environments. However, since all force field models are approximations to reality and QM interaction energies 
even at the Coupled Cluster Stochastic Dynamics (CCSD(T)) level are uncertain, we expect the same lack of 
transferability for their optimal parameters between different physical environments.

Smaller values of the repulsion exponent ( ∈p (6, 9)) in the Lennard-Jones potential provide better predic-
tions for RDF, density and diffusion data (Fig. 2) than the conventional p 12= . Additionally, these new LJ expo-
nents allow to simulate a larger variety of thermodynamic conditions, as compared to the classical 12.

We have also examined whether the smaller exponent allows for bigger time steps in MD simulations. 
However, it appears that the exponent is not a critical factor for the stability of the system. that is, the energy con-
servation and the RDF were unaffected by the increase of the time step from 1 fs to approximately 16 fs for both 
LJ 6-12 and LJ 6-6.5. Further increase of the time step lead to the crash of both MD simulations. We observed 
similar execution times for the simulations with MPVs of LJ 6-12 and LJ 6-p.

From the computational point of view, usage of low computational cost interpolation-based models replacing 
the real simulations (called surrogates) resulted in a speed-up of 28%.

Methods
Molecular Dynamics.  We perform MD simulations of argon using LAMMPS package18. The argon atoms 
are modeled as spheres which interact with LJ 6-p potential:

ε σ ε σ σ
=











 −














V r p
r r

( ; , , ) 4 ,LJ

p 6

where r is the distance between the interacting atoms and p is the repulsion exponent usually taken to be 12. The 
parameters ε, σ and p are to be chosen according to the available measurements. As the Lennard-Jones interac-
tions quickly decay with the distance, an additional computational cut-off parameter rc is usually introduced, after 
which the values of the potential are defined in a different fashion. As was shown in ref.7, the values of the cut-off 
are connected with the values of ε and σ. However, in our work we would like to focus on the effect of the repul-
sion exponent, and thus leave the value of the cut-off unchanged. We assign r 3c σ=  and set the LJ values for 

>r rc to 0. The thermodynamic state of the system is defined by the temperature and the pressure of the argon 
atoms. We ensure that argon is in the liquid/vapor state by checking the self-diffusion coefficient and the density. 
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The simulation starts with energy minimization followed by ×5 106 steps, of 2 fs, in an NPT ensemble. Then the 
RDF is computed in the production run consisting of 105 NVE integration steps of 2 fs each. The boundary con-
ditions are periodic in each direction, the domain contains 666 argon atoms. The self-diffusion coefficient is cal-
culated via the mean-squared displacement of the atoms, the RDF is discretized using 100 bins. The units used in 
the current work are given in Table 2.

Bayesian Uncertainty Quantification.  This section presents a brief description of the Bayesian inference 
theory. The details are given in Supplementary Material S1. Here and further in the text, small bold letters repre-
sent vectors while big bold letters represent matrices. Each random variable ξ is assumed to be continuous with a 
probability density function (PDF) denoted as ξ.

Let xf ( ; ) Mϑ ∈  denote the output, or a QoI, of a computational model with input ∈x Nx and parameters 
ϑ ϑ ϑ= … ∈

ϑ
ϑ( , , )N

N
1  . Let also d Nd∈   be a vector of experimental data corresponding to the QoI f  and input 

parameters x. The experimental data are linked with the computational model through the likelihood function, 
d x[ , ]ϑ . A usual model assumption for the likelihood function involves a Gaussian,

ϑ | ϑ Σ| =d x xp d f( , ) ( ( ; ), ),

where Σ is a covariance matrix that may be a function of ϑ. To simplify the notations, the conditioning on x is 
omitted below. Prior information on the parameters ϑ is encoded into the probability distribution with PDF 
ϑ [ ]. We assume In

2σΣ = , where I  is the identity matrix in ×ϑ ϑN N  and n σ ∈  is a priori unknown. In this 
work, we infer the parameters of the LJ potential together with the parameter of the covariance matrix: 
ϑ ε σ σ= ( , , )n  or ϑ ε σ σ= p( , , , )n  depending on whether the exponent p is being inferred or not.

Bayes’ theorem provides a tool for the inference of the parameters ϑ conditioned on the observations d,

ϑ
ϑ ϑ

| =
| |

|
d, d

d
p p p

p
( ) ( , ) ( )

( )
,

 


where   d dp p p d( ) ( , ) ( )∫ ϑ ϑ ϑ| = | |  is a normalization constant and  stands for “model”, which is a set 
of the assumptions regarding the likelihood and the prior. We remark that the denominator |dp( ), called model 
evidence, is used for model selection (see Supplementary Material S1.3).

In certain cases the data may correspond to different input variables x of the model, one of the examples is 
pressure and temperature used in this work. Let d d d{ , , }N1

→
= …  be the set of all provided data with ∈ ϑdi

N i , 
where each di corresponds to different input xi. In this case one wishes to infer different parameters, i

Nϑ ∈ ϑ, for 
each dataset di. Here, we assume that the parameters iϑ  depend on hyper-parameters Nψ ∈ ψ , which encode the 
variability of ϑi between the datasets and should also be inferred.

For the sampling of the distributions we use the Transitional Markov Chain Monte Carlo (TMCMC) algo-
rithm19 (see Supplementary Material S1.1). We perform all the inferences using the open-source library Π 4U8 on 
Brutus cluster of the ETH Zurich and Piz Daint cluster of the Swiss National Supercomputing Center (CSCS). We 
use 2000 samples per TMCMC stage for LJ 6-12 and 4000 samples per stage for LJ 6-p. The parallelisation is made 
with MPI and internal worker threads of the Π 4U library. The task-based parallelism and the load balancing 
mechanisms of Π 4U provide the necessary flexibility for running MD simulations with very different execution 
time within TMCMC.

In order to reduce the computational cost of the simulations, we apply kriging surrogates following the meth-
odology proposed in ref.20. Namely, for each Markov chain leader we build a kriging interpolating surface using 
the samples from the leader’s bounding box. We select the size of the box to be equal to a quarter of the current 
domain. The surrogate value is rejected if the kriging error is greater than 5% of the predicted value. In addition, 
we do not allow the kriging predictions which are outside the 5–95% quantile range of all the values obtained 
from MD simulations.

Availability of materials and data.  We use an open-source framework Π  4U available at http://www.
cse-lab.ethz.ch/software/Pi4U. The data we used come from refs12,13.
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