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Abstract: Edible coatings and films (ECF) are employed as matrixes for incorporating antimicrobial
nanoparticles (NPs), and then they are applied on the fruits and vegetables to prolong shelf life and
enhance storage quality. This paper provides a comprehensive review on the preparation, antimicrobial
properties and mechanisms, surface and physical qualities of ECF containing antimicrobial NPs, and
its efficient application to vegetables and fruits as well. Following an introduction on the properties
of the main edible coating materials, the preparation technologies of ECF with NPs are summarized.
The antimicrobial activity of ECF with NPs against the tested microorganism was observed by many
researchers. This might be mainly due to the electrostatic interaction between the cationic polymer or
free metal ions and the charged cell membrane, the photocatalytic reaction of NPs, the detachment
of free metal ion, and partly due to the antimicrobial activity of edible materials. Moreover, their
physical, mechanical and releasing properties are discussed in detail, which might be influenced by
the concentration of NPs. The preservation potential on the quality of fruits and vegetables indicates
that various ECF with NPs might be used as the ideal materials for food application. Following the
introduction on these characteristics, an attempt is made to predict future trends in this field.

Keywords: chitosan coating; antimicrobial activities; physical characteristics; nanoparticle application;
food preservation

1. Introduction

High decay rates pose a significant challenge to the storage of fruits and vegetables leading to
nutrient loss and the spread of microorganisms responsible for degradation [1], leading to huge fresh
produce losses due to inappropriate storage conditions all over the world every year. Therefore,
innovative technologies such as edible coatings and films (ECF) and controlled atmosphere packaging
are suggested as possible solutions for maintaining the quality of agricultural products during storage
and shelf time [2–4]. The spread of harmful microorganisms poses a severe threat to fruit quality and
human health [5], encouraging extensive research into the combined application of nano-biocomposites
and edible coatings [6,7].
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Many studies suggested possible environmentally-friendly alternatives as ECF matrixes, including
but not limited to carbohydrate-based polymers such as chitosan (CS), starch and β-cyclo-dextrin
(β-CD) [4,6–8]. For examples, chitosan can form a thin film on the surfaces of pulps, which might
control the decay and keep the quality of fruits by inhibiting the growth of bacteria and fungi, and
reducing their respiration rates [4]. Moreover, starch has been considered as another suitable coating
material due to its properties of wide availability, renewable and biodegradable biopolymer with low
cost [6,8]. However, various challenges were proposed, such as weak barrier qualities, low mechanical
characteristics, together with low antimicrobial activity [9], which prompted the development and
application of edible coatings containing inorganic nanofillers [10].

The preparation and application of bio-nanocomposite packaging with polymeric materials and
inorganic nanoparticles (NPs) for food preservation are expected to be developed in the future [11–13].
Of the various types of inorganic NPs, titanium dioxide (TiO2) are always used as an antimicrobial
agent to coat different materials for further application in many food products [13]. The photocatalytic
behavior of TiO2 is hugely relied on visible light irradiation, as well as UV light, which is responsible
for activating its antimicrobial properties [14–16]. Meanwhile, the electrocatalytic activity of silver
nanoparticles (AgNPs) could provide the excellent antimicrobial property for its extensive application
by incorporating into edible polymers as an active food packaging [16,17]. ZnO, in conjunction with
antimicrobial activity can act as a permeation barrier for further application [10,11]. Furthermore, it
was found by other researchers that various sizes of NPs had influence on the mechanical and physical
properties, filtering ultraviolet (UV) light, as well as their antimicrobial activity [11,12].

Some interesting works on preparation and property characterization of ECF with NPs have been
conducted by researchers [3,14]. As reported by Cano et al. [14], TiO2-based NPs were incorporated
into the CS-based matrix to obtain different nano-biocomposites. Moreover, Xu et al. [5] found that
the composite coating with graphene oxide (GO), CS and TiO2 NPs at the ratio 1:20:4 exhibited
excellent antibacterial activities against Aspergillus niger and Bacillus subtilis, which might induce
the cell membrane rupture. Andrade et al. [18] also showed that the β-CD-coated-Ag NPs reduced
more than 99% E. coli and Pseudomonas aeruginosa CFU compared to the control samples without
silver addition. Shankar et al. [19] indicated the incorporation of sulfur nanoparticles (SNP) could
enhance the hydrophobicity, mechanical strength, and water vapor barrier property as well as
antimicrobial activity of chitosan film. Furthermore, SNP capped with chitosan film exhibited the
highest antimicrobial activity against E. coli and Listeria monocytogenes with complete sterilization
within 6 h and 12 h, respectively.

Since not many studies are currently available involving the influence of ECF with NPs on
the quality of fresh produce in storage. Yu et al. [20] examined harvested jujube to determine the
combined effect of CS and nano-silicon on its quality characteristics. The quality indexes including
decay incidence, weight loss, the red index, and respiration rate, exceeded those of the control samples
after storage for 32 d at an ambient temperature. As reported by Shi et al. [21], by reducing the
browning index, as well as obstructing polyphenol activity and the increase of malondialdehyde
(MDA), the film of CS/nano-silica significantly extended the longevity of fresh longan. They indicated
that the CS/nano-silica coating showed promise for the quality preservation of fresh longan during
prolonged storage.

In recent years, the preparation and application of ECF and nanostructured materials are increasing
for extending the shelf life of fresh agricultural products. These research works have also been
summarized by researchers. The different types of bio-based materials, their applications as packaging
materials, and future trends were reviewed by Sorrentino et al. [22]. Moreover, Dutta et al. [23] and
Xing et al. [4] have introduced the different prepared technologies, the antimicrobial activity and
mechanism of chitosan based films. Falguera et al. [24] also concluded the latest developments on the
structures, active properties, and the application trends of edible coatings and films. Furthermore,
Carbone et al. [25] have reported the advanced technology by using AgNPs-doped edible polymers
and oils to provide the preservation for food products. The applications of nanotechnology in the food
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industries had been concluded by Bajpai et al. [26]. Moreover, the nanocomposite packaging materials
from the views of properties, food applications and safety had also been reviewed by Sothornvit [27].
Although several edible-based coating and nanostructured materials were developed and applied in
food packaging systems, until now, no detailed report has been published to summarize the preparation
and various properties of ECF with antimicrobial NPs for the storage of vegetables and fruits.

Therefore, the purpose of this paper is to review the preparation and various properties of ECF with
NPs for the storage of fresh produce. The first part was to conclude the properties of several main coating
materials and to introduce the preparation techniques of ECF with NPs reported by many researchers.
In the next, the antimicrobial activities and mechanisms, physical and mechanical characterization
of ECF with NPs were summarized. In addition, thermal stability, structural characteristics, and
the properties including gas modification, induction defense and ion release of ECF with NPs were
reviewed. Finally, its applications in the storage of fruits and vegetables were introduced and the
useful insights for its further research were provided.

2. Preparation Technologies of ECF with Different NPs

2.1. Structure, Composition and Properties of the Main Edible Coating Materials

Chitosan with different functional groups can be used as a natural carbohydrate biopolymer for
keeping fresh of fruits and vegetables [1,4]. The acid-based equilibrium features of CS is illustrated in
Figure 1, which denote a linear polysaccharide consisting of (1,4)-linked 2-amino-deoxy-β-d-glucan
with one primary amino group, as well as two free hydroxyl groups [4,28–31]. While dissolving in
diluted acidic solutions [1,4,28], positively charged amino groups can successfully react with numerous
negatively charged surfaces of polymer materials and cells [23]. Due to its exceptional biocompatibility
and film-forming properties, CS is widely applied as an edible coating film during the storage of
fresh produce, and was deemed as generally recognized as safe (GRAS) in 2005 by the food and drug
administration (FDA) according to the scientific procedures for use in food (FDA/CFSAN) [1,4].

Starch is a natural polymer with the properties of cheap, biodegradable, renewable and plentiful,
and shows promise as a coating material [32,33]. It consists of amylose, amylopectin, as well as
two macromolecules [34]. As a linear polymer, amylose consists of glucose units connected with
α-1, 4-bonds, while short linear chains branched onto longer chains with α-1, 6 linkages denote the
extensively branched polymer amylopectin [34,35]. Despite starch films being devoid of color, taste,
and flavor, as well as being translucent or transparent, they are defined by two primary challenges
namely their high sensitivity to moisture and low mechanical characteristics [32,34–37].
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Shellac is a natural resin generated from insects, which is frequently employed by the food
industry to glaze and treat the surfaces of citrus fruits and confectionary products to avoid damage
during storage [15,38]. It exhibits a chemical structure with a large number of carbonyl and carboxyl
groups [38,39]. Although shellac exhibits no antimicrobial effect, it is always used in various food
applications as the non-toxic binder and the coating material [15]. More importantly, shellac being
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approved by the FDA as GRAS can be utilized for indirect food contact. Furthermore, shellac films
display exceptional adherence capacity to various surfaces with excellent rigidity, strength and high
gloss [15,38].

Polycyclic glucose oligosaccharides known as cyclodextrins (CDs) are composed of 6, 7 or
8 glucopyranose units connected with β-1,4-glucosidic bonds referred to as α-, β-, or γ- cyclodextrin,
respectively [18]. The structure in Figure 2 illustrates β-CD molecules consisting of a hydrophilic
exterior with hydroxyl groups, as well as a hydrophobic central cavity. By forming inclusion complexes
that are water soluble, low polarity and non-polar molecules displaying suitable shape and size are
allowed to solubilize [18,40]. However, the cavity of β-CD is too small for encapsulating metal NPs.
The simulated enveloped process of β-CD with NPs is shown in Figure 2 and β-CD can be used
as the nanoparticle stabilizer and can simply bind to the NPs via chemisorption through hydroxyl
groups [41].

Composed of a linear series of sulfated galactans, carrageenan is a hydrocolloid extracted from
red algae. It is a water-soluble, natural product with the potential to be employed as a film-forming
substance [42]. The number and location of a sulfated ester on 3,6-anhydro-d-galactose residues
determine the specific classification of the galactans. Similar to other hydrocolloid-based films, they
display inadequate water-vapor-barrier properties [42,43].

Kefiran is a naturally occurring polysaccharide with characteristics that include gelatinization,
film-formation and texturization. These properties are adequate for its utilization in food
packaging [44–47]. Consisting of equal parts of d-galactose and d-glucose, kefiran is a water-soluble
substance derived from glucogalactone and is responsible for enhancing milk gel viscosity, as well
as its viscoelastic qualities [44,45]. However, insufficient mechanical strength and high moisture
permeability denote some of the unique challenges of films produced from kefiran [44].

Consisting of β-d-glucose, linear carboxymethyl cellulose (CMC) is an essential, water-soluble
cellulose derivative [47,48], which is cost-efficient, non-allergenic, transparent, non-toxic, easy to
process and possesses preferable film-forming qualities [48–50]. CMC is exceptionally susceptible to
water vapor even though it displays sufficient capability to form adequate transparent films and is an
effective inhibitor of oxygen and lipids [50].
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A galacturonan backbone with homogalacturonans (-1,4-galacturonan) and rhamno-galacturonans
branched by -1,4-galactan and -1,3- or -1,5-arabinan chains form the pectin-like framework of the
soluble soybean polysaccharide (SSPS), which is derived from the cell-wall substances of soybean
cotyledons [51,52]. While SPSS is commonly used for producing edible films, which are water-soluble
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and colorless, some pertinent challenges include mechanical vulnerability, high gas patency, as well as
elevated absorption capacity for water moisture [53–55].

With cost efficiency and versatility among its attributes, polylactic acid (PLA) presents a new
kind of biodegradable substance, which is manufactured from sustainable plant materials such as corn
starch and sugar beets [56,57], and obtained FDA certification approving food-contact utilization [58].
However, no antimicrobial effect is evident in the pure PLA film [59]. As a natural, linear and
aliphatic polyester, PLA films exhibit a high level of transparency and extremely water resistant [59–61].
They are frequently employed to enhance food preservation and prolong the storage life of fresh
produce [57,59–61].

As a popular substance obtained from the byproducts of corn-refining, zein is produced from corn
gluten meal, and the films derived from it exhibit useful qualities such as biodegradable, transparent,
as well as acting as an oxygen barrier [62–64]. Zein protein (ZP) forms part of the protein bodies and is
located in corn endosperm, and three specific fractions namely α, β and γ zeins were determined and
isolated according to disparate levels of solubility in aqueous alcohol mixtures [65].

Whey protein as a by-product of cheese is a yellow-green liquid and well-known material to form
biodegradable films [44,66]. The protein content of whey protein concentrates (WPC) ranged between
35-90%, while that of whey protein isolates (WPI) exceeds 90%. Both of them can be used to produce
biodegradable films that are transparent, flexible and devoid of flavor and color [66,67]. Whey protein
film exhibits a fairly high moisture permeability, as well as unique mechanical characteristics while
inhibiting oxygen penetration [44,66].

2.2. Preparation of ECF with NPs

Many kinds of edible coatings with and without antimicrobial agents such as essential oils
have been developed and investigated [1,4,68–70]. In recently years, the reported works on NPs as
antimicrobial agents and the preparation ECF with different NPs are increasing [4,71–73]. In this
section, the different NPs and main edible-based materials used in coating films are summarized, which
is listed in Table 1 and introduced as follows. However, the uniform dispersion of NPs is a critical
problem in the solution system. As shown in Figure 3, the general technologies to prepare the ECF with
NPs were summarized and reported, which includes several steps such as the surface modification
of nanoparticles, coating materials dissolution, emulsion formation, and solvent evaporation. These
preparations were conducted in order to solve the problem of NPs agglomeration and develop these
complex coatings/films with high antimicrobial activity for application.
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2.2.1. Preparation of Edible Coating Films with TiO2NPs

Yemmireddy and Hung [15] had prepared total six different suspensions by mixing TiO2 NPs with
shellac, polyurethane, and polycrylic in a porcelain mortar for about 15 min. The obtained suspensions
were further treated in an ultrasonic water bath for 1 h in order to avoid the aggregation of TiO2 NPs.
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Zhang et al. [73] developed a CS/WPI film incorporated with modified TiO2 NPs. Firstly, CS,
sodium laurate-modified TiO2 NPs and glycerin were added into an acetic acid solution and stirred for
2 h. Then, WPI was dispersed in deionized water. These two solutions were mixed and the mixture was
adjusted to pH 3. After being stirred and degassed under vacuum, the obtained solution was casted
over the plastic Petri dish and dried at 60 ◦C in oven for 16 h. On the other hand, the TiO2/plasticized
CS nanobiocomposites and the graphene oxide-chitosan (GO-CS)-TiO2 coating were prepared by Cano
et al. [14] and Xu et al. [5] with the similar technology having a little modifications, respectively.

Oleyaei et al. [74] have prepared potato starch film with sodium montmorillonite (MMT) and
TiO2. Firstly, starch was mixed with distilled water and glycerol at room temperature (25 ◦C) for
5 min. This suspension was treated at 90 ◦C for 30 min and agitated. Then, MMT and TiO2 were
dispersed separately in distilled water by sonication for 60 min at room temperature and were added
to the aqueous dispersion of starch. The mixture was continuously stirred for 10 min. After being
vacuumed to remove air bubbles from solutions, the solution was poured into a polystyrene tray and
dried at 60 ◦C for 15 h in an oven. Goudarzi et al. [8] and Goudarzi et al. [34] had also developed the
starch-TiO2 NPs coating film.

Teymourpour et al. [51] had prepared SSPS biocomposites with nano TiO2. TiO2 were first
dispersed in deionized water and homogenized for 15 min. The obtained solutions were used to
prepare the aqueous SSPS dispersions. A mixture of glycerol and sorbitol was prepared and added.
SSPS nanocomposites were treated at 85 ◦C for 1 h. After the solution cast on Preplex plates fitted, the
films were dried at 25 ◦C and 50% relative humidity (RH). After being peeled, the dried films were
stored at 25 ± 2 ◦C and 55 ± 5% RH. Furthermore, the TiO2/SSPS composite films were also prepared
by Salarbashi et al. [54] using the similar technology.

Zolfi et al. [44] and Alizadeh-Sani et al. [66] had prepared the WPI-based coating films with
TiO2 NPs. The preparation of WPI/cellulose nanofibers (CNFs) with TiO2 NPs was introduced by
Alizadeh-Sani et al. [66] as follows. Firstly, TiO2 NPs were added to WPI/CNFs solutions with stirring
and sonication. Then, rosemary essential oil (REO) was added to the composite film solution and
homogenized for 10 min. WPI/CNFs suspension with TiO2 NPs and REO were cast onto a petri dish
and then dried using vacuum oven at 30 ± 1 ◦C and 50 ± 6% RH for 24 h.

The CMC-well-dispersed ternary nanocomposite coating films containing sodium montmorillonite
(Na-MMT)-TiO2 was developed by Achachlouei et al. [50]. Firstly, Nano-TiO2 powder and ternary
nanocomposite films containing Na-MMT were dispersed in distilled water with stirring and sonicating,
respectively. Then, CMC was added to distilled water (95 ◦C) and mixed for 1 h. The Na-MMT and
TiO2 sonicated solutions were added into the CMC solution, respectively. After glycerol was combined
and stirred for 15 min, the solutions were cooled at room temperature. The obtained solutions were
cast onto a polystyrene petri-dish and dried at 50 ◦C for 30 h in an oven.

2.2.2. Preparation of Edible Coating Films with AgNP

AgNPs conjugated with CS as the composite films were conducted by Mathew and Kuriakose [75],
Lin et al. [76], Kumar-Krishnan et al. [77] and Davoodbasha et al. [17]. Here introduces the
prepared technology reported by Lin et al. [76]. Firstly, EDC (1-ethyl-3-[3′-dimethylamino-propyl]
carbodiimide)/NHS (N-hydroxysuccinimide) was added to AgNPs solution with a carboxylate and the
solution was incubated at 25 ◦C for 4 h with shaking. Then, the CS/cellulose film was submerged into
the solution for 24 h with shaking. During the preparation process, the carboxyl groups of AgNPs were
activated by EDC and NHS and subsequently reacted with the amino groups of CS in the composite
film. Finally, the modified film was taken out and washed with the deionized water.

Starch-polyvinyl alcohol (PVA)-AgNPs film was prepared by Cano et al. [78]. Firstly, starch was
dispersed in an aqueous solution at 95 ◦C for 30 min with stirring. After homogenized, PVA was
incorporated into the gelatinized starch dispersion and glycerol was added. Afterwards, starch-PVA
film forming dispersions containing AgNPs were obtained by the reduction of silver nitrate using
UV light. The films including PVA-GO-Ag-starch films had prepared by Usman et al. [79]. PVA was
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dissolved in DI water by heating at 90 ◦C for 1 h. GO suspension was made by adding GO flakes in DI
water by ultra-sonication for 3 h. Both suspensions were mixed and stirred for 1 h. Then, starch and
AgNO3 were added into the obtained solution and mixed. This solution was placed in an autoclave
at 121 ◦C and 15 psi pressure for 1 h. Followed by cooling and casting onto glass petri dish were
conducted and dried at room temperature for 3 d.

AgNP stabilized with β-CD (AgNP-β-CD) was developed by Andrade et al. [18]. The aqueous
NaOH, aqueous glucose and aqueous β-CD solutions were mixed and heated. An aqueous AgNO3

solution was dropwise after the solution reached to 60 ◦C. After that, the reaction product was
dialyzed with deionized water. Then, the stabilized AgNPs were lyophilized and AgNP-β-CD powder
was obtained.

Orsuwan et al. [80] had developed the films of agar and banana powder composite with AgNPs.
Firstly, film forming solution was prepared by dissolving agar and banana powder in distilled water
and heating at 90 ◦C for 20 min with stirring. Then, after the glycerol added, the aqueous solution
of AgNO3 was added into the agar and banana powder (A/B) film solution and heated at 90 ◦C for
4 h with stirring. The solutions were cast onto the leveled Teflon film coated glass plates and dried at
room temperature for 48 h.

2.2.3. Preparation of Edible Coating Films with ZnONP

Malini et al. [81] had reported the preparation of nanocomposite CS/ZnO membrane. CS was
added and dissolved in an aqueous acetic acid solution. After silica particles added with stirring, the
solution was poured onto a glass plate for drying. The dried membrane was immersed in an aqueous
NaOH solution and kept for 2 h at 80 ◦C for dissolving the silica particles in order to generate a porous
membrane. Afterwards, the porous membrane was washed with distilled water and then immersed in
an aqueous glycerol solution for 30 min for removing the excess glycerol solution. Finally, film discs
were cut and introduced in the suspension of nano ZnO in distilled water under stirring at 28 ◦C for
24 h. The CS/ZnO discs were separated, rinsed with distilled water and air dried.

Nafchi et al. [82] had prepared the sago starch films incorporated with nanorod-rich ZnO (ZnO-N).
Firstly, ZnO-N was dispersed in water stirred for 1 h and sonicated for another 30 min. This solution
was used to prepare the aqueous starch dispersion. A mixture of sorbitol and glycerol were added.
Starch nanocomposites were treated at 85 ± 5 ◦C for 45 min. After starch gelatinization completed, the
solution was cooled to room temperature. Finally, the dispersion was cast on the plates and dried at
25 ◦C and 50% RH in a humidity chamber.

Composite films of fish protein isolate (FPI) and fish skin gelatin (FSG) blend incorporated with
basil leaf essential oil (BEO) and ZnO nanoparticle (ZnONP) were prepared by Arfat et al. [83]. Firstly,
FPI was added with distilled water and homogenized for 1 min. Its pH was adjusted to 3. The obtained
solution was filtered and adjusted the protein concentration. Then, glycerol was added as a plasticiser.
The mixtures were stirred for 30 min at room temperature and used for preparing blend film-forming
suspension (FFS). On the other hand, FSG powder was dissolved in distilled water. Then its pH was
adjusted to 3 and then heated at 70 ◦C for 30 min. Afterward, glycerol was added and both FPI and
FSG solutions were mixed. Moreover, ZnONP suspended previously in distilled water was added in
this mixture. The obtained FPI/FSG/ZnONP suspension was stirred for 5 min and then homogenised
for 30 s. Furthermore, BEO previously mixed with tween 20 was added to this above suspension. The
film-forming suspension was obtained by homogenising and stirring.

Espitia et al. [84] developed nanocomposite films of methyl cellulose (MC) incorporated with
pediocin and ZnONP. ZnONP were mixed with deionized water and then sodium pyrophosphate was
added. The ZnONP dispersion was sonicated for 23 min. Then, glycerol was added to the nanoparticle
solution, which was heated at 80 ± 2 ◦C to solubilize the methyl cellulose. Pediocin was added to this
solution with MC. Moreover, the gelatin/ZnONP film and carrageenan/ZnONP (CZ) based films were
prepared by Shankar et al. [19] and Meindrawana et al. [43] using the similar procedure, respectively.
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Akbariazam et al. [52] has developed the SSPS-ZnO film. Firstly, ZnO was dispersed in water and
homogenized for 15 min. This solution was used to prepare the SSPS dispersion. A mixture of sorbitol
and glycerol was added to the formulation. Dispersions were heated to 75 ± 5 ◦C and stirred for 1 h.
Then, the dispersions were cast on plates, dried at 25 ◦C and 50% RH in a humidity chamber. After
peeled, the films stored in a closed desiccator containing saturated magnesium nitrate at 25 ± 2 ◦C and
50% ± 5% RH.

2.2.4. Preparation of Edible Coating films with Other NPs

Yu et al. [20] have reported the preparation of CS-based coating with nano-silicon dioxide. Firstly,
the mixed solution of CS, nano-silicon dioxide and deionized water was dispersed for 15 min by
ultrasonication. Then, sucrose ester of fatty acid was added and dispersed for 5 min. The CS coating
with nano-silicon dioxide was obtained after adding the glycerine and being dispersed. The CS solution
with nano-silicon dioxide was prepared by Sun et al. [85]. Moreover, Shi et al. [21] and Song et al. [86]
had introduced a preparation technology of the CS/nano-silica coating film.

Hasheminya et al. [47] had prepared the Kefiran-CMC films containing copper oxide nanoparticles
(CuONPs). Firstly, the kefiran solution and CMC solution in distilled water were prepared, respectively.
These two solutions were mixed and glycerol was added. Then, the stirring was conducted another
15 min. Subsequently, CuONPs were added to the kefiran-CMC solution and conducted sonication.
Finally, the obtained solution was poured into glass plates and dried at 25 ◦C for 72 h.

Shankar et al. [19] had developed the SNP-CS films. SNP was added into acetic acid solution and
dispersed with ultrasonication and homogenization. Then, glycerol was added and the mixture was
stirred for 20 min. Afterwards, CS was added with continuous stirring for 20 min. Finally, the film
suspension was heated with stirring at 80 ◦C for 30 min and was cast onto a glass plate. After being
dried at room temperature for 2 days, the completely films were peeled and stored.

2.2.5. Preparation of Edible Coating Films with Mixed NPs

Lin et al. [87] had developed a Ag-TiO2-CS nanocomposite as an antibacterial coating. After
modification of CS, the CS adipate aqueous solution was prepared and mixed with AgNO3 solution.
The mixture was stirred at 50 ◦C for 1 h. Meanwhile, TiO2 NPs were dispersed in distilled water with
sonication. Subsequently, the TiO2 dispersion was added into the Ag/CS adipate solution. The solution
was treated with UV radiation for 10 min. The resulting Ag was deposited on the surface of TiO2 NPs
and a complex was formed with CS via Ag-NH3 coordination bonds through the amino groups on
CS. On the other hand, Li et al. [88] and Zaharia et al. [89] used the similar technology to prepare the
CS/Ag/ZnO blend coating films.

Chi et al. [57] developed the PLA/BEO/nanocomposite films. Briefly, PLA and BEO were dissolved
in dichloromethane. Then, 2% nano-TiO2, and 1% nano-Ag based on PLA dry matter were added into
the PLA/BEO dichloromethane solution and the solution was stirred for 10 h at room temperature.
Finally, the solutions were poured onto the plate and dried at room temperature.

Arfat et al. [90] had prepared the FSG films containing Ag-Cu NPs nanocomposit. Ag-Cu NPs
with selected loadings were mixed well in distilled water; the dark grey colored suspensions were
stirred for 5 min and further homogenization for 1 min. Then, gelatin powder was added into the
above prepared Ag-Cu NPs suspensions and glycerol was added to the suspension under stirring.
The final volume was adjusted to 100 mL using distilled water and heated at 70 ◦C for 30 min. The
suspensions were sonicated for 30 min and stirred for 2 h at room temperature. After being degassed
for 10 min by sonication, the NPs nanocomposite solution was obtained.

Zein protein (ZP) nanocomposite films were prepared by Kadam et al. [64]. A film forming
solution was prepared with ZP, aqueous ethanol, glycerol and PEG (polyethylene glycol)-600. The pH
of the film-forming solution was then adjusted to 8.0. The solutions were heated to 62 ± 2 ◦C for 15 min
under stirring and cooled to room temperature for 15 min. For ZP solutions with the core-and-shell
NPs (TiO2 as core and SiO2 as shell), 1.5% w/w NPs were added to film-forming solution prior to
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heating. After subjected to ultrasonication, the ZP with NPs solutions were cast on dishes and dried at
ambient conditions (24 ± 1 ◦C) for 48 h. Afterwards, they were stored in 50 ± 2% RH chamber for 24 h
before peeling.

Table 1. Summary of different NPs and main edible-based materials used in coating films.

NPs Main Edible Materials Reference

TiO2

Shellac Yemmireddy and Hung [15]
CS, WPI Cano et al. [14], Xu et al. [5], Zhang et al. [73]

Potato starch Oleyaei et al. [74]
SSPS Teymourpour et al. [51]

WPI/CNFs Zolfi et al. [44], Alizadeh-Sani et al. [66]
CMC Achachlouei et al. [50]

Ag

CS Davoodbasha et al. [17], Mathew and Kuriakose [75],
Lin et al. [76]; Kumar-Krishnan et al. [77]

Starch, PVA Cano et al. [78], Usman et al. [79]
β-CD Andrade et al. [18]

Agar, banana powder Orsuwan et al. [80]

ZnO

CS Malini et al. [81]
Sago starch Nafchi et al. [82]

FPI, FSG Arfat et al. [83]
MC Espitia et al. [84]

SSPS Akbariazam et al. [52]

Others

Silicon dioxide CS Yu et al. [20], Sun et al. [85]
Silica CS Shi et al. [21], Song et al. [86]
CuO Kefiran, CMC Hasheminya et al. [47]
SNP CS Shankar et al. [19]

Mixed NPs

Ag-TiO2 CS Lin et al. [87]
TiO2-Ag PLA Chi et al. [57]
Ag-Cu FSG Arfat et al. [90]

TiO2-SiO2 ZP Kadam et al. [64]

3. Antimicrobial Activity and Mechanism of ECF with NP

3.1. Antimicrobial Activity of ECF with NPs

Since postharvest fresh produce is vulnerable to many microorganisms responsible for degradation,
its quality can be considerably affected by leading to a shortened shelf-life. Edible coatings such as
polysaccharide and protein-based coatings could be used to create thin films, which are applied on the
surfaces of fruits and prevent bacteria growth, as well as the growth of yeast and molds [91,92]. The
antimicrobial activities are affected by several factors. As illustrated in Figure 4, the efficacy in reducing
microbial growth with these coatings might be primarily due to the type, concentration, and properties
of coating films as well as the type, size, shape, concentration, chelation, release and photocatalytic
properties of incorporated NPs [93–98]. Furthermore, the antimicrobial activity of edible coatings is
influenced by the synergistic effect of coating materials and NPs in the barrier, the types and structure
of tested microorganism, and the tested conditions (Figure 4) [4,12,95–98]. On the other hand, the
antimicrobial activities of various ECF with NPs were also investigated by several researchers, which
are summarized and listed in Table 2.Molecules 2019, 24, x FOR PEER REVIEW 10 of 30 
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Alizadeh-Sani et al. [66] indicated that combining TiO2 and rosemary essential oil (REO) to form
WPI/CNFs films resulted in higher antimicrobial activity against Gram-positive bacteria including
S. aureu and L. monocytogenes compared to Gram-negative bacteria including E. coli O157:H7, S. enteritidis
and P. fluorescens.

Huang et al. [99] stated that it was possible to increase the log reduction for L. monocytogenes
to >4 log CFU using TiO2-polylactide composites illuminated with UV-A. This composite film
illuminated with UV-A exhibited the equally antimicrobial activities against Salmonella Typhimurium
and Shiga toxin producing E. coli. Moreover, Teymourpour et al. [51] and Salarbashi et al. [54]
found that SSPS-TiO2 bio-NC films displayed an excellent antibacterial action against S. aureus and
E. coli. Similarly, its antibacterial action against S. aureus was also observed by Salarbashi et al. [54].
Kumar-Krishnan et al. [77] demonstrated that the antibacterial potency of CS/AgNP composite films
against E. coli and S.aureus was observed. Elevated levels of Ag successfully increased the antibacterial
effect of both CS/AgNP and CS/Ag+ ion composite films. While morphology, particle size, colloidal
stability, surface area, and purity were the determining factors for AgNPs activity (Figure 4) [100].
The results of Jia et al. [101] showed that the silver/CS Janus NPs exhibited a high bactericide
effect against Salmonella choleraesuis, S. aureus, B. subtilis, and E. coli bacteria, as well as Botrytis
cinerea fungi [19,79,80,87]. The results of a study conducted by El-Sherbiny et al. [102] indicated
that elevated AgNPs concentrations and the in situ development of AgNPs on the surface of
poly(ε-caprolactone)/curcumin/grape leaf extract-Ag hybrid NPs seemed compelling in its efficacy
against bacteria including E. coli, S. aureus, S. enterica, P. aeruginosa, B. subtilis, and fungi including
Candida albicans and Aspergillus flavus. Davoodbasha et al. [17] reported that the growth inhibition zone
induced by Ch3Ag1 (3% CS solution mixed with 1 mM of AgNO3) was present for E. coli, P. aeruginosa,
Vibrio parahaemolyticus, Vibrio vulnificus, S. aureus, and B. cereus. Furthermore, the antimicrobial
properties of AgNPs-encapsulated chitosan against S. aureus, E. coli, Aspergillus terreus and Aspergillus
flavus were also observed by Mathew and Kuriakose [75]. The growth inhibition zone caused by
the Ch3Ag1 was 11 mm for the Candida albicans, but no inhibition was observed for the Aspergillus
parasiticus. However, A. parasiticus pigmentation was repressed to some degree with elevated levels of
the AgNP concentration. More importantly, the agglomeration of NPs became significant at higher
concentrations, consequently exhibited a decline in contact between the cell walls of the bacteria and
the specific particles [17,103]. Lin et al. [76] also indicated that both antimicrobial agents (CS and
AgNPs) could act synergistically to enhance their antimicrobial efficacies [31]. Cano et al. [78] reported
that Ag-loaded films exhibited antimicrobial activity against A. niger, Penicillium expansum, Listeria
innocua, and E. coli, which appeared to be concentration dependent [75,104].

Malini et al. [81] determined that bacterial growth appeared to be inhibited by the CS/ZnO NC
membrane, while Gram-positive Bacillus substili seemed to be less vulnerable to this process than
Gram-negative Klebsiella planticola [105]. Al-Naamani et al. [106] found that following a 24 h incubation
period, chitosan-ZnO nanocomposite showed an excellent inhibition of bacterial growth including
Salmonella enterica, E. coli, and S. aureus. Furthermore, polyethylene films (PE) subjected to CS-ZnO NC
coatings prevented the formation of food pathogens completely [43,52,83,107]. Carvalho et al. [13]
indicated that a smaller the particle size encouraged an elevated concentration of nano or micro
particles, therefore increasing the inhibiting efficiency. On the other hand, as Arfat et al. [83] reported
that the FPI/FSG films incorporated with 100% BEO and ZnONP exhibited strong antibacterial activity
against L. monocytogenes and P. aeruginosa.

According to Hasheminya et al. [47], the bacteria of S. aureus and E. coli were effectively
restricted by the kefiran-CMC-CuONPs bio-NC. While Shankar et al. [108] indicated that E. coli and
L. monocytogenes were significantly inhibited by CS capped SNP composite film, which displayed the
highest antimicrobial activity with complete sterilization within 6 h and 12 h, respectively. Furthermore,
Li et al. [88] indicated that bacteria such as E. coli, B. subtilis, Aspergillus, Rhizopus, Penicillium, S. aureus,
and yeast responded exceptionally well to the antimicrobial effect of the CS/Ag/ZnO film combinations.
More importantly, the chelating function among different NPs might also affect by the antimicrobials
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efficacy of separate NPs [109–112]. As indicated by Lungu et al. [111], AgNPs appeared to improve the
antibacterial properties of both Ag-ZnO NPs without UV radiation. The higher antibacterial activity
of Ag-ZnO NPs (chemical deposition (CD)) was found that that of ZnO NPs and Ag-ZnO NPs [111].
Erdural et al. [112] also reported that the highest photocatalytic antibacterial activity was obtained at
over 92 wt.% SiO2-TiO2 surface. While Lin et al. [87] indicated that nano-Ag particles displayed lower
antibacterial activity than the Ag/TiO2/CS NC at similar concentrations.

Table 2. Summary of the tested microorganisms inhibited by various ECF with NPs.

Main Edible Materials and NPs Inhibited Microorganisms Reference

WPI/CNFs, TiO2
L. monocytogenes, S. aureus, E. coli O157:H7,

P. fluorescens, S. enteritidis Alizadeh-Sani et al. [66]

Polylactide, TiO2
L. monocytogenes, S. Typhimurium, Shiga toxin

producing E. coli Huang et al. [99]

SSPS, TiO2 E. coli, S. aureus Teymourpour et al. [51]
SSPS, TiO2 S. aureus Salarbashi et al. [54]

CS, Ag E. coli, S. aureus Kumar-Krishnan et al. [77]
CS, Ag S. choleraesuis, S. aureus, B. subtilis, E. coli Jia et al. [101]

Poly(ε-caprolactone), curcumin,
grape leaf extract, Ag

E. coli, S. aureus, S. enterica, P. aeruginosa, B. subtilis,
C. albicans, A. flavus El-Sherbiny et al. [102]

CS, Ag E. coli, P. aeruginosa, V. parahaemolyticus, V. vulnificus,
S. aureus, B. cereus, C. albicans, A. parasiticus Davoodbasha et al. [17]

CS, Ag S. aureus, E. coli, A. terreus, A. flavus Mathew and Kuriakose [75]
CS, Ag E. coli, S. aureus, Lin et al. [76]

Starch, PVA, Ag A. niger, P. expansum, L. innocua, E. coli Cano et al. [78]
CS, ZnO B. substili, K. planticola Malini et al. [81]
CS, ZnO S. enterica, E. coli, S. aureus Al-Naamani et al. [106]

FPI, FSG, ZnO, BEO L. monocytogenes, P. aeruginosa Arfat et al. [83]
Kefiran, CMC, CuO S. aureus, E. coli Hasheminya et al. [47]

CS, SNP E. coli, L. monocytogenes Shankar et al. [108]
CS, Ag-TiO2 E. coli Lin et al. [87]

CS, Ag, ZnO E. coli, B. subtilis, Aspergillus, Rhizopus, Penicillium,
S. aureus, yeast Li et al. [88]

3.2. Antimicrobial Mechanism of ECF with NPs

Several popular mechanisms, as shown in Figure 5, have been reported and concluded
by researchers. Firstly, the electrostatic interaction between the positively charged cationic
polymer or free metal ions, and the negatively charged bacterial membrane could destroy the
cell integrity. This effect might induce the increase of both hole formation and permeability of the
membrane [17,31,78,88,113–116]. Secondly, photocatalytic reaction of NPs under UV and visible lights
could induce the generation of reactive oxygen species (ROS) and hydrogen peroxide on the surfaces of
particles [13,15,100]. This oxidative damages to proteins and DNA in the cell could provide the mainly
contribution to the antimicrobial activity of NPs [15,31,76,100,117]. Finally, the detachment of free
metal ions could disturb the DNA replication [13,18,97,117]. However, continuous investigations are
carried out to obtain more information on and better understand the antimicrobial mechanisms of NPs.

The primary mechanism for antimicrobial activity of CS relies on the interaction between the
negatively charged carboxylate (-COO-) groups on the exterior of the bacterial cell membranes and
the positively charged amino (-NH3) groups of CS [1,4,113]. The disruption of the cell membranes is
the result of this electrostatic binding process [4,114], and elevated levels of lipid peroxidation and
protein leakage (Figure 5). According to Li et al. [115], amino protonation and the subsequent cationic
production might be responsible for the antimicrobial activity of CS with high molecule weight since
its ultra-long molecular chain was suitable for binding E. coli and S. aureus. Additionally, microbial
deoxyribonucleic acid (DNA) and diffused hydrolysis product interaction could prompt protein and
mRNA synthesis restriction (Figure 5) [116]. Differences in the composition, structure, thickness, and
electrochemistry of the cell membrane also affect the sensitivity of different microorganisms to the
inactivation of CS. More importantly, the antimicrobial activity of coating films should be mainly due
to the activity of NPs incorporated into the coating films. The antimicrobial mechanism of NPs is
summarized in the next section.
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According to Davoodbasha et al. [17], the bactericide containing CS and AgNPs was able to
destroy bacteria by interacting with the positively charged cationic polymer, and the negatively charged
bacterial membrane, increasing the hole formation and the permeability of the membrane, and inducing
cell death (Figure 5) [31,78,118]. As reported by Li et al. [88], the transmission electron microscopy
(TEM) images showed the presence of many pits and gaps on the cell membrane when E. coli was
exposed to AgNP. The primary hypothesis is rooted in the chemical communication of Ag+ ions
responsible for surrounding the NPs with sulfur and nitrogen groups present in amino acids on the
bacterial cells [119,120]. Furthermore, it was possible that the AgNPs disturbed the signaling pathway
inside the bacterial cells resulting in the delamination of the cytoplasmic membrane and inducing
the decay of cell wall [100,121–124]. The synthesized NPs caused disorganization of the bacterial
cytomembrane and leakage of cytoplasmic contents [125]. Furthermore, Liu et al. [110] suggested that
the embedded AgNPs could accumulate electrons, which were photogenerated in the conduction
band of TiO2. This process produced holes in the valence of the TiO2 and prevented the electrons
from reconnecting to the holes, inducing the increased quantum efficiency of the photochemical
reaction [97,126–129]. Variations in the antimicrobial effect might be evident due to the size, shape,
concentration, clarity, capping agent and surface chemistry of NPs, as well as their capacity to discharge
free biocidal metal ions [130].

Yemmireddy and Hung [15] reported that the variations in the surface properties of the separate
TiO2 nanocoatings were due to three different binders being used to create them. It is possible that
the type of binders used in the TiO2 coating could significantly affect the photocatalytic bactericidal
characteristics [13,131]. Padmavathy et al. [132] described the process as the activation of ZnO by both
UV and visible light, while encouraging the generation of electron-hole pairs (e−/h+). Water molecules
can be degraded into OH− and H3O+ species, while dissolved oxygen molecules were converted to
superoxide radical anions ·O2

− (Figure 5). These molecules would react with H3O+ to form (HO2·)
radicals, which collided with electrons to generate hydrogen peroxide anions (HO2

−). The next step
was that HO2

− reacted with H3O+ to create H2O2 molecules. Doping with AgNPs could modify
the visual characteristics of ZnO and further impact the antimicrobial and photocatalytic activity of
Ag-ZnO composites [130,133,134]. According to Kim et al. [100], free radicals derived from the surface
of AgNPs affected the membrane lipids of microorganisms, induced the oxidative damage to proteins
and DNA, and caused the degradation of cell membrane [31,76,135–138].

By prompting reductive species such as superoxide anions, metal ions might also be responsible
for biological damage [133]. As indicated by Manzl et al. [129], Cu ions caused further oxidative
damage to bacterial cells via SOD anions and hydrogen peroxide free radicals, which were formed by
TiO2 following exposure to sunlight [129]. Andrade et al. [18], and Marambio-Jones and Hoek [137]
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indicated that the disturbance of DNA replication and adenosine triphosphate production resulted
from the absorption of Ag ions [97]. The proposed antimicrobial mechanism illustrates several crucial
transport processes such as the uptake of phosphate and succinate, the cellular contacted oxidation,
the obstructed respiratory chain, and the metal ion bonding [13].

4. Physical and Mechanical Properties of ECF with NPs

4.1. Physical Properties of ECF with NPs

4.1.1. Surface Observation of ECF with NPs

The surface structure and loading capacity of NPs are critical for the applications of coating
films [1,4]. Zolfi et al. [44] discovered a uniform distribution at 1% and 3% wt. loading levels of TiO2

NPs using SEM micrographs. While Cano et al. [14] reported sufficient distribution of the nanofiller
into the polymer matrix, some TiO2 NPs and aggregates may appear to be adequately disseminated
in the polymer matrix with elevated TiO2 nanoparticle content [54,66,110]. Xu et al. [5] observed that
the GO-CS biopolymer acquired a rough texture following the addition of TiO2 NPs [8]. Moreover,
Roilo et al. [139] indicated that the surface of the TEMPO-oxidized cellulose nanofiber (TO-CNF) coating
was devoid of revealing pinholes and cracks, while the presence of TiO2 nanoparticle combinations
was observed. Achachlouei et al. [50] found that SEM micrographs showed well-dispersed Na-MMT
and TiO2 NPs through the surface of the films, especially at low concentrations. On the other hand,
as reported by Valenzuela et al. [140], SEM images indicated that the superficial structures of CS
and CS-quinoa protein films were devoid of pores and appeared homogeneous. However, the
micropores were observed in the CS coating film as documented by Xing et al. [141], Xing et al. [94] and
Xing et al. [4], which might be affected by the diverse sources and characteristics of CS, its interaction
with additives, and by the various materials and preparation techniques that were employed.

SEM images generated by Singh et al. [142] indicated that conducting pathways were established
between Ti substrates and the corrosive medium by the microcracks and pores, while a coating with
low permeability provided a more effective barrier against the penetration or transportation of chloride
ions and water molecules. The primary particles seemed to be highly agglomerated with a substantial
neck formation, and their sizes displayed a visible decline with elevated Ag content [142]. These
modifications in particle size and the distribution of ionic species with diverse Ag-doping levels
were likely responsible for the differences in the morphology of β-Ca3(PO4)2 powders, as well as
in the porosity of the coatings [142]. Further, SEM images of iodinated composites examined by
Banerjee et al. [31], represented the petal-like structure typical of the CS matrix. TEM images signified
the presence of spherical AgNP in the polymer, which denoted the generation of a stable AgNP-CS
composite. Davoodbasha et al. [17] reported that TEM observation of Ch3Ag1 (3% CS solution mixed
with 1 mM of AgNO3) exposed interlinked microporous structures with spherical AgNPs systematically
dispersed within the matrix. A high probability existed that the Ag ions would have significant contact
with the carbonyl, amino, and hydroxyl groups in the CS molecule for establishing structure uniformity.
Usman et al. [79] studied the SEM images of PVA/AgNPs NC, and suggested that spherical AgNPs
particles were entrenched in the polyvinyl alcohol (PVA) matrix without any visible accumulation.
Some aggregation was evident in PVA/GO/AgNPs NC, while the visibility of the GO stacking of
the four-component NC system namely PVA/GO/AgNPs/starch was possibly due to the degradation
process in conjunction with AgNPs distribution. According to Andrade et al. [18], TEM micrographs
of the β-CD stabilized AgNP displayed a comparatively narrow size distribution of pseudo-spherical
particles. A red shift was apparent between the surface plasmon resonance (SPR) peaks of AgNPs from
both types of Ag-ZnO NPs, which corresponded with broader widths for (CD) material indicating an
increase in particle size dispersion. Moreover, Ortega et al. [104] suggested that AgNPs allowed for the
matrix reinforcement of gelatinized starch, resulting in a more resilient material with smooth surfaces,
as evidenced by SEM analysis.
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In a study by Jebel and Almasi [105], SEM results showed that ultrasound (US) treatment reduced
ZnO particle size, and established a hybrid nanostructure that is stable, while uniformly dispersed
ZnO NPs coated the bacterial cellulose (BC) nanofibers. Shankar et al. [19] found that NC films
containing Gelatin/ZnO NPs exhibited rough surfaces with evenly distributed NPs Both ZnON (ZnO
NPs formed in the presence of zinc nitrate) and ZnON CMC were irregular in shape, while ZnOA (the
ZnO NPs formed in the presence of zinc acetate) was cubical and ZnOA CMC was elliptical. Using
SEM, Hasheminya et al. [47] determined that the CuO NPs displayed uniform distribution across
the kefiran-CMC polymer matrix, while Shankar et al. [108] discovered that the SNP were dispersed
evenly in the CS film. Song et al. [86] indicated that the diffused network of nano-silica in the CS matrix
with the highly porous structure (TEM results), resulted from the formation of Si-O-C and hydrogen
bonds [21]. SEM imaging by Lin et al. [76] revealed that the Ag/TiO2 NC particles were deposited onto
the CS adipate layer. A possible explanation for this result is that CS acted as a reducing agent using
electrostatic attraction and Ag-N coordination bonds to secure the metal ions. On the other hand, the
results of Zaharia et al. [89] showed that hybrid materials modified with composite NPs (ZnO/CS and
Ag:ZnO/CS) displayed the smoothest surface morphology and optimal NPs distribution.

4.1.2. Thickness, Contact Angle and Tg Characterization of ECF with NPs

The thickness of edible coating films is affected by the addition of NPs. Goudarzi et al. [8] indicated
that increased nano TiO2 content led to decreased film thickness. While contact between the nano
filler and the polymer matrix might restrict water molecule distribution because of a tight network
structure between TiO2 and starch. According to Carvalho et al. [13], a larger film thickness generated
an increase in the diffraction peak intensity of the ZnO coating. Ortega et al. [104] suggested that the
AgNPs content induced a minor increase in the film thickness.

Cano et al. [14] found that the contact angle increased to around 94◦ with the addition of 1 wt.%
TiO2 NPs, resulting in a more hydrophobic bio-NC. Then, the integration of higher levels of TiO2

NPs induced a reduction in the contact angle until it reached 83◦. This efficacy was the result of the
TiO2 NPs addition that exceeded the threshold value, causing TiO2 to be deposited on the bio-NC
exterior, diminishing its irregularity. According to the study of Goudarzi et al. [8], low TiO2 (1 wt.%)
was responsible for an increased contact angle of the starch-based NC, while elevated levels of TiO2

of 3 wt.% caused the contact angle to decline. Shankar et al. [19] found that higher water contact
angle (WCA) values were the result of integrating hydrophobic ZnO NPs [82,106]. Research results of
Kadam et al. [64] indicated that the initial contact angle of ZP films, both with and without TiO2 NPs,
produced diverse values that ranged from 19.6◦ to 25.3◦, and from 17.9◦ to 22.8◦, respectively.

Goudarzi et al. [8] found that higher TiO2 content raised the Tg of the film samples, which can be
attributed to the formation of chemical bonds between TiO2 and hydroxyl groups on starch chains.
Furthermore, factors such as polymer type, size, nanofiller type and uniformity of the nanofiller within
the polymer matrix, play a critical role in the decline of Tm in the presence of elevated levels of TiO2.
Oleyaei et al. [32] revealed that the inclusion of TiO2 NPs exerted a positive influence on both Tg and
the melting point of the films [46,50,51,74].

4.1.3. Transparency and Color Characterization of ECF with NPs

Cano et al. [14] determined that the effect of TiO2 NPs in both the UV and visible range depended on
the significant reduction in the transmittance of the nano-biocomposite sheets. The lowest transmittance
level was found in the presence of the highest TiO2 nanoparticle content, which might be attributed to
the increased white coloration of the sheets with the NPs addition to the CS matrix. Goudarzi et al. [8]
indicated that high TiO2 content prompted an increase in the L* value, ∆E, and whiteness index (WI),
while the b value displayed a decline. However, Teymourpour et al. [51] reported that adding TiO2 NPs
to the SSPS film elicited a decline in the L* value, while an increase was evident in a and b. According
to Zolfi et al. [46], a rise in WI and a reduction of ∆E were apparent in the kefiran and whey protein
coatings following the addition of of TiO2 NPs. Factors such as the difference in biopolymer type,
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crystallite type of the nano TiO2, preparation method, thickness of the film, and size of TiO2 might play
an essential role in the color variations of the biopolymer film. Furthermore, Oleyaei et al. [74] revealed
that TiO2 were able to restrict more than 90% of UV light while enhancing the opacity and WI of the
films. Elevated levels of both TiO2 and MMT content were responsible for a decline in the UVB, UVA,
and UVC light transmittance [139]. Cano et al. [78] analyzed the optical characteristics of the films using
indicators such as internal transmittance at 450 nm (Ti) including hue (h*), clarity (L*), and chrome
(C*). Moreover, a substantial decline was evident in silver-loaded films regarding the transparency
(Ti), hue (h*), and luminosity (L*) values, while an increase in the color saturation (C*) was apparent.
As indicated by Shankar et al. [19], the gelatin/ZnO NPs composite films displayed a lower level of
transparency and presented a slight greenish yellow tint, therefore, significantly increased the total
color difference value (DE) following gelatin and ZnO NPs amalgamation. Carvalho et al. [13] indicated
that the ZnO thin films exhibited exceptional transparency, achieving a transmittance of approximately
80% in the visible region of the electromagnetic spectrum. On the other hand, Goudarzi et al. [8] and
Hasheminya et al. [47] demonstrated that the percentage of light transmission and color specifications
were usually enhanced by high nanoparticle density. According to Akbariazam et al. [52], SSPS/ZnO
(4%) films exhibited 0% UV transmittance, as well as over 70% absorption of the near-infrared spectrum.
Furthermore, Cano et al. [78] suggested that only transparency and color variations of the starch-PVA
films were affected by the addition of AgNPs. While Arfat et al. [83] determined that FPI/FSG films
exhibited a transparency reduction following the addition of BEO and ZnO NP [82].

4.1.4. Thermal Stability of ECF Film with NPs

From the thermogravimetric analysis (TGA) curve, Andrade et al. [18] discovered three mass
loss steps for the AgNP-β-CD. The first step referenced to the volatilization of residual water, while
the second was related to the decay of β-CD molecules at 314 ◦C. The third step denoting extremely
meager weight loss at 794 ◦C was ascribed to the deterioration of carbonaceous residues. As reported
by Lin et al. [76], during the second stage of weight loss, it became evident that the decay of the
CS/cellulose-AgNPs films was initiated at a temperature of 274.2 ◦C. Cano et al. [14] indicated that
the TGA analysis of nano-biocomposites exhibited three degradation stages. The last peak appeared
in the range of 550-800 ◦C and might refer to the oxidative decay of the carbonaceous residue that
was produced during the second decomposition stage. Moreover, addition of TiO2 NPs exhibited no
obvious influence on the thermal stability of the substances. Cano et al. [78] indicated the augmentation
with the silver compound substantially diminished the thermal stability of the starch and PVA fractions
contained in the film. Shankar et al. [19] indicated that all the films exhibited several stages of thermal
degradation in the TGA curves. They also reported that the films containing ZnO NPs displayed
improved thermal stability compared to the native gelatin film. Moreover, NC films exhibiting between
three and four thermal decomposition steps were observed by Kadam et al. [64]. They demonstrated
that the existence of degradation residue of NC specimens beyond 650 ◦C confirmed the presence of
TiO2-SiO2 NPs (TiO2 as core and SiO2 as shell) in the samples. According to Arfat et al. [90], TGA
analyses indicated that the addition of Ag-Cu NPs could enhanced the thermal stability of the NC films.

4.1.5. Structural Characterization of ECF Film with NPs

X-ray diffraction (XRD) pattern analysis in the investigation by Cano et al. [14], indicated that the
bio-NC contained TiO2 NPs in an anatase crystalline form with increasing intensity of the TiO2 region,
and corresponded to the added TiO2. However, Zolfi et al. [44] established that the integration of TiO2

NPs did not exert any influence on the crystal type in kefiran-WPI. As reported by Xu et al. [5], with the
addition of CS, the characteristic absorption peak of GO in the UV-vis spectra disappeared. However,
with the addition of TiO2 NPs, the absorption peak appeared to be higher. Achachlouei et al. [50]
found that the increase of crystallinity was prompted by the limited accumulation of TiO2 NPs due
to the systematic arrangement of the clay nanolayers forming an intercalated structure in the NC.
Moreover, the XRD test of Oleyaei et al. [74] further confirmed the completely exfoliated structure that
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originated in the potato starch-sodium montmorillonite (PS-MMT) NC containing 3% and 5% MMT.
Cano et al. [14] indicated that the crystallinity of the biopolymer-based matrix decreased with the
addition of TiO2. While Salarbashi et al. [54] established that the crystalline structure of the TiO2 NPs
remained intact in the SSPS matrix. Xu et al. [5] also indicated that in the fourier transform infrared
(FTIR) spectrum, the typical C-O stretching band of the amide group shifted to a lower wave number.
During the investigations of Oleyaei et al. [32], Achachlouei et al. [50], and Alizadeh-Sani et al. [66],
FTIR confirmed that the same bands found between CMC and TiO2 NPs, also occurred between
hydroxyl groups of starch and TiO2 nanofillers.

Considering the XRD results obtained by Lin et al. [76], it was established that the reflections seen
around 34.0◦ and 41.0◦ in CS/cellulose-AgNPs composite films were assigned to the (111) and (200)
planes of the AgNPs face-centered cubic, which undoubtedly confirmed the presence of AgNPs. In the
FTIR spectrum, Lin et al. [76] discovered formations of amide bonds between CS/cellulose-AgNPs
CS/cellulose and the primary amino groups of CS, while the carboxylic residues corresponding to
the silver surface were confirmed. Mathew and Kuriakose [75] believe that the encapsulation of
AgNPs could further enhance the already improved light-fastening characteristics of the chromophoric
system when attached to CS. Considering the XRD analysis of PVA/AgNPs and PVA/GO/AgNPs NC,
Usman et al. [79] determined that the characteristic peaks suggested the embedding of AgNPs in the
related matrix. The intense OH band evident between 3550 cm−1 and 3000 cm−1 in the FTIR spectrum,
was highly suggestive of H-bonding in the GO sheets at both intermolecular and intramolecular
levels. A reduction in the intensity of peaks located at 1722 cm−1, 1421 cm−1, and 1370 cm−1, indicated
the disengagement of these vibrations due to AgNPs contact with the OH groups of PVA [79]. In a
PVA-GO-Ag-starch film, the movement that occurred on the OH stretching vibration peak, as well as
the CO H stretching peak to a lower wave number signified substantial molecular interactions [79].
Moreover, Andrade et al. [18] noted that the plasmon peak was visible around 405 nm, which could be
ascribed to the development of pseudo-spherical AgNPs and corresponded to the surface resonance
of these NPs. Both Abou-Okeil et al. [143] and Andrade et al. [18] indicated the interaction of
chemisorption between the OH group in β-CD and the AgNP surface, which might be responsible for
the loss of β-CD crystallinity.

According to Shankar et al. [19], the XRD patterns of the NC films containing various types of
ZnO NPs displayed typical diffraction peaks, which provided confirmation that the crystalline ZnO
NPs presented in the NC films. Furthermore, as reported by Arfat et al. [90], XRD emphasized the
presence of a change in the crystallinity of FSG films following the addition of NPs [19,105]. During a
microstructural analysis by Arfat et al. [83], it was found that the presence of ZnO NP inhibited bilayer
formation of a film containing 100% BEO. Shankar et al. [19] utilized the FTIR spectrum to reveal
contact between ZnO NPs and N-H groups of gelatin. According to Malini et al. [81], the fluorescence
emission intensity of nano ZnO was significantly higher than that of the NC, as evidenced by a blue
shift (from 360 nm to 335 nm) in the UV-visible spectrum of NC.

Examining XRD patterns, Carvalho et al. [13] discovered that several major peaks of ZnO were
evident in the ZnO(Ag)-1 and ZnO(Ag)-2 samples, which denoted low crystalline preferential growth.
From the XRD patterns and the FTIR spectra conducted by Singh et al. [142], it was found that the
amide bands shifted to a lower wavelength. These findings in conjunction with the change in the
intensity of Infrared (IR) transmission at the CH2, CH3, amine, and carbonyl bands were compared
with those of CS and found to be suggestive of contact between CS, β-Ca3(PO4)2 and silver ions.
Hasheminya et al. [47] indicated that hydrogen bond formation in the polymer matrix with CuO NPs
and the crystalline structure in the CuO NPs polymer were revealed by FTIR spectroscopy and XRD
analysis, respectively. Shankar et al. [19] utilized FTIR analysis to reference the intensity increase in the
amide-A region, which suggested that hydrogen bonding was employed to initiate contact between
N-H groups of gelatin protein chains and ZnO NPs. According to Lungu et al. [111], a red shift with
1 nm was evident with reference to the Ag-ZnO NPs (mechanical deposition, MD) specimen, while
a blue shift of 10 nm appeared to signify the Ag-ZnO NPs (CD) sample. These shifts were closely
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related to the Ag-ZnO NPs size, as well as contact with the electron-hole exchange on the NPs surface.
AgNPs loading onto ZnO NPs surface substantially elevated the absorption levels within the visible
light spectrum. The presence of (COO-), (-OH) and (-CH2) groups confirmed CMC capping of the
synthesized Ag-ZnO NPs samples.

4.2. Mechanical Properties of ECF with NPs

The operational qualities of ECF with NPs were essential for the application of CS-based coatings,
to allow for analysis regarding the prevention of moisture loss in fresh produce. Cano et al. [14]
reported that CS matrices fortified by adding TiO2 NPs significantly enhanced the tensile strength (TS)
and the Young’s modulus (YM) impacting elongation at break (EB). Goudarzi et al. [8] also indicated
that water-vapor permeability (WVP) of starch/TiO2 NC exhibited a decline in the presence of high
TiO2 content of 0% to 1% and 3%, while an increase was evident when the TiO2 content reached 5%.
Moreover, TS of the starch/TiO2 NC functioned independently from the TiO2 content, while high
TiO2 content induced a rise in the EB and tensile energy to break (TEB). The addition of TiO2 to the
films prompted a minor rise in TS, as well as a reduction in EB. Teymourpour et al. [51] determined
that while moisture content, WVP, and oxygen permeability were reduced by addition of TiO2 to
the SSPS matrix, the process successfully enhanced the mechanical properties. The addition of REO
and TiO2 substantially increased the water resistance of WPI/CNFs composite films according to
Alizadeh-Sani et al. [45]. Additionally, the amalgamation of WPI/CNFs 7.5% films with both REO
and TiO2, displayed lower EB, and higher TS and YM. Research of Zolfi et al. [44] suggested that
adding TiO2 NPs to kefiran-WPI films induced a substantial decline of TS and YM, and increased its
EB. Goudarzi et al. [8] established that although high TiO2 content prompted a reduction in the TS
and YM of the film samples, it induced a rise in both the EB and TEB. Moreover, Vejdan et al. [144]
determined that the WVP of the gelatin/agar-TiO2 bilayers was reduced by the addition of TiO2, while
a rise in moisture content was evident with high nano-TiO2 content. Even though the TS in the bilayer
films displayed an increase in conjunction with high nano-TiO2 content, a further increase prompted a
reduction of the TS. According to Oleyaei et al. [32], the addition of MMT and TiO2 improved the EB
and TS of the coatings, while the WVP displayed a decline [78]. Achachlouei et al. [50] determined
that the nanoclays enhanced the resilience of the NC to the YM and tensile stress of the films to the
detriment of EB. A possible explanation for this contrasting behavior might be an oversaturation of the
active polymer network points for silver adsorption. Usman et al. [79] showed that the TS and YM of
PVA varied significantly with the addition of GO, AgNPs and starch.

Arfat et al. [83] characterized the FPI/FSG films containing basil leaf essential oil and ZnO. By
adding ZnO NP, the TS displayed higher levels, while a reduction was evident in the EAB. The lowest
WVP was achieved in the film containing 100% BEO and 3% ZnO NP. Arfat et al. [90] determined
that an increase in TS and a decrease in EB were characteristic of NC films containing 2% (w/w) NPs.
Additionally, Shankar et al. [19] established that the TS of NC films containing CMC capped ZnO NPs
appeared to be slightly higher than those that were uncapped. Furthermore, by adding ZnO NPs, the
EB and WVP of gelatin films displayed a substantial increase. According to Meindrawana et al. [43],
the elongation limits of the carrageenan/ZnO (CZ) NPs NC film exhibited no significant increase
compared to carrageenan film. Shankar et al. [19] demonstrated that the moisture content, WVP, and
EB of ZnO NPs modified films were higher than those in the control gelatin film. Akbariazam et al. [52]
revealed that adding 4% ZnO into the SSPS matrix enhanced the EB and heat seal strength of the films.
Jebel and Almasi [105] established that ZnO NPs improved the mechanical characteristics of BC films,
while reduced WVP and moisture absorption. According to Nafchi et al. [82], the introduction of low
concentrations of the nanorod-rich ZnO (ZnO-N, the ZnO NPs formed in the presence of zinc nitrate)
to starch solutions significantly decreased the WVP of the films. Hasheminya et al. [47] indicated
that an increase in the CuO NPs concentration improved the TS and decreased the WVP and EB of
the kefiran-CMC coating film. Shankar et al. [108] showed that the SNP incorporation enhanced
the mechanical strength and WVP of the CS film. Kadam et al. [64] suggested that the mechanical
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properties of ZP films improved with the addition of TiO2-SiO2 NPs (1.5%, w/w). However, NPs did
not display any significant effect on the WVP.

4.3. Gas Modification Property of ECF with NPs

The preservation mechanism including gas modification and induction defense properties of ECF
with NPs were demonstrated in Figure 6. As indicated in Figure 6, the solution of ECF with NPs can
form a thin coating film on the surfaces of fresh products after being treated and dried. Then, the matrix
carriers such as CS-based coatings with semipermeable properties could retard the respiration rate of
fruits by modifying the concentrations of O2, CO2, and ethylene in the packages. This gas modification
might inhibit the loss of water and nutrients in the products [1,4,68,94]. On the other hand, the NPs in
coating materials on the produce surface might exhibit excellent antimicrobial activities, especially
induced by UV light, against pathogens in the packages and grown on the surface of fresh products.
These antimicrobial activities could provide the significant contributions for controlling the decay
and quality loss of produce. Moreover, some coating materials such as CS also might provide the
antimicrobial activities against bacteria and fungi during the storage of fruits and vegetables [4]. More
importantly, as shown in Figure 6, the ECF such as CS with NPs could possibly reduce the free radicals
and activate the defense-related enzymes in the fruits cells, and then induce the defense activity of
fruits and vegetable during the storage period [4,86]. This combined effectiveness would keep the
firmness, bioactive and inside color and then maintain a good quality and a suitable shelf life of treated
fresh products (Figure 6).
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The respiration rate of fruit pulps in the packaging system is related to the speed with which
nutrients are consumed. Therefore, the decline in nutritious value occurs more slowly when the
respiration rate is low (Figure 6). Roilo et al. [139] demonstrated that PLA as a transparent biopolymer
exhibited the capacity for high gas permeability, which might depend on the integrity of the particular
coating film, the number of micro-pores, the thickness of the coating, as well as the interaction between
the coating polymer and the additives. Sun et al. [85] indicated that the SiOx dosage affected the
micro-morphology and microstructure of CS coatings. Therefore, high nano SiOx content could induce
significant aggregation and a coarse cross-section. Moreover, substantial hydrogen bonds might form
between nano SiOx and CS molecules, while the reorganization of the CS structures could occur.
As indicated by Chi et al. [57], the permeability of the films was affected by the addition of NPs,
which offered the possibility to further slow the respiration rate and reduce Vc consumption in pulps
(Figure 6). The reason for this might be that fruit ripening was inhibited by the modification induced
by NC films of the internal atmosphere such as ethylene, CO2, and O2. Additionally, Roilo et al. [139]
established that the incorporation of TiO2 NPs decreased the film permeability by elevating the
irregularity of the migration path. The sub-nanometer sizes of the empty spaces between the cellulose
nanofibrils were closely related to the established barrier characteristics, as well as to the preferred
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transportation of small-sized penetrants [145,146]. Incorporating of TiO2 NPs had little change in the
penetrant transport mechanism, while possible interface modifications and imperfections in the void
structure influenced the penetrant diffusivity to a minimal extent. As a buffer against water vapor
and critical gases O2, TiO2-loaded TO-CNF coatings offered a promising technical solution [139,147].
Meindrawana et al. [43] determined that adding ZnO NPs to carrageenan coatings inhibited the gas
exchange on fruit surfaces [148]. In accordance with the water vapor transmission rate (WVTR) results,
a high concentration of ZnO NPs was evident in the coating material creating a high moisture barrier in
the film. The accumulation of ZnO NPs during the formation of the coating material possibly affected
the capacity of the coating material to act as a barrier. ZnO NPs contributed in restricting the exchange
of carbon dioxide and oxygen during the respiration process. Li et al. [11] provided confirmation by
establishing that the oxygen transmission rate of normal packaging exceeded that of ZnO NPs-based
packaging. ZnO coatings with NPs exhibited selective gas permeability and reduced the exchange
of O2 and CO2 in fruit. Moreover, the ZnO NPs filler in the coating solution presented the ability to
improve the barrier properties of the polymers by increasing pathway irregularity [149].

5. Applications of ECF with NPs on the Quality of Fruits and Vegetables

5.1. Induction Defense Properties of ECF with NPs

During the entire storage period, reactive oxygen with a stronger oxidizing ability caused severe
damage to the cell membranes of fresh produce. Defense enzymes such as peroxidase (POD), superoxide
dismutase (SOD) and catalase (CAT) were able to remove the factors leading to degradation [1,4,93].
Furthermore, Hong et al. [150] reported that lipid peroxidation, an oxidation process that produces
unsaturated fatty acids via free radical action, was harmful to pulp cells [21]. The ECF with NPs
could possibly reduce the free radicals and activate the defense-related enzymes in fruits, which
could be attributed to the individual or combined action of coating carriers and NPs (Figure 6) [4,93].
Moreover, CS treatment induced a significant increase in the activities of CAT and SOD, and inhibited
the production of superoxide radicals, which possibly delayed content modifications in MDA and the
cell membrane permeability of fruit [94,150]. This efficacy was dependent on the concentration of CS
used. The molecular weight of CS might attribute to the antioxidative influence of active compounds
in the coating film and the transfer of free electrons from the peroxide to the CS electron sink [1,4,151].
Singh et al. [152] indicated that no significant loss was evident in the moisture content of vegetables
from NPs-impregnated packets, but the loss in those without the addition of AgNPs impregnation was
considerable. The control of moisture content and the nutritional profile in pockets containing NPs
might be related to the cell permeability of vegetables.

5.2. Metal-Ion Release and Migration Properties of NPs from ECF

Free metal-ions released from the surface of carriers played an antimicrobial role in eradicating
microorganisms on the exterior of agricultural products [97]. An investigation by Cano et al. [78]
indicated that the simulants A (ethanol 10% (v/v)), C (ethanol 20%(v/v)), and D1 (ethanol 50% (v/v))
displayed similar release profiles of silver, while simulants B (acetic acid, 3% (w/v), with low pH)
and D2 (oleic acid as a vegetal oil, non-polar medium) behaved differently. The release of silver was
encouraged by the water absorption of the film in aqueous systems. Most of the release occurred
within the first 60 min, while 100% of the silver was released following 60 min of immersion in the
acidic medium (simulant B). Furthermore, Liu et al. [110] examined the silver ions released from the
Ag/TiO2 composite films, and noted a rapid increase in the released quantities during the first five
days, followed by a steady decline in the release rate. Additionally, Wei et al. [97] established that Cu
ion concentrations were released from the plastic coatings at 1 wt.%, while the release rate gradually
declined after 5 h. According to Salarbashi et al. [54], no TiO2 was detected by inductively coupled
plasma optical emission spectroscopy (ICP-OES) in bread samples covered with SSPS/TiO2 film and
kept in storage for six months. A minuscule amount of TiO2 released from the NC films was observed
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in water. More importantly, long-term exposure of cells to uncoated NPs elicited that the presence
of TiO2 NPs were in the plasma membrane of the epithelial cell line. Liu et al. [110] determined that
a slower release behavior of silver ions occurred in mesoporous Ag/TiO2 films in comparison with
bulk matrixes.

The release of NPs or metal-ions into a system is affected by various factors. These factors include,
but are not limited to the microstructure of the coating carrier, the particle and ion diffusion to the
medium via the polymer, medium migration to the polymer matrix and its expansion, as well as the
polymer solubility in the medium phase [78]. Moreover, the polymer chains might be rearranged
by increasing the immersion and storage times. This process could increase the intermolecular
interactions, decrease the mobility of polymer chains, and control the dissolved and released NPs
to some extent [54,78]. Furthermore, as indicated by Cano et al. [78], different release behaviors in
the non-polar simulant might be induced by the limited diffusion of oleic acid in the polar matrix by
maintaining a closed network structure for the carrier matrix. However, by increasing the ethanol
concentrations in the stimulant, the polarity of medium could be reduced and the hydration process of
the polymer network could be controlled, and possibly silver diffusion was reduced. On the other
hand, the film compositions and initial NPs concentrations also affect the NPs release [99,103]. This
efficacy might further modify the differences in antimicrobial activity due to variations on the surfaces
of free ions or NPs that are thought responsible for inhibiting the microorganisms.

5.3. Effect of ECF with NPs on the Quality of Fruits and Vegetables

Coating film could be used as carriers for metal NPs as antimicrobial agents, as well as protective
barriers, which might reduce the respiration rates, control the decay and color changes, maintain the
storage quality, and prolong the shelf life of fresh produce [4,95].

Xu et al. [5] compared uncoated strawberries and mangos with samples exposed to NC, and
stored at room temperature for 7 d. They found that the coated samples exhibited a lower weight loss
and maintained a better appearance, while polyphenol oxidase (PPO) activity was inhibited by the NC
coating containing GO and CS loaded TiO2. SOD activity in fruits coated with three different types of
NC films exhibited higher values than the untreated samples and consequently, indicating a significant
potential in the food preservation industry.

Chi et al. [57] employed mangoes to determine the effects of PLA/BEO/nano-TiO2 film and
PLA/BEO/nano-TiO2 + nano-Ag film on their quality. Comparison results with PLA and PLA/BEO
films indicated that PLA NC films successfully restricted adverse changes in total acidity, vitamin C
content, and color, while firmness retention in the mangoes was enhanced. Moreover, PLA NC films
inhibited the growth of microorganisms on the mango pericarp. The quality of mangoes exposed to
the PLA NC films remained acceptable following prolonged storage periods, and results showed that
the shelf life of these fruits was extended up to 15 d.

Meindrawana et al. [43] established that on day 13 of storage, the decline in the total acidity of
mangoes exposed to CZ 0.5 and CZ 1 NP coating treatments was significantly lower than that in the
control samples. The CO2 production peak occurred after 7 d of storage, where the mangoes in the
control sample produced the highest level of CO2. Until day 33, minimal degradation was evident in
the mangoes with CZ 0.5 coatings compared to samples without coatings. Compared with carrageenan
coatings, adding ZnO NPs promoted weight loss in the fruit.

According to Costa et al. [153], samples of control (fresh fruit salad without silver-montmorillonite
(Ag-MMT)), 10-NP (fruit salad with 10 mg of Ag-MMT), and 15-NP (fruit salad with 15 mg of Ag-MMT)
exhibited signs of decay before the 20-NP (fruit salad with 20 mg of Ag-MMT) specimen, which were
consistent with the microbiological results. The shelf life of each tested sample was calculated based on
its sensorial and microbial qualities. This experiment found that 20 mg Ag-MMT NPs could maintain
the sensorial characteristics of fresh fruit salad during prolonged storage time.

Yu et al. [20] indicated that jujube coated with CS + nano-SiO2 displayed the lowest red index
value, as well as the lowest respiration rate among all the treatments. Moreover, this composite coating



Molecules 2019, 24, 1695 21 of 30

maintained high SOD, POD, CAT levels, while reducing phenylalanine ammonia-lyase (PAL) activity,
delaying MDA elevation, and preserving the total fruit flavonoids.

Luo et al. [154] obtained similar results by coating freshly cut-asparagus with a combination of CS
and SiOx. Results indicated that the respiration rate and ethylene production rate decreased while
the activities of PAL, PPO, and POD increased rapidly. Moreover, the accumulation of total phenolic
compounds was enhanced, while the same coating application displayed potential effectiveness for the
quality retention of fresh-cut bamboo shoots.

Meng et al. [148] determined that combining of 1.2 g L−1 nano-ZnO coating with ultrasound
treatment at 40KHz prompted a reduced rate of ethylene and CO2 production, water loss, and texture
degradation in fresh-cut kiwi, compared to other treatments at the end of storage. Therefore, this
combination represented a promising approach for maintaining the quality of fresh-cut kiwi.

Song et al. [86] established that the use of CS/nano-silica coating significantly delayed the browning
and weight loss of loquat fruit, and maintained the titratable acid (TA) levels in the fruits. Moreover,
PAL, PPO, and lipoxidase activity were effectively inhibited in the coated fruits. This coating might
sufficiently extend the shelf life of loquat fruit with improving its chilling tolerance in the process.

Ortiz-Duarte et al. [155] demonstrated that compared to uncoated samples, Ag-CS NC coatings
obtained from red claw crayfish successfully maintained a lower respiration rate, controlled the loss
of firmness, retained high total vitamin C content, while reduced translucency and promoted good
sensory characteristics during storage. Therefore, this coating displayed potential as an application in
the fresh produce industry to extend the shelf life of these products.

Shah et al. [156] had investigated the aromatic profile and organoleptic qualities of kinnow
exposed to an AgNPs coating consisting of CMC and guar gum. The sensory qualities of both coated
and uncoated fruit stored at 10 ◦C declined during the storage period. Significant losses of linalool,
limonene, and γ-terpinene content were prevented by the application of gum-Ag coatings and storage
at 4 ◦C. Kinnow coated with the coating kept the sensory quality and fruit aroma for 120 d at a storage
temperature of 4 ◦C.

Shi et al. [21] indicated that fruits treated with the CS-silica NC exhibited significantly less lesion
formation and browning than the control samples. This coating succeeded in preventing weight loss,
while restricted PPO and POD activity in longan during storage. Moreover, by safeguarding the
membrane structure against peroxidation, this coating substantially delayed the formation of MDA,
obstructed the production of TA and restricted Vc loss in fruits. These effectiveness might lead to delay
the senescence and decomposition of fruit.

Singh et al. [152] investigated the biochemical properties of vegetables following exposure to
cellulosic packaging. The retention of freshness during storage was obtained by measuring the moisture
content of the vegetables. Vegetables stored in packaging containing AgNPs were subjected to ethanol
extracts and found to be rich in phenols, proteins, total antioxidants, and flavonoid content. However,
being exposed to packaging containing AgNPs displayed no substantial impact on the nutritional
profile of the vegetables.

The research works discussed in this section indicated that ECF enriched with different NPs could
delay the respiration rate, decrease weight loss, and retain the nutrients and sensory quality of fruits
and vegetables.

6. Future Trends of ECF with NPs

Many materials have been developed to prepare coating films for the storage of fruits and
vegetables recently. The evaluated works on the properties of coating films prepared by various edible
materials are important for their further application in food storage. Therefore, the main benefits and
drawbacks of ECF with different materials, especially complex materials should be demonstrated,
which might provide some important information for further using these NPs in the coating films.

In recent years, nanosized particles as antimicrobial agents incorporated into edible coatings
were the subject of many studies. However, additional research involving the interactions between
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nanosized particles and coating materials are necessary. Moreover, further works about the effect
of these NP addition on the properties of coating materials properties should be understood. These
investigation results might provide insights regarding further improvements to their physical and
antimicrobial properties for practical applications.

The antimicrobial activity of edible coatings containing nanosized particles is a critical factor for
its evaluation and application, while its antibacterial activity and mechanism are popular research
topics. Although the antifungal activity of ECF incorporated with NPs has also been investigated, few
articles about its antifungal mechanism are published. Therefore, the antifungal mechanism, especially
under the induction of UV or visible light requires further investigation.

The toxicity of edible coatings containing nanosized metal particles should be examined extensively
since it possesses the potential to induce allergic reactions, especially in freshly cut products due to
the release and migration of metal ions. On the other hand, the main quality factors of fruits and
vegetables that might be improved or reduced by the application of various ECF with NPs should also
be indicated. Therefore, further research on these subjects are essential.

It is vital for further research to focus on enhancing the consistency of composite coating properties,
and to investigate its effects on the storage quality of fruits and vegetables to establish the standards
for its preparation and application [4]. Further studies involving cost-effective ways to prepare and
apply ECF are necessary.

Following application, the NC can attach uniformly to the pulp pericarps, achieving stability even
when cracks are present. Consequently, bacteria are possibly obstructed from gaining entry to these
spaces. Further research should investigate the toxicity and safety of these coatings, the possibility of
NPs migration from the coating to fruit, as well as the risks involved in human consumption [87].

7. Conclusions

To effectively maintain the storage quality and prolong the shelf life of fresh products, the novel
ECF containing different NPs was developed increasingly as a convenient technique. In this paper,
the properties of main edible-based coating materials were first introduced. Then, the ECF with
NPs such as TiO2, Ag, and ZnO developed by other researchers was reviewed. The antimicrobial
activity of ECF with NPs against the tested microorganism were observed by researchers. Several
antimicrobial mechanisms including the electrostatic interaction between the cationic polymer or free
metal ions and the charged cell membrane, the photocatalytic reaction of NPs and the detachment of
free metal ion are summarized and introduced. Thereafter, a discussion was included on the surface
structure, and mechanical properties of ECF with NPs, which are crucial for its applications of fruits
and vegetables during storage at refrigerated or room temperatures. The properties including gas
modification, induction defense and ion release of ECF with NPs were also discussed. On the other
hand, results from additional works indicated that the applications of ECF with different NPs might
provide a suitable and effective way to prevent the quality loss in postharvest fruits and vegetables.
More importantly, additional research involving the interactions between nanosized particles and
coating materials, and the antifungal mechanism inducted by UV or visible light require for further
investigation. The works on the prepared and used standards and the safety of these coatings also
need to be carried out in the future.

Author Contributions: The contributions of Y.X., W.L. and Q.W. were including design, literature search, and
manuscript writing. The contributions of X.L. (Xuanlin Li) and Q.X. were including literature search, literature
analyzed, and manuscript writing. The contributions of X.G., X.B. and X.L. (Xiaocui Liu) were including figures
drawing and manuscript writing. The contributions of Y.S. and H.L. were including literature summary and
graphs drawing. The contributions of H.Y. were literature analysis and figures drawing.

Funding: This work is supported by the Science and Technology Support Program of Yibin (2018ZSF002), Science
and Technology Support Program of Sichuan (2019NZZJ0028, 2018NZ0090, and 2016FZ0019), Chengdu Science and
Technology Project-key Research and Development Program (2018-YF05-00213-SN), Chunhui Program Research
Project from Education Ministry of China (Z2017063), Sichuan Provincial Key Laboratory Open Fund Project
(GR-2018-E-01), and Innovation Team Construction Program of Sichuan Education Department (15TD0017).



Molecules 2019, 24, 1695 23 of 30

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Xing, Y.; Xu, Q.; Yang, S.X.; Chen, C.; Tang, Y.; Sun, S.; Li, X. Preservation mechanism of chitosan-based
coating with cinnamon oil for fruits storage based on sensor data. Sensors 2017, 16, 1111. [CrossRef] [PubMed]

2. Ren, Y.; Zhang, S. Effect of carboxymethyl cellulose and alginate coating combined with brewer yeast on
postharvest grape preservation. ISRN Agron. 2013, 2013, 871396.

3. Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan.
Int. J. Biol. Macromol. 2016, 85, 467–475. [CrossRef]

4. Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-based coating with antimicrobial
agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J.
Polym. Sci. 2016, 2016, 4851730. [CrossRef]

5. Xu, W.; Xie, W.; Huang, X.; Chen, X.; Huang, N.; Wang, X.; Liu, J. The graphene oxide and chitosan biopolymer
loads TiO2 for antibacterial and preservative research. Food Chem. 2017, 221, 267–277. [CrossRef] [PubMed]

6. Castillo, L.A.; López, O.V.; Ghilardi, J.; Villar, M.A.; Barbosa, S.E.; García, M.A. Thermoplastic starch/talc
bionanocomposites. Influence of particle morphology on final properties. Food Hydrocoll. 2015, 51, 432–440.
[CrossRef]

7. Shahabi-Ghahfarrokhi, I.; Khodaiyan, F.; Mousavi, M.; Yousefi, H. Green bionanocomposite based on kefiran
and cellulose nanocrystals produced from beer industrial residues. Int. J. Biol. Macromol. 2015, 77, 85–91.
[CrossRef] [PubMed]

8. Goudarzi, V.; Shahabi-Ghahfarrokhi, I.; Babaei-Ghazvini, A. Preparation of ecofriendly UV-protective food
packaging material by starch/TiO2 bio-nanocomposite: Characterization. Int. J. Biol. Macromol. 2017, 95,
306–313. [CrossRef]

9. Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; Berardis, B.D.; Guittard, F.; Rossi, F.
Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids
Surf. A Physicochem. Eng. Asp. 2012, 395, 145–151. [CrossRef]

10. Shahabi-Ghahfarrokhi, I.; Khodaiyan, F.; Mousavi, M.; Yousefi, H. Preparation of UV-protective
kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. Int. J. Biol. Macromol. 2015,
72, 41–46. [CrossRef]

11. Li, J.H.; Hong, R.Y.; Li, M.Y.; Li, H.Z.; Zheng, Y.; Ding, J. Effects of ZnO nanoparticles on the mechanical and
antibacterial properties of polyurethane coatings. Prog. Org. Coat. 2009, 64, 504–509. [CrossRef]

12. Xing, Y.; Li, X.; Zhang, L.; Xu, Q.; Che, Z.; Li, W.; Li, K. Effect of TiO2 nanoparticles on the antibacterial and
physical properties of polyethylene-based film. Prog. Org. Coat. 2012, 73, 219–224. [CrossRef]

13. Carvalho, P.; Sampaio, P.; Azevedo, S.; Vaz, C.; Espinós, J.P.; Teixeira, V.; Carneiro, J.O. Influence of thickness
and coatings morphology in the antimicrobial performance of zinc oxide coatings. Appl. Surf. Sci. 2014, 307,
548–557. [CrossRef]

14. Cano, L.; Pollet, E.; Avérous, L.; Tercjak, A. Effect of TiO2 nanoparticles on the properties of thermoplastic
chitosan-based nano-biocomposites obtained by mechanical kneading. Compos. Part A Appl. Sci. Manuf.
2017, 93, 33–40. [CrossRef]

15. Yemmireddy, V.K.; Hung, Y.-C. Effect of binder on the physical stability and bactericidal property of titanium
dioxide (TiO2) nanocoatings on food contact surfaces. Food Control 2015, 57, 82–88. [CrossRef]

16. Li, H.; Li, F.; Wang, L.; Sheng, J.; Xin, Z.; Zhao, L.; Xiao, H.; Zheng, Y.; Hu, Q. Effect of nano-packing on
preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem. 2009, 114,
547–552. [CrossRef]

17. Davoodbasha, M.; Kim, S.-C.; Lee, S.-Y.; Kim, J.-W. The facile synthesis of chitosan-based silver
nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy. Arch. Biochem.
Biophys. 2016, 605, 49–58. [CrossRef]

18. Andrade, P.F.; de Faria, A.F.; da Silva, D.S.; Bonacin, J.A.; Gonçalves, M.D.C. Structural and morphological
investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surf. B 2014, 118, 289–297. [CrossRef]

19. Shankar, S.; Teng, X.; Li, G.; Rhim, J.-W. Preparation, characterization, and antimicrobial activity of gelatin/ZnO
nanocomposite films. Food Hydrocoll. 2015, 45, 264–271. [CrossRef]

http://dx.doi.org/10.3390/s16071111
http://www.ncbi.nlm.nih.gov/pubmed/27438841
http://dx.doi.org/10.1016/j.ijbiomac.2016.01.022
http://dx.doi.org/10.1155/2016/4851730
http://dx.doi.org/10.1016/j.foodchem.2016.10.054
http://www.ncbi.nlm.nih.gov/pubmed/27979202
http://dx.doi.org/10.1016/j.foodhyd.2015.05.030
http://dx.doi.org/10.1016/j.ijbiomac.2015.02.055
http://www.ncbi.nlm.nih.gov/pubmed/25797402
http://dx.doi.org/10.1016/j.ijbiomac.2016.11.065
http://dx.doi.org/10.1016/j.colsurfa.2011.12.020
http://dx.doi.org/10.1016/j.ijbiomac.2014.07.047
http://dx.doi.org/10.1016/j.porgcoat.2008.08.013
http://dx.doi.org/10.1016/j.porgcoat.2011.11.005
http://dx.doi.org/10.1016/j.apsusc.2014.04.072
http://dx.doi.org/10.1016/j.compositesa.2016.11.012
http://dx.doi.org/10.1016/j.foodcont.2015.04.009
http://dx.doi.org/10.1016/j.foodchem.2008.09.085
http://dx.doi.org/10.1016/j.abb.2016.01.013
http://dx.doi.org/10.1016/j.colsurfb.2014.03.032
http://dx.doi.org/10.1016/j.foodhyd.2014.12.001


Molecules 2019, 24, 1695 24 of 30

20. Yu, Y.; Zhang, S.; Ren, Y.; Li, H.; Zhang, X.; Di, J. Jujube preservation using chitosan film with nano-silicon
dioxide. J. Food Eng. 2012, 113, 408–414. [CrossRef]

21. Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical
characteristics of longan fruit under ambient temperature. J. Food Eng. 2013, 118, 125–131. [CrossRef]

22. Sorrentino, A.; Gorrasi, G.; Vittoria, V. Potential perspectives of bio-nanocomposites for food packaging
applications. Trends Food Sci. Technol. 2007, 18, 84–95. [CrossRef]

23. Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food
applications. Food Chem. 2009, 114, 1173–1182. [CrossRef]

24. Falguera, V.; Quintero, P.J.; Jiménez, A.; Muñoz, J.A.; Ibarza, A. Edible films and coatings: Structures, active
functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [CrossRef]

25. Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh
food packaging. J. King Saud Univ. Sci. 2016, 28, 273–279. [CrossRef]

26. Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.K.
Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26,
1201–1214. [CrossRef] [PubMed]

27. Sothornvit, R. Nanostructured materials for food packaging systems: New functional properties. Curr. Opin.
Food Sci. 2019, 25, 82–87. [CrossRef]

28. Abdou, E.S.; Nagy, K.S.A.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from local
sources. Bioresour. Technol. 2008, 99, 1359–1367. [CrossRef] [PubMed]

29. Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll.
2011, 25, 170–179. [CrossRef]

30. Friedman, M.; Juneja, V.K. Review of antimicrobial and antioxidative activities of chitosans in food. J. Food
Prot. 2010, 73, 1737–1761. [CrossRef]

31. Banerjee, M.; Mallick, S.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S. Heightened reactive oxygen species
generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite.
Langmuir 2010, 26, 5901–5908. [CrossRef] [PubMed]

32. Oleyaei, S.A.; Zahedi, Y.; Ghanbarzadehd, B.; Moayedi, A.A. Modification of physicochemical and thermal
properties of starch films by incorporation of TiO2 nanoparticles. Int. J. Biol. Macromol. 2016, 89, 256–264.
[CrossRef] [PubMed]

33. Otoni, C.G.; Avena-Bustillos, R.J.; De Azeredo, H.M.C.; Lorevice, M.V.; de Moura, M.R.; Mattoso, L.H.C.;
McHugh, T. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci.
Food Saf. 2017, 16, 1151–1169. [CrossRef]

34. Goudarzi, V.; Shahabi-Ghahfarrokhi, I. Photo-producible and photo-degradable starch/TiO2

bionanocomposite as a food packaging material: Development and characterization. Int. J. Biol. Macromol.
2018, 106, 661–669. [CrossRef] [PubMed]

35. Torres, F.G.; Troncoso, O.P.; Torres, C.; Díaz, D.A.; Amaya, E. Biodegradability and mechanical properties of
starch films from Andean crops. Int. J. Biol. Macromol. 2011, 48, 603–606. [CrossRef] [PubMed]

36. Almasi, B.; Ghanbarzadeh, B.; Entezami, A.A. Physicochemical properties of starch-CMC-nanoclay
biodegradable films. Int. J. Biol. Macromol. 2010, 46, 1–5. [CrossRef]

37. Pelissari, F.M.; Yamashita, F.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E.; Grossmann, M.V.E. Constrained
mixture design applied to the development of cassava starch-chitosan blown films. J. Food Eng. 2012, 108,
262–267. [CrossRef]

38. Du, Y.; Wang, L.; Mu, R.; Wang, Y.; Li, Y.; Wu, D.; Wu, C.; Pang, J. Fabrication of novel Konjac
glucomannan/shellac film with advanced functions for food packaging. Int. J. Biol. Macromol. 2019,
131, 36–42. [CrossRef]

39. Weththimuni, M.L.; Capsoni, D.; Malagodi, M.; Milanese, C.; Licchelli, M. Shellac/nanoparticles dispersions
as protective materials for wood. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1058. [CrossRef]

40. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754.
[CrossRef] [PubMed]

41. Jaiswal, S.; Duffy, B.; Jaiswal, A.K.; Stobie, N.; McHale, P. Enhancement of the antibacterial properties of
silver nanoparticles using beta-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents 2010, 36, 280–283.
[CrossRef]

http://dx.doi.org/10.1016/j.jfoodeng.2012.06.021
http://dx.doi.org/10.1016/j.jfoodeng.2013.03.029
http://dx.doi.org/10.1016/j.tifs.2006.09.004
http://dx.doi.org/10.1016/j.foodchem.2008.11.047
http://dx.doi.org/10.1016/j.tifs.2011.02.004
http://dx.doi.org/10.1016/j.jksus.2016.05.004
http://dx.doi.org/10.1016/j.jfda.2018.06.011
http://www.ncbi.nlm.nih.gov/pubmed/30249319
http://dx.doi.org/10.1016/j.cofs.2019.03.001
http://dx.doi.org/10.1016/j.biortech.2007.01.051
http://www.ncbi.nlm.nih.gov/pubmed/17383869
http://dx.doi.org/10.1016/j.foodhyd.2010.03.003
http://dx.doi.org/10.4315/0362-028X-73.9.1737
http://dx.doi.org/10.1021/la9038528
http://www.ncbi.nlm.nih.gov/pubmed/20085297
http://dx.doi.org/10.1016/j.ijbiomac.2016.04.078
http://www.ncbi.nlm.nih.gov/pubmed/27132884
http://dx.doi.org/10.1111/1541-4337.12281
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.058
http://www.ncbi.nlm.nih.gov/pubmed/28837851
http://dx.doi.org/10.1016/j.ijbiomac.2011.01.026
http://www.ncbi.nlm.nih.gov/pubmed/21300087
http://dx.doi.org/10.1016/j.ijbiomac.2009.10.001
http://dx.doi.org/10.1016/j.jfoodeng.2011.09.004
http://dx.doi.org/10.1016/j.ijbiomac.2019.02.142
http://dx.doi.org/10.1007/s00339-016-0577-7
http://dx.doi.org/10.1021/cr970022c
http://www.ncbi.nlm.nih.gov/pubmed/11848947
http://dx.doi.org/10.1016/j.ijantimicag.2010.05.006


Molecules 2019, 24, 1695 25 of 30

42. Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S.M.;
Khaksar, R. Characterization of κ-carrageenan films incorporated plant essential oils with improved
antimicrobial activity. Carbohydr. Polym. 2014, 101, 582–591. [CrossRef] [PubMed]

43. Meindrawan, B.; Suyatma, N.E.; Wardana, A.A.; Pamela, V.Y. Nanocomposite coating based on carrageenan
and ZnO nanoparticles to maintain the storage quality of mango. Food Packag. Shelf Life 2018, 18, 140–146.
[CrossRef]

44. Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. Development and characterization of the kefiran-whey
protein isolate-TiO2 nanocomposite films. Int. J. Biol. Macromol. 2014, 65, 340–345. [CrossRef]

45. Sabaghi, M.; Maghsoudlou, Y.; Habibi, P. Enhancing structural properties and antioxidant activity of kefiran
films by chitosan addition. Food Struct. 2015, 5, 66–71. [CrossRef]

46. Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. The improvement of characteristics of biodegradable
films made from kefiran-whey protein by nanoparticle incorporation. Carbohydr. Polym. 2014, 109, 118–125.
[CrossRef]

47. Hasheminya, S.-M.; Mokarram, R.R.; Ghanbarzadeh, B.; Hamishekar, H.; Kafil, H.S. Physicochemical,
mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose
biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packag. Shelf Life 2018, 17,
196–204. [CrossRef]

48. Dashipour, A.; Razavilar, V.; Hosseini, H.; Shojaee-Aliabadi, S.; German, J.B.; Ghanati, K. Antioxidant and
antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol.
2015, 72, 606–613. [CrossRef] [PubMed]

49. Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M.; Coma, V. Preparation and characterization
of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles.
Int. J. Biol. Macromol. 2017, 99, 530–538. [CrossRef] [PubMed]

50. Achachlouei, B.F.; Zahedi, Y. Fabrication and characterization of CMC-based nanocomposites reinforced
with sodium montmorillonite and TiO2 nanomaterials. Carbohydr. Polym. 2018, 199, 415–425. [CrossRef]
[PubMed]

51. Teymourpour, S.; Nafchi, A.M.; Nahidi, F. Functional, thermal, and antimicrobial properties of soluble
soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr. Polym. 2015, 134, 726–731.

52. Akbariazam, M.; Ahmadi, M.; Javadian, N.; Nafchi, A.M. Fabrication and characterization of soluble soybean
polysaccharide and nanorod-rich ZnO bionanocomposite. Int. J. Biol. Macromol. 2016, 89, 369–375. [CrossRef]
[PubMed]

53. Tajik, S.; Maghsoudlou, Y.; Khodaiyan, F.; Jafari, S.M.; Ghasemlou, M.; Aalami, M. Soluble soybean
polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging.
Carbohydr. Polym. 2013, 97, 817–824. [CrossRef]

54. Salarbashi, D.; Tafaghodi, M.; Bazzaz, B.S.F. Soluble soybean polysaccharide/TiO2 bionanocomposite film for
food application. Carbohydr. Polym. 2018, 186, 384–393. [CrossRef]

55. Liu, D.; Li, Z.; Fan, Z.; Zhang, X.; Zhong, G. Effect of soybean soluble polysaccharide on the pasting, gels,
and rheological properties of kudzu and lotus starches. Food Hydrocoll. 2019, 89, 443–452. [CrossRef]

56. Mallegni, N.; Phuong, V.T.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A. Poly(lactic acid) (PLA) based tear resistant
and biodegradable flexible films by blown film extrusion. Materials 2018, 11, 148. [CrossRef]

57. Chi, H.; Song, S.; Luo, M.; Zhang, C.; Li, W.; Li, L.; Qin, Y. Effect of PLA nanocomposite films containing
bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci. Hortic. 2019,
249, 192–198. [CrossRef]

58. Zhu, J.Y.; Tang, C.H.; Yin, S.W.; Yang, X.Q. Development and characterization of novel antimicrobial bilayer
films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [CrossRef]
[PubMed]

59. Qin, Y.; Zhuang, Y.; Wu, Y.; Li, L. Quality evaluation of hot peppers stored in biodegradable poly(lactic
acid)-based active packaging. Sci. Hortic. 2016, 202, 1–8. [CrossRef]

60. Yusoff, R.B.; Takagi, H.; Nakagaito, A.N. Tensile and flexural properties of polylactic acid-based hybrid green
composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod. 2016, 94, 562–573. [CrossRef]

61. Valerini, D.; Tammaro, L.; Benedetto, F.D.; Vigliotta, G.; Capodieci, L.; Terzi, R.; Rizzoa, A. Aluminum-doped
zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Films 2018, 645,
187–192. [CrossRef]

http://dx.doi.org/10.1016/j.carbpol.2013.09.070
http://www.ncbi.nlm.nih.gov/pubmed/24299814
http://dx.doi.org/10.1016/j.fpsl.2018.10.006
http://dx.doi.org/10.1016/j.ijbiomac.2014.01.010
http://dx.doi.org/10.1016/j.foostr.2015.06.003
http://dx.doi.org/10.1016/j.carbpol.2014.03.018
http://dx.doi.org/10.1016/j.fpsl.2018.07.003
http://dx.doi.org/10.1016/j.ijbiomac.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25220790
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.007
http://www.ncbi.nlm.nih.gov/pubmed/28267614
http://dx.doi.org/10.1016/j.carbpol.2018.07.031
http://www.ncbi.nlm.nih.gov/pubmed/30143147
http://dx.doi.org/10.1016/j.ijbiomac.2016.04.088
http://www.ncbi.nlm.nih.gov/pubmed/27151666
http://dx.doi.org/10.1016/j.carbpol.2013.05.037
http://dx.doi.org/10.1016/j.carbpol.2017.12.081
http://dx.doi.org/10.1016/j.foodhyd.2018.11.003
http://dx.doi.org/10.3390/ma11010148
http://dx.doi.org/10.1016/j.scienta.2019.01.059
http://dx.doi.org/10.1016/j.carbpol.2017.11.085
http://www.ncbi.nlm.nih.gov/pubmed/29254029
http://dx.doi.org/10.1016/j.scienta.2016.02.003
http://dx.doi.org/10.1016/j.indcrop.2016.09.017
http://dx.doi.org/10.1016/j.tsf.2017.10.038


Molecules 2019, 24, 1695 26 of 30

62. Liu, Z.; Cao, X.; Ren, S.; Wang, J.; Zhang, H. Physicochemical characterization of a zein prepared using a
novel aqueous extraction technology and tensile properties of the zein film. Ind. Crop. Prod. 2019, 130, 57–62.
[CrossRef]

63. Ozcalik, O.; Tihminlioglu, F. Barrier properties of corn zein nanocomposite coated polypropylene films for
food packaging applications. J. Food Eng. 2013, 114, 505–513. [CrossRef]

64. Kadam, D.M.; Thuna, M.; Srinivasan, G.; Wang, S.; Kessler, M.R.; Grewell, D.; Yu, C.; Lamsal, B. Effect of
TiO2 nanoparticles on thermo-mechanical properties of cast zein protein films. Food Packag. Shelf Life 2017,
13, 35–43. [CrossRef]

65. Anderson, T.J.; Ilankovan, P.; Lamsal, B.P. Two fraction extraction ofα-zein from DDGS and its characterization.
Ind. Crop. Prod. 2012, 37, 466–472. [CrossRef]

66. Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and characterization of the bionanocomposite
film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary
essential oil. Ind. Crop. Prod. 2018, 124, 300–315. [CrossRef]

67. Yoo, S.; Krochta, J.M. Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal
and transparency properties. J. Sci. Food Agric. 2011, 91, 2628–2636. [CrossRef]

68. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33,
1819–1841. [CrossRef]

69. Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. Characterization of the new biodegradable WPI/clay
nanocomposite films based on kefiran exopolysaccharide. J. Food Sci. Technol. 2015, 52, 3485–3493. [CrossRef]
[PubMed]

70. Xing, Y.G.; Li, X.H.; Xu, Q.L.; Yun, J.; Lu, Y.Q. Antifungal activities of cinnamon oil against Rhizopus nigricans,
Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Int. J. Food Sci. Technol. 2010, 45,
1837–1842. [CrossRef]

71. Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of
silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [CrossRef] [PubMed]

72. Zhang, C.; Li, W.; Zhu, B.; Chen, H.; Chi, H.; Li, L.; Qin, Y.; Xue, J. The quality evaluation of postharvest
strawberries stored in Nano-Ag packages at refrigeration temperature. Polymers 2018, 10, 894. [CrossRef]
[PubMed]

73. Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y.L.; Wang, H. Enhanced physicochemical properties of
chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr.
Polym. 2016, 138, 59–65. [CrossRef] [PubMed]

74. Oleyaei, S.A.; Almasi, H.; Ghanbarzadeh, B.; Moayedi, A.A. Synergistic reinforcing effect of TiO2 and
montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.
Carbohydr. Polym. 2016, 152, 253–262. [CrossRef] [PubMed]

75. Mathew, T.V.; Kuriakose, S. Photochemical and antimicrobial properties of silver nanoparticle-encapsulated
chitosan functionalized with photoactive groups. Mater. Sci. Eng. C 2013, 33, 4409–4415. [CrossRef]

76. Lin, S.; Chen, L.; Huang, L.; Cao, S.; Luo, X.; Liu, K. Novel antimicrobial chitosan-cellulose composite films
bioconjugated with silver nanoparticles. Ind. Crop. Prod. 2015, 70, 395–403. [CrossRef]

77. Kumar-Krishnan, S.; Prokhorov, E.; Hernández-Iturriaga, M.; Mota-Morales, J.D.; Vázquez-Lepe, M.;
Kovalenko, Y.; Luna-Bárcenas, G. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver
nanoparticles and silver ions. Eur. Polym. J. 2015, 67, 242–251. [CrossRef]

78. Cano, A.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development and characterization of active films
based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life 2016, 10, 16–24. [CrossRef]

79. Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.N. Enhanced mechanical, thermal and antimicrobial properties of
poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr. Polym. 2016, 153, 592–599.
[CrossRef]

80. Orsuwan, A.; Shankar, S.; Wang, L.-F.; Sothornvit, R.; Rhim, J.-W. Preparation of antimicrobial agar/banana
powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 2016, 60, 476–485. [CrossRef]

81. Malini, M.; Thirumavalavan, M.; Yang, W.Y.; Lee, J.F.; Annadurai, G. A versatile chitosan/ZnO nanocomposite
with enhanced antimicrobial properties. Int. J. Biol. Macromol. 2015, 80, 121–129. [CrossRef] [PubMed]

82. Nafchi, A.M.; Alias, A.K.; Mahmud, S.; Robal, M. Antimicrobial, rheological, and physicochemical properties
of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng. 2012, 113, 511–519. [CrossRef]

http://dx.doi.org/10.1016/j.indcrop.2018.12.071
http://dx.doi.org/10.1016/j.jfoodeng.2012.09.005
http://dx.doi.org/10.1016/j.fpsl.2017.06.001
http://dx.doi.org/10.1016/j.indcrop.2011.07.022
http://dx.doi.org/10.1016/j.indcrop.2018.08.001
http://dx.doi.org/10.1002/jsfa.4502
http://dx.doi.org/10.1016/j.msec.2013.01.010
http://dx.doi.org/10.1007/s13197-014-1407-6
http://www.ncbi.nlm.nih.gov/pubmed/26028730
http://dx.doi.org/10.1111/j.1365-2621.2010.02342.x
http://dx.doi.org/10.1007/s00253-009-2159-5
http://www.ncbi.nlm.nih.gov/pubmed/19669753
http://dx.doi.org/10.3390/polym10080894
http://www.ncbi.nlm.nih.gov/pubmed/30960818
http://dx.doi.org/10.1016/j.carbpol.2015.11.031
http://www.ncbi.nlm.nih.gov/pubmed/26794738
http://dx.doi.org/10.1016/j.carbpol.2016.07.040
http://www.ncbi.nlm.nih.gov/pubmed/27516271
http://dx.doi.org/10.1016/j.msec.2013.06.037
http://dx.doi.org/10.1016/j.indcrop.2015.03.040
http://dx.doi.org/10.1016/j.eurpolymj.2015.03.066
http://dx.doi.org/10.1016/j.fpsl.2016.07.002
http://dx.doi.org/10.1016/j.carbpol.2016.08.026
http://dx.doi.org/10.1016/j.foodhyd.2016.04.017
http://dx.doi.org/10.1016/j.ijbiomac.2015.06.036
http://www.ncbi.nlm.nih.gov/pubmed/26111911
http://dx.doi.org/10.1016/j.jfoodeng.2012.07.017


Molecules 2019, 24, 1695 27 of 30

83. Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. Properties and antimicrobial activity of
fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food
Hydrocoll. 2014, 41, 265–273. [CrossRef]

84. Espitia, P.J.P.; Soares, N.F.F.; Teofilo, R.F.; Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreirac, S.O.; de
Andrade, N.J.; Medeiros, E.A.A. Physical-mechanical and antimicrobial properties of nanocomposite films
with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [CrossRef] [PubMed]

85. Sun, T.; Wu, C.L.; Hao, H.; Dai, Y.; Li, J.R. Preparation and preservation properties of the chitosan coatings
modified with the in situ synthesized nano SiOx. Food Hydrocoll. 2016, 54, 130–138. [CrossRef]

86. Song, H.; Yuan, W.; Peng, J.; Wei, W.; Wang, X.; Yang, L.; Zhang, Y. Effects of chitosan/nano-silica on
postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biol. Technol.
2016, 119, 41–48. [CrossRef]

87. Lin, B.; Luo, Y.; Teng, Z.; Zhang, B.; Zhou, B.; Wang, Q. Development of silver/titanium dioxide/chitosan
adipate nanocomposite as an antibacterial coating for fruit storage. LWT Food Sci. Technol. 2015, 63, 1206–1213.
[CrossRef]

88. Li, L.-H.; Deng, J.-C.; Deng, H.-R.; Liu, Z.-L.; Li, X.-L. Preparation, characterization and antimicrobial
activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 2010, 160, 378–382. [CrossRef]
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