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The role of vitamin D deficiency in the development of paediatric diseases
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ABSTRACT
Children’s Vitamin D (VitD) fortification and supplementation are diminishing due to less out-
door exercise and insufficient VitD intake (low exogenous intake and endogenous malabsorption
induced by gastrointestinal disease). Consequently, children in many developed countries suffer
from VitD deficiency, which may contribute to many paediatric disorders. Our review briefly
introduced the metabolic process of VitD, summarized the role of VitD in paediatric diseases
such as autism, obesity, rickets and asthma. We sought to identify the link between VitD defi-
ciency and these diseases.
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The metabolic process of VitD

Vitamin D (VitD) is a sterol derivative. In humans, it is
mainly obtained from exposure to ultraviolet rays
(UVR) or food sources (fishes or mushrooms) [1].
7-dehydrocholesterol is converted into pro-VitD3 by
exposure to UVR. Next, the pro-VitD3 is thermally
restructured into VitD3. After binding to the VitD bind-
ing protein (VDBP), it is transported to the liver [2].
25-hydroxyVitD3 (25(OH)D3) is hydroxylated by cyto-
chrome P-450 enzymes (CYP2R1 and CYP27A) in the
liver, their gene mutations may result in VitD defi-
ciency [3]. The concentration of 25(OH)D3 is a marker
of VitD status in vivo, the bloodstream transports it
into other organs, such as the brain, intestines, kid-
neys, lungs and heart [4]. It is mainly the kidneys that
activate VitD in the second step. In the kidneys,
25(OH)D3 is converted to 1,25-dihydroxy VitD3 (calci-
triol, 1,25-(OH)2D3) by the 1a-hydroxylase [5]. Since
other tissues also contain 1a-hydroxylase, 1,25-(OH)2D3

could also be synthesized in them (Figure 1) [6]. In the
human brain, 1,25-(OH)2D3 acts upon the prefrontal
cortex, hippocampus, cingulate gyrus, thalamus, hypo-
thalamus, and substantia nigra [7]. The role of 1,25-
(OH)2D3 in neuroprotection is attributed to its abilities

to inhibit oxidative stress and inflammation and regu-
late many neurotrophic factors [8].

In the VitD family, VitD3 (cholecalciferol) and VitD2
(ergocalciferol) are essential for human health. VitD3 is
the initial product of VitD metabolism in liver cells. In
a double-blind experiment, adults with insufficient
VitD took oral VitD3 stool samples for eight weeks.
The results showed that serum 25(OH)D increased,
beneficial bacteria in the intestine increased, and
pathogenic bacteria decreased [9]. Recent studies have
shown that VitD3 levels of 40-60 ng/ml may reduce
the risk of various types of cancer [10]. Furthermore,
researchers found that VitD3 inhibited inflammation
and oxidative stress in cognitive impairment rats, alle-
viated the symptoms of memory dysfunction, and
improved learning abilities [11]. In natural world, VitD2
is a steroid derived chiefly from ergosterol, which is
commonly present in fungi and certain plants [12]. In
recent years, people gradually paid more attention to
the researches on VitD2. Studies have shown that oral
administration of VitD2 in rats had anti-anxiety, anti-
depressant and memory-enhancing effects after noise
stimulation [13]. According to Balachandar, VitD3 had
higher efficacy in improving total 25(OH)D and reduc-
ing serum parathyroid level, comparing to VitD2 [14].

CONTACT Yannan Liu yannan0518@163.com Nursing School, Hunan University of Medicine, Huaihua City, 418000, Hunan, China; Jing Zhou
565058369@qq.com The Second Affiliated Hospital of Zunyi Medical University, The Intersection of Xinlong Avenue and Xinpu Avenue, Xinpu

New District, Zunyi, Guizhou, China
� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ANNALS OF MEDICINE
2023, VOL. 55, NO. 1, 127–135
https://doi.org/10.1080/07853890.2022.2154381

http://crossmark.crossref.org/dialog/?doi=10.1080/07853890.2022.2154381&domain=pdf&date_stamp=2022-12-08
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1080/07853890.2022.2154381
http://www.tandfonline.com


Correlation of VitD deficiency with
paediatric diseases

VitD is measured by the level of 25(OH)D in serum in
the body. If the 25(OH)D concentrations are below
75 nmol/L (or 30 ng/ml), it is considered VitD defi-
ciency. While concentrations are below 25 or 30 nmol/
L (or 10/12 ng/ml), it is considered severe VitD defi-
ciency [15]. While standards vary from different coun-
tries, the Institute of Medicine (United States) and the
Endocrine Society VitD Working Group offer 50 nmol/L
as a critical threshold [16].

The distribution of VitD levels in children aged
0–4 years in Yunnan Province, China, showed that
children’s VitD levels were highest in summer and
lowest in winter, and VitD deficiency was more com-
mon in girls than boys [17]. Over the last two decades,
global VitD deficiency increased. It is estimated that
VitD deficiency ranged from 6.9% to 81.8% in
European countries and from 2.0% to 87.5% in Asian
countries [18]. The majority of these surveys were con-
ducted in cities. In mountainous areas of the northern
Persian Gulf, VitD deficiency was prevalent at 78%

[19]. Important underlying factors associated with VitD
deficiency in this population included dark skin,
domestic and sedentary periods, insufficient sun
exposure, air pollution, clothing style, obesity, sun-
screen using, and lack of VitD supplementation [20]. In
addition, taking antiepileptic drugs (carbamazepine)
and anticonvulsant drugs (levetiracetam) would lead
to decreasing of VitD in vivo [21]. The atrophy of the
intestinal villi patients with coeliac disease led to nutri-
ent absorption, reduced the absorption of VitD,
calcium and magnesium [22].

It has become apparent that VitD deficiency con-
tributes to the occurrence or aggravation of many
paediatric diseases. VitD deficiency could cause osteo-
malacia and rickets in children [23]. Children’s Hospital
in the United Arab Emirates showed 35% of patients
with VitD deficiency [24]. VitD deficiency was common
in Egyptian children with allergic rhinitis [25].
Evidences suggested that VitD supplementation could
treat related childhood illnesses. Inflammatory markers
IL-12, IL-17, IL-23, and TNF-a were significantly
reduced after VitD supplementation in children with

Figure 1. VitD metabolism. The synthesis of VitD3 in the skin is triggered by ultraviolet radiation (UVR) or by food consumption.
By combining with VitD-binding protein (VDBP), VitD3 is transported into the liver. Cytochrome P-450 enzymes (CYP2R1 and
CYP27A) are responsible for converting VitD3 to 25-hydroxyVitD (25(OH)D3) in the liver. The 25(OH)D3 is converted into 1,25-
dihydroxyVitD3 (1,25-(OH)2D3) in the kidneys, liver, lungs, brain, intestines and heart by 1a-hydroxylase.
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inflammatory bowel disease, and the frequency of hos-
pitalizations and the number of emergency department
visits were significantly lower [26]. Clinical data showed
that VitD supplementing effectively relieved osteomal-
acia in children and adolescents [27]. However, there
were also conflicting findings on whether VitD defi-
ciency was associated with paediatric diseases. Thus,
the primary purpose of this review was to summarize
the current status of researches on VitD metabolism
and to clarify its roles in paediatric diseases.

VitD and childhood autism

Autism Spectrum Disorder (ASD) is a neurodevelop-
mental disorder characterized by impaired social
communication and interaction, and repetitive and
stereotyped behaviours and interests [28]. Autism is a
multifactorial disease caused by the interaction of
genetic and environmental factors. Hundreds of aut-
ism risk genes and various environmental factors
(neonatal hypoxia and gestational diabetes) have
been found [29]. ASD children are known to exhibit
various behaviour problems, including aggression,
self-harm, attention deficit hyperactivity disorder,
sleep disorders, and obsessive-compulsive disorder,
which may prevent them from getting the same life
and educational opportunities as other children have
[30]. VitD plays an important role in the regulation of
gene expression in ASD. One study showed that 223

ASD risk genes in the SFARI database were VitD3-sen-
sitive genes [31]. A study by Wang et al. showed that
the VitD levels of ASD children were lower than those
of healthy children [29]. It has been demonstrated
that VitD levels in ASD children were lower also
when compared with children with other neuro-
psychiatric disorders [32]. In a randomized controlled
trial, allergy and hyperactivity behaviours were
improved after VitD and omega-3 long-chain polyun-
saturated fatty acids were used to treat ASD children
[33]. Some studies observed that VitD supplementa-
tion significantly reduced the severity of ASD [34].
But others showed that this effect was not consist-
ently different between treatment and control groups
[35]. VitD supplementation was beneficial for hyper-
activity but not core symptoms of ASD or other coex-
isting behaviours and conditions [36]. Many factors
could affect the experiments, including the small
sample size of children with ASD, and the possible
influence, such as sun exposure, race and skin colour,
dietary habits and nutritional status [37]. The impact
of VitD on ASD is still under discussion. In addition to
theoretical support that the effects of VitD on ASD
may be related to signalling pathways involving
whole blood arginine and nitric oxide, researchers
also found that ASD is associated with disorders of
the dopamine system and abnormalities of the sero-
tonin-melatonin axis, which are caused by insufficient
amounts of VitD (Figure 2) [38].

Figure 2. ASD children’s behaviours may be affected by VitD regulating the secretion of dopamine and serotonin/melatonin. DVD:
development VitD; DA: dopamine neurons.
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VitD-dopamine hypothesis
A significant number of VDR have been found in the
cortex and hippocampus [39]. A study by Harms found
that mice lacking developmental VitD (DVD) severely
reduced hippocampus size [40]. And insufficient DVD
reduced the synthesis of dopamine (DA). In the
embryonic brains of individuals with DVD deficiency,
the gene expressions of Nurr1 and P57kip2a were
reduced, the maturation of DA neurons and DA distri-
bution within the midbrain were inhibited [41]. The
study found that 28 gene polymorphisms were associ-
ated with ASD, including the dopamine receptor D1
[42]. Among 2084 children with ASD (age under six-
year-old) in Vineland, 35% were found to have obvi-
ous movement difficulties. 44% displayed poor skills
with sports stereotypes (hand slap, rotation, body
shaking) and non-verbal behaviour [43]. VitD and
omega-3 long-chain polyunsaturated fatty acids
reduced symptoms of dysphoria, and VitD also
relieved symptoms of hyperactivity in ASD children 33.
Brandenburg discovered that changes in the basal
ganglia were associated with alterations in biochemis-
try or cellular processes, causing impaired language
development and stereotyped movement patterns in
ASD patients [44]. Additionally, the dopamine recep-
tors within the basal ganglia circuit were crucial to
motor control [45]. Consequently, ASD patients might
suffer from a severely damaged dopaminergic system
and neurochemical imbalance. Due to the lack of DVD,
DA neurons were being damaged, the level of DA was
reduced, and the growth of the striatum and the basal
nucleus were abnormal, leading to speech disorder
and stereotyped movements in ASD children.

VitD-serotonin-melatonin axis
Melatonin is an indoleamine produced by the pineal
gland mostly found in the suprachiasmatic nucleus of
the hypothalamus and the cerebrospinal fluid.
Melatonin is essential for regulating sleep/wake cycles
and biological rhythms [46]. According to literature,
the prevalence of sleep disorders in ASD children
ranged from 40 to 93%, as recently reported by
Petruzzelli MG [47]. Melatonin is clinically used to treat
sleep disorders. In the clinical trial, 104weeks of mela-
tonin therapy were administered to ASD children and
adolescents. Melatonin therapy significantly improved
their sleep disorders and sleep quality [48].
Researchers proposed that VitD inhibited serotonin
production by regulating melatonin levels outside the
blood-brain barrier [49]. In the evening, the levels of
25(OH)D and 1,25(OH)2D in serum and peripheral
TPH1 gene expression increased, which stimulated

melatonin production [50]. ASD children with sleeping
issues may benefit from low-dose melatonin due to its
addictive properties. Therefore, it is still necessary to
investigate the effects of melatonin combined with
VitD in treating ASD children on sleeping problems.

VitD and childhood obesity

Children’s diets are full of high sugar and fatty junk
food. Reduced exercise also contributed to children’s
obesity. There were 14 million obese children in the
United States [51]. Childhood obesity has been associ-
ated with type 2 diabetes, orthopaedic diseases and
psychological problems such as anxiety and autism
[52]. The meta-analysis showed that overweight chil-
dren and adolescents had a higher prevalence of VitD
deficiency, which they believed was due to the exces-
sive absorption of fat soluble VitD by adipose tissue
[53]. Serum 25(OH)D of 80.4% children aged 4 to
14 years in Chile were too low [54]; 64% morbidly
obese children and adolescents were VitD deficient
[55]. Akter revealed that childhood obesity associated
with VitD deficiency and VDR gene polymorphisms
such as single nucleotide polymorphisms (SNPs) TaqI,
BsmI, ApaI, FokI and Cdx2 [56]. VDR genes’ polymor-
phisms were associated in body weight, insulin sensitiv-
ity, and susceptibility to type 1 or type 2 diabetes [57].

Obesity inhibited CYP2R1 in the liver and conse-
quently reduced VitD levels. In The research of
Mahamoud et al. they found that obesity affected
CYP2R1 gene expression in liver and kidneys, and the
plasma 25(OH)D was decreased in mice [58]. They also
found that obesity repressed expression of the VDR in
brown adipose tissue in mice. However, no effect was
observed in the human subcutaneous adipose tissue.
A study on 44 Brazilian children aged 4 to 11 years old
with hypertriglyceridaemia who were supplemented
with cholecalciferol observed that the blood lipid level
in the children’s body was improved, but the change
in weight was not significant [59]. In another study of
73 obese children taking oral VitD3, 50% improved
their VitD levels and BMI level, all had significantly
lower percentages of fat mass, but they were still
obese [60]. Based on the above results, the thera-
peutic effect of simply supplementing VitD in the
treatment of childhood obesity is not significant.

VitD and childhood asthma

Asthma is a chronic respiratory condition characterized
by airway inflammation and hyperreactivity [61].
Asthma is further complicated by smoke and chemical
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gas particles [62]. It is the most frequent cause of
acute admissions in children and a major source of
morbidity for adults with asthma, causing mild wheez-
ing or life-threatening airway obstruction [63]. VitD
had the ability to prevent airway inflammation in asth-
matic mice by promoting Th17/Treg balance and
inhibiting NF-jB-mediated inflammation [64]. By acti-
vating VDR, VitD could influence various immune cells
such as dendritic cells, monocytes, macrophages and T
cells [65]. A meta-analysis showed that asthmatic chil-
dren had significantly lower 25(OH)D levels than non-
asthmatic children [66]. In a cross-sectional study in
southern Jordan, 76.5% of 98 children with bronchial
asthma were VitD deficient [67]. VitD deficiency was
associated with increased asthma exacerbations per
year and length of stay per admission [68]. According
to Fergeson et al., the anti-inflammatory drugs used
for the treatment of asthma were corticosteroids and
b2-adrenergic receptor agonists [69]. Taking steroid
drugs would also reduce the VitD content in
asthma children.

There are four types of gene polymorphisms in
VDBP: GC1, GC2, GC1F and GC1S. Some studies
showed that GC2 was closely related to asthma risk,
and GC1 had therapeutic effect on asthma [70]. VDR
gene polymorphism is also a part of asthma suscepti-
bility genes. A meta-analysis found that VDR FokI and
VDR TaqI might be risk factors for childhood asthma
[71]. The VDR FokI polymorphism would result in a
new isomer of VDR: VDRA. VDR TaqI will not alter the
structure of VDR. However, it will affect the stability of
VDR mRNA and directly affect protein transcription
[72]. The polymorphisms of the VDBP gene and VDR
gene might have a role in the etiopathogenesis of
childhood asthma.

Diverging opinions exist regarding the effects of
VitD on asthma children. Some researchers suggested
that VitD supplementation may not be protective
against asthma. A clinical trial conducted by Chirag
Thakur reported that VitD levels increased during
12weeks of VitD supplementation, but asthma indica-
tors such as the Childhood Asthma Control Test
(C-ACT) and the number of asthma exacerbations did
not improve [73]. To determine the effectiveness of
VitD supplementation, Forno’s clinical study showed
that VitD3 supplementation in chronic asthmatic chil-
dren with low VitD levels failed to significantly
improve the time to severe asthma exacerbations [74].
Systematic reviews and meta-analyses concluded that
VitD supplementation had a small effect size and a
low level of certainty. It was ineffective in reducing
asthma attacks or systemic steroid levels, nor did it

significantly improve emergency room visits or hospi-
talizations of asthma children [75]. We couldn’t find
consistent evidence that supplementing VitD reduces
asthma exacerbations in a paediatric population.
Therefore, more extensive clinical trials and preclinical
medical experiment are necessary to determine the
effectiveness of VitD in children with asthma.

VitD and rickets

Skeletal development problems occur in children and
adolescents during their growth and development. In
children with rickets, low calcium levels resulted in
skeletal deformities, including pectus excavatum,
X-legs and O-legs [76]. Vitamin D is a key regulator of
calcium and bone homeostasis. Low calcium levels
symptoms were proved to be related to VitD defi-
ciency. VitD deficiency rickets and other severe VitD
deficiency manifestations, such as cardiomyopathy and
hypocalcemic seizures, continued to be diagnosed in
Canada [77]. This is due to the disruption of calcium
metabolism caused by low VitD levels. There are three
main steps involved in the active transport of calcium
across the cell membrane of the proximal intestine
with VitD [78] (Figure 3):

1. Luminal calcium enters the intestinal epithelial
cells through transient receptor potential vanilloid
type 6 (TRPV6);

2. In intestinal epithelial cells, VDR and VitD increase
calcium binding to the calbindin-D9k protein and
diffusing through the cytoplasm;

3. Calcium is transported from the basolateral mem-
brane to blood vessels and bones through blood
ATPase (PMCA1b) and Naþ-Ca2þ exchanger 1
(NCX1) in a translational transport, or through
claudin 2 and claudin 12 protein in a paracellular
transport [79].

In Figure 3, the VitD and VDR enhanced calcium
transport by paracellular transport and translational
transport in the epithelial cells of villi and crypts,
respectively [80].

VitD is an essential medium for calcium intake in
multiple organs. Studies have shown that lacking
adequate amounts of VitD suffered a 75% reduction in
intestinal calcium absorption [81]. The kidney is also
the main excretion pathway for phosphorus.
Phosphate and calcium are simultaneously regulated
by VitD3, parathyroid hormone (PTH) and calcitonin
[82]. PTH increased the activity of 1-hydroxylase, pro-
moted the conversion of calcidiol into calcitriol, and
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increased the calcium secretion of calcitriol [83].
Casselbrant et al. found, that heat shock protein in the
bile could also regulate calcium transport via the VDR
[84]. Therefore, some researchers found that the
prevalence of VitD deficiency in healthy children was
also common, and suggested timely supplementation
of VitD for early prevention of related diseases [85].

Conclusion

It is important to underline that despite it is well
known that VitD deficiency affects a big number of
children, and could be associated with important
childhood health problems, with VitD playing a poten-
tial role in their etiopathogenesis, nowadays data
about the role of prevention and vitamin D supple-
mentation are inconclusive.
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