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There is an increasing demand for automatic classification of standard 12-lead
electrocardiogram signals in the medical field. Considering that different channels and
temporal segments of a feature map extracted from the 12-lead electrocardiogram record
contribute differently to cardiac arrhythmia detection, and to the classification
performance, we propose a 12-lead electrocardiogram signal automatic classification
model based onmodel fusion (CBi-DF-XGBoost) to focus on representative features along
both the spatial and temporal axes. The algorithm extracts local features through a
convolutional neural network and then extracts temporal features through bi-directional
long short-term memory. Finally, eXtreme Gradient Boosting (XGBoost) is used to fuse the
12-leadmodels and domain-specific features to obtain the classification results. The 5-fold
cross-validation results show that in classifying nine categories of electrocardiogram
signals, the macro-average accuracy of the fusion model is 0.968, the macro-average
recall rate is 0.814, the macro-average precision is 0.857, the macro-average F1 score is
0.825, and the micro-average area under the curve is 0.919. Similar experiments with
some common network structures and other advanced electrocardiogram classification
algorithms show that the proposed model performs favourably against other counterparts
in F1 score. We also conducted ablation studies to verify the effect of the complementary
information from the 12 leads and the auxiliary information of domain-specific features on
the classification performance of the model. We demonstrated the feasibility and
effectiveness of the XGBoost-based fusion model to classify 12-lead electrocardiogram
records into nine common heart rhythms. These findings may have clinical importance for
the early diagnosis of arrhythmia and incite further research. In addition, the proposed
multichannel feature fusion algorithm can be applied to other similar physiological signal
analyses and processing.

Keywords: electrocardiogram (ECG), classification algorithm, physiological signal processing, bioengineering,
model fusion, extreme gradient boosting (xgboost), 12-lead

Edited by:
Linwei Wang,

Rochester Institute of Technology,
United States

Reviewed by:
Philip Warrick,
Other, Canada

Prashnna Gyawali,
Stanford University, United States

*Correspondence:
Qiang Lu

scilq@jmu.edu.cn

Specialty section:
This article was submitted to

Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 24 December 2021
Accepted: 28 March 2022
Published: 14 April 2022

Citation:
Ye X, Huang Y and Lu Q (2022)

Automatic Multichannel
Electrocardiogram Record

Classification Using XGBoost
Fusion Model.

Front. Physiol. 13:840011.
doi: 10.3389/fphys.2022.840011

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8400111

ORIGINAL RESEARCH
published: 14 April 2022

doi: 10.3389/fphys.2022.840011

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.840011&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/articles/10.3389/fphys.2022.840011/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.840011/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.840011/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.840011/full
http://creativecommons.org/licenses/by/4.0/
mailto:scilq@jmu.edu.cn
https://doi.org/10.3389/fphys.2022.840011
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.840011


1 INTRODUCTION

Cardiovascular diseases (CVDs) are the most common cause of
death, accounting for more than 31% of the world’s deaths (Roth
et al., 2018). Among these diseases, more than 80% of sudden
cardiac deaths are closely related to cardiac arrhythmia (CA)
(Anderson et al., 2010), accounting for half of all cardiac deaths.
Moreover, many types of CA are life-threatening and are possibly
caused by various cardiac diseases, such as cardiomyopathy,
myocardial infarction and myocarditiss (Afonso and
Tompkins, 1995; Minami et al., 1999). Therefore,
automatically identifying and classifying electrocardiogram
(ECG) (Joshi et al., 2014) data using computers can improve
the efficiency and accuracy of CA diagnosis and relieve doctors
from the tedious work of pattern recognition. It is the foundation
of machine-aided diagnosis and treatment of cardiovascular
diseases and lays an important foundation for the future
development of wearable devices.

The traditional classification method of ECG signals based on
feature extraction requires human experts to engineer useful
features based on raw ECG data, which are referred to as
“expert features”. Then, deployed decision rules or other
machine learning (ML) methods generate the final results.
Expert features can be categorized into statistical features
[such as sample entropy (Alcaraz et al., 2010), heart rate
variability (HRV) (Malik et al., 1996), and coefficients of
variation and density histograms (Tateno and Glass, 2001)],
frequency-domain features (Lin, 2008) and time-domain
features. However, such traditional methods have reached their
limit on performance because they are restricted by data quality
and human expert knowledge (Schläpfer and Wellens, 2017).
Recently, deep neural networks (DNNs) have proven their
potential for different classification tasks (Ker et al., 2018; Ker
et al., 2019a; Ker et al., 2019b; Yadav and Jadhav, 2019). In
contrast from traditional methods, DNNs can learn a feature
extraction function from the raw input based on the probability
distribution of the dataset. They have also been applied to ECG
processing and have achieved an outstanding performance
(Baloglu et al., 2019; Hannun et al., 2019).

A recent study (Hannun et al., 2019)showed that for single-
lead ECGs, DNNs could match state-of-the-art algorithms when
trained on openly available datasets, and for a sufficiently large
training dataset, DNNs present superior performance when
compared to practising cardiologists. However, as Hannun
et al. pointed out, it is still an open question whether the
application of this technology would be useful in a realistic
clinical setting. In a realistic clinical setting, 12-lead ECGs
(S12L-ECGs) are the standard, where a complete ECG usually
contains a 12-lead signal from six limb leads (I, II, III, aVR, aVL,
aVF) and six chest leads (V1, V2, V3, V4, V5, V6) (Wilson et al.,
1954). The different leads exhibit distinct features of ECG signals
that are associated with specific types of CA (Ashley and
Niebauer, 2004; Lacalzada-Almeida et al., 2020). Therefore, the
automatic calculation and analysis of the standard S12L-ECG is
becoming increasingly important for medical diagnosis.

Moreover, different network frameworks illustrate different
performances when using deep neural networks to classify S12L-

ECG signals. The results of these works show that combining
convolutional neural network (CNN) (Fukushima and Miyake,
1982) and recurrent neural network (RNN) (Goller and Küchler,
1996) modules is the preferred architecture for handling ECG
signals with varied sequence lengths and multichannel inputs
(Liu et al., 2019; Yildirim et al., 2019; Li et al., 2020; Shaker et al.,
2020). This may be because CNN is an effective method for
extracting features due to its local connectivity and parameter
sharing, and RNN is used for processing time-series signals since
the ECG signal records the time course of cardiac electrical
activities. For example, (Yao et al., 2018) proposed a time-
incremental CNN (TI-CNN) integrating a VGGNet-based
CNN and long short-term memory (LSTM) layers for CA
classification, which utilised recurrent cells to introduce
flexibility in input length for CNN models. This was
important to solve the problem that the varied-length signal
could not be accepted by CNN models. (He et al., 2019)
proposed a model consisting of a deep residual network
(ResNet) and a bi-directional LSTM (BiLSTM) layer, which
obtained a good performance in classifying 9 CA classes
without filtering. Although these architectures based on
combining CNN and RNN modules make good use of the
modules to extract local and temporal features and achieve a
reasonable performance, the following points are ignored in the
architectures. First, periodicity exists in ECG signals, meaning
that localised waveform features and statistical features both
contribute to CA detection and should therefore be
emphasized (Tseng et al., 2016). Second, ECG signals of
different patients under different physical conditions have
distinctive morphological and temporal features (Banerjee and
Mitra, 2014). Therefore, different patients with the same disease
may have diverse ECG morphologies. (Dilmac and Korürek,
2015; Mateo et al., 2016; Shadmand and Mashoufi, 2016).
Third, widely applied S12L-ECG recordings provide richer
information for diagnosing CAs. The different leads of S12L-
ECG exhibit distinct features of ECG signals that are associated
with specific types of CA, so they have different contributions for
detecting CA. For example, left bundle branch block (LBBB) is
diagnosed by distinct QRS morphology at leads I, aVL, V1, V2,
V5, and V6, while right bundle branch block (RBBB) is diagnosed
by the rsR’ pattern at V1 and V2 (Dale, 2000; Surawicz et al., 2009;
Ikeda, 2021); The patient with STD has an S-peak in leads I, V5,
V6, and aVL that are 3 mm lower than the PR segment, and may
have normal rhythms in leads V2-V3 (Fred, 2020). Therefore,
effectively fusing information from 12 leads, along with troubles it
might bring, should be considered in the model design (Jordaens,
2018).

Therefore, we consider the above points and combine the
feature-based method to customize the model according to the
characteristics of 12-lead ECG recording. Specifically, considering
the first point, we add HRV statistical features in our method.
Considering the second point, we add age and sex, which can
reflect more specific patient information for the features.
Considering the third point, we use multiple CNNs to extract
the local features of the pre-processed signal segments, and then
use BiLSTM to enhance the temporal features between ECG
signal segments to obtain a single-lead CNN-BiLSTM network.
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Finally, 12 CNN-BiLSTMs and domain-specific features (DFs:
HRV, age, and sex features) are fused based on eXtreme Gradient
Boosting (XGBoost) to make full use of the information from the

S12L-ECG records. The proposed method classifies S12L-ECG
records into nine categories, including normal signals and eight
abnormal signals of four categories (Li et al., 2018), and
demonstrated a high performance in classifying S12L-ECG
signals.

2 MATERIALS AND METHODS

The flowchart diagram of the proposed S12L-ECG record
classification method is shown in Figure 1, which includes
four parts: data pre-processing, the CNN-BiLSTM deep
learning network, the XGBoost fusion block, and classification.

2.1 Materials
In this study, we use the dataset of the 2018 China Physiological
Signal Challenge (CPSC 2018) (Liu et al., 2018), which is collected
from 11 hospitals. The training set of dataset contains a total of
6877 S12L-ECG records for 3,699 males and 3,178 females. In
addition, there are 2,954 records as a test set which is not public.
Signals were sampled at 500 Hz, and each record contained a
standard S12L-ECG signal, along with the age and sex of the
individual. Figure 2 illustrates the patients’ age distribution. Each
signal has an uncertain length ranging from 6 to 60 s. In this
dataset, the ECG records contain normal heart rhythm and eight
types of CA. Most records have only one label, but some records

FIGURE 1 | Flowchart diagram of the proposed method for S12L-ECG record classification.

FIGURE 2 | The age distribution of the dataset.
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have two or three labels because the patient providing the signals
has multiple diseases at the same time. There are 477 and 203
subjects of this multi-label type in the training and test sets,
respectively. The details of the dataset used are described in
Table 1. For the records with multiple labels, the statistics in
Table 1 are based on the first label.

2.2 Pre-Processing
We pre-process the data before inputting it into the model,
including information separation, downsampling,
oversampling, filtering, signal slicing, and the Z-Score.

2.2.1 Information Separation
In the dataset, each record is a file in mat format. In addition to
the S12L-ECG signal data, the file also contains age and sex
information. We extract age and sex information from the record
files and save them as a csv format file.

2.2.2 Downsampling
The sampling rate of the ECG signal in the dataset is 500 Hz. To
reduce the computational burden, we downsample all signals to
250 Hz. The downsampling operation speeds up the training
process and has almost no loss of information from the ECG
signals.

2.2.3 Oversampling
From the distribution of record types in Table 1, we can see the
sample imbalance in the dataset, which has a negative impact on
training the model. Therefore, we use an oversampling method to
balance different types of data in the dataset. Specifically, we
randomly divides five subsets for each class, and take the category
with the largest number of samples as a reference. When the

sample size of other categories is only half or less of the reference
category, we will directly carry out the corresponding multiple
replication; otherwise, we will randomly select samples in this
category to replicate the missing quantity. This solves the
problem of imbalance, and also processes five subsets for 5-
fold cross-validation.

2.2.4 Filtering
The ECG signal is a weak physiological electrical signal that is
easily disturbed by noise. Wavelet theory has already proven its
ability to split signals and noise in the wavelet domain.
Researchers from the biomedical signal processing community
have applied wavelet theory in denoising and have shown a
superior performance (Alyasseri et al., 2018). The DBN
wavelet basis functions constructed by Daubechies have good
symmetry and regularity and do not easily produce phase
distortion, which makes the reconstructed signal smoother.
Among them, the DB6 wavelet basis function is closer to the
ECG signal and has a better effect on denoising the ECG signal
(Saxena and Vijay, 2020). Therefore, we subjected the ECG signal
to wavelet-based denoising using the DB6 wavelet basis function.
Specifically, we use the DB6 wavelet to decompose the ECG signal
up to nine levels. The ninth level approximation sub-band (the
low frequency component A9) contains a frequency range of
0–0.351 Hz, which is mainly the baseline wander, and is not used
for reconstructing the denoised signal. Additionally, the ECG
would not contain much information after 45 Hz. Therefore, the
first- and second-level detail coefficients (the high-frequency
components D1 and D2) consisting of frequency bands of
90–180 Hz and 4–90 Hz, respectively, are not used for
reconstructing the denoised ECG. The required sub-bands, the
3rd-, 4th-, 5th-, 6th-, 7th-, 8th- and 9th-level detail signals are

TALBE 1 | Data profile for the dataset.

Dataset Type Number of records Time length (s)

Min Median Max Mean SD

Training Set Normal (N) 918 10.00 13.00 60.00 15.43 7.61
Atrial fibrillation (AF) 1,098 9.00 11.00 60.00 15.01 8.39
First-degree atrioventricular block (I-AVB) 704 10.00 11.27 60.00 14.32 7.21
Left bundle branch block (LBBB) 207 9.00 12.00 60.00 14.92 8.09
Right bundle branch block (RBBB) 1,695 10.00 11.19 60.00 14.42 7.60
Premature atrial contraction (PAC) 556 9.00 14.00 60.00 19.46 12.36
Premature ventricular contraction (PVC) 672 6.00 15.00 60.00 20.21 12.85
ST-segment depression (STD) 825 8.00 12.78 60.00 15.13 6.82
ST-segment elevated (STE) 202 10.00 11.89 60.00 17.15 10.72
Total/Average 6,877 6.00 12.00 60.00 15.79 9.04

Test Set Normal (N) 394 — — — 15.91 —

Atrial fibrillation (AF) 469 — — — 17.31 —

First-degree atrioventricular block (I-AVB) 301 — — — 15.34 —

Left bundle branch block (LBBB) 90 — — — 16.51 —

Right bundle branch block (RBBB) 729 — — — 16.53 —

Premature atrial contraction (PAC) 250 — — — 23.06 —

Premature ventricular contraction (PVC) 281 — — — 21.28 —

ST-segment depression (STD) 354 — — — 14.93 —

ST-segment elevated (STE) 86 — — — 22.46 —

Total/Average 2,954 — — — 18.15 —

The mark “—” is filled when the data was not given.
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only used (all other sub-band coefficients were replaced with
zeros) to compute the inverse wavelet transform to obtain the
filtered ECG signal (Martis et al., 2013).

2.2.5 Signal Slicing
The length of the record sequence in the dataset is not fixed with
many long sequences. On the one hand, the longer the length of
the record, the greater the amount of information and
corresponding features. However, if the entire record is input,
to effectively extract the local features of the ECG signal, it is
necessary to configure more convolution kernels in each layer,
which causes the entire network to become very bloated. On the
other hand, the length of the record sequence in the dataset is not
fixed, and CNN generally accepts inputs of the same length. Once
the sequence length has a relatively large variation range, it needs
to be made equal through large artificial extension or up and
down sampling, which will have a certain destructive effect on the
data information. Therefore, it is not appropriate to directly use
the entire record as input. To solve this problem, the record can
be segmented according to heartbeats or divided into short
segments of a certain length. Although the results of the
heartbeat-based algorithm in the ECG signal classification
work are fine enough to be implemented in a single heartbeat,
additional QRS wave detection algorithms or manual positioning
of the heartbeat are required. Thus, the back-end classifier
depends on the specific positioning method. In addition, our
network architecture design requires the same length and the
same number of segment inputs, maintaining the temporal
characteristics between segments. Since the lengths of the ECG
sequences in the dataset are unequal, if the heartbeats are
extracted, the number of heartbeats in each ECG sequence
cannot be the same while maintaining the time characteristics
between the heartbeats.

Therefore, we propose an algorithm to extract 10 segments (6 s
long) from each record sequence in turn and then stack them
again. We determine the category label of the parent ECG as the

FIGURE 3 | Slicing process of the single lead ECG signal sequence.

FIGURE 4 | Architecture of CNN subnetwork. “1-DConv” represents the
1-D convolutional layer, before “at” is the number of convolution kernels, and
after “at” is the convolution kernel size. “Max-Pooling” is the maximum pooling
layer, before “at” is the number of feature maps, and after “at” is the
pooling step size.
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category of the child. For records with multiple labels, we directly
take the first category label of the parent ECG as the category of
the child. In addition, we also apply other segment lengths (such
as 3 and 10 s); however, it proves that 6 s is the optimal choice. As
shown in Table 1, the record length ranges from 6 to 60 s. Thus,
when a segment is 6 s, if the record length is the shortest at 6 s, it
can be copied directly 10 times, minimizing the artificial
expansion. The longest 60 s can cut 10 segments without
overlap. Only the sequence in the middle length will have
varying degrees of overlap between the slice fragments. In this
way, the data in the dataset keep the original information and the
least redundancy as much as possible. After processing, each lead
of each record sequence is a set of 6s × 10 sequence segments,
which still has time features. The slicing process of the single-lead
ECG signal sequence is shown in Figure 3.

2.2.6 Z-Score
For a large average and a wide range of data, it is usually necessary
to standardize the data before entering the network. We use the
Z-Score, which is a commonly used data standardization method,
to standardize the slice fragments. The mean value of the
processed data is 0, and the standard deviation is 1. The
conversion formula is shown in Eq. 1.

xp � x − �x

σ
(1)

where x is the original data, �x is the mean value of the original
data, and σ is the standard deviation of the original data
(Kamphaus, 2000).

2.3 Model Architecture
The proposed model illustrated in Figure 1 is composed of
multiple fully CNN subnetworks, 12 BiLSTM networks and an
XGBoost network. For a set of 6s × 10 sliced segments in each
lead, we designed a simple 1-dimensional (1-D) fully connected
CNN to extract the local features of the ECG sliced segment. Each
lead of the ECG signal corresponds to 10 CNN subnetworks. For
each ECG lead signal, the output of the CNN subnetworks is
spliced in the order of the signal segment as the input of the
BiLSTM network. Following the CNN subnetworks are 12
BiLSTM networks that are used to enhance the temporal
information between ECG signal segments according to the
features of the ECG sequence. Finally, XGBoost is used to fuse
12 CNN-BiLSTMdeep learning networks and corresponding DFs
for each ECG record. Then, we output the final classification
results.

2.3.1 CNN Subnetwork
We use CNNs to extract the local features of the ECG signal
segments. The 10 segments of a lead are input into different
branches as a whole, and each branch is a 1-D CNN network that
processes a 6 s ECG signal segment. The network architecture is
shown in Figure 4. There are four 1-D convolutional (1-D Conv)
layers and three max-pooling layers, which alternately extract
abstract local waveform features in an ECG signal slice segment.
Each convolutional layer is followed by a batch normalization
(BN) layer (Ioffe and Szegedy, 2015) to accelerate the

convergence of the network, prevent gradient diffusion, and to
a certain extent, prevent the influence of overfitting. Use the
rectified linear unit (ReLU) as activation function. Finally, the
global average pooling (GAP) layer replaces the fully connected
layer of the traditional CNN. The GAP layer pools each feature
map of the last convolution to obtain a mean. Pooling operations
do not require parameter updates; thus, the number of
parameters can be reduced, and the network training time can
be shortened. In addition, the GAP layer can in turn act as a
regularisation to prevent overfitting, and the feature semantics
extracted from the convolution and max-pooling layers are
retained, which substantially improves the effect in practical
applications. Nevertheless, it should be noted that the
proposed model was designed to be compatible with a variety
of CNN designs, and in other signal processing problems, the
depth and design of convolutional layers could be adjusted based
on the specific requirements of those problems.

2.3.2 The CNN-BiLSTM Deep Learning Network
RNN is a type of neural network used for processing time-series
signals, and the output of its neurons will act on the output of the
next time period. Since the ECG signal records the time course of
cardiac electrical activities, RNN is also applied for ECG signal
classification. However, RNNs cannot solve the problem of long-
term dependence, and for very long sequences, RNNs will
experience gradient disappearance and gradient explosion. The
LSTM (Hochreiter and Schmidhuber, 1997) proposed for this
problem can learn long-term dependencies. LSTM is a typical
variant of RNN. Based on RNN, LSTM adds three logic control
gate units: an input gate, a forget gate and an output gate. By
controlling the forget gate, input gate, and output gate calculated
according to the current input and the hidden state at the
previous moment, important information is retained and
unimportant information is forgotten, thereby eliminating the

FIGURE 5 | BiLSTM architecture diagram. “w1” ～ “w6” are the six
special weights that are reused at each time step, corresponding respectively:
input to the forward and backward hidden layers (w1, w3), and from the
hidden layer to the hidden layer (w2, w5), forward and backward hidden
layer to output layer (w4, w6).
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gradient dispersion problem that exists in RNN. Although LSTM
solves the long-term dependency problem, it cannot encode back-to-
front information. BiLSTM can evaluate the bi-directional
information of the sequence in the time range, which is a type of
LSTM. Inmanyfields, such as speech recognition (Graves et al., 2013),
natural language processing (Mikolov et al., 2012), and sequence
classification (Ren et al., 2017), BiLSTM performance has surpassed
LSTM. BiLSTM is a combination of forward LSTM and backward
LSTM. A BiLSTMnetwork expanded over time is shown in Figure 5.

BiLSTM uses the forward LSTM to obtain the above
information of the input sequence, uses the backward LSTM
to obtain the following information of the input sequence, and
then calculates the final hidden state through vector splicing,
as in:

hi � ht
→

⊕ ht
←

(2)
where ht

→
is the hidden state of the positive LSTM output at time t.

ht
←

is the hidden state of the reverse LSTM output (Bin et al.,
2019).

For the signal of each ECG lead, the 10 CNN subnetwork outputs
corresponding to the 10 slice segments are spliced according to the
time sequence of the signal segments and used as the input of a
BiLSTMnetwork to enhance the spatiotemporal information between
the segments. Because most of the segments overlap, to reduce
information redundancy to prevent overfitting, this paper adopts
the dropout strategy (keep_prob is set to 0.5) between CNNs and
BiLSTM; thus, some neurons are randomly deleted in each iteration,
which achieves the effect of regularisation to a certain extent and
improve generalisability. Finally, the fully connected layer (FC layer) is
connected to a vector and sent to softmax to obtain the probability
value of each category. The single-lead CNN-BiLSTM deep learning
network is shown in Figure 1. Each ECG lead corresponds to a CNN-
BiLSTM deep learning network. Thus, each S12-ECG signal
corresponds to 12 CNN-BiLSTM deep learning networks.

2.3.3 The Fusion Model Using Extreme Gradient
Boostingt
XGBoost (Chen and Guestrin, 2016) is improved based on the
gradient boosted decision tree (GBDT) and is a parallel regression
tree model that combines the idea of boosting, integrating weak
classifiers into a strong classifier. Compared with the GBDT
model, XGBoost overcomes the limited calculation accuracy
and speed. The XGBoost algorithm serialises multiple
regression trees. Besides the first regression tree, each
regression number predicts the residual error; therefore, the
final predicted value of the XGBoost model is the sum of the
values of each regression tree. As the number of iterations
increases, the accuracy continues to improve. In addition,
regularisation is performed when constructing the regression
tree, allowing column sampling to prevent overfitting. In
practice, the XGBoost algorithm has shown good results in
many prediction fields (Wang and Guo, 2019).

HRV is the change in the difference in heartbeat cycles from
time to time (Uhlig et al., 2020). HRV contains information on
the regulation of the cardiovascular system by neurohumoural
factors. It can be used to evaluate the condition of cardiovascular

diseases and is an important index for the clinical prediction of
sudden cardiac death or other arrhythmic ailments. Some articles
use specific waveform parameters, such as the QRS interval, PR
interval, and ST segment slope, which are directly linked to
medical experience, as features to determine the ECG signal
category. However, in addition to the relatively mature QRS
main wave positioning algorithm, other reference points, such
as the P wave and its starting and ending points and the T wave
starting and ending points, are more difficult to accurately locate,
and their robustness is far less than that of QRS wave positioning.
Therefore, it is a robust choice for HRV analysis based on QRS
wave positioning to obtain the RR interval. At the same time,
HRV analysis is often used for diagnosing abnormalities, such as
atrial fibrillation and premature beats and has corresponding
medical importance. Nevertheless, we use a CNN to
automatically learn features. The strength of the CNN lies in
the extraction of local detailed features, while the features in HRV
analysis, such as calculating the standard deviation of the RR
interval, are a typical statistical feature. Additionally, there is an
abundance of literature that asserts the role of age and sex in the
development of cardiovascular diseases (Shih et al., 2019).
Therefore, in addition to the features extracted by our
previous CNN-BiLSTM deep learning network, adding some
HRV features as well as age and sex as auxiliary features, will
help improve the classification performance of the algorithm.

After pre-processing the ECG records, because all of the ECG
leads are collected at the same time and are completely parallel in
time, we use the GQRS algorithm provided by PhysioNet, a
commonly used QRS detection algorithm, to generate the
HRV signal from lead II. Based on the HRV signal, we
computed the following different features:

1) Standard deviation of RR intervals (SDRR).
2) Longest RR interval.
3) Shortest RR interval.
4) Mean RR interval (meanRR).
5) NN50 count divided by the total number of all RR intervals

(pNN50).
6) Root mean square of differences between the adjacent RR

intervals (RMSSD).
7) Sample Entropy of RR interval (SampEn).

We take each ECG lead signal in the record as a branch and
input it into the CNN-BiLSTM deep learning model to obtain the
softmax probabilities of nine categories. Considering that the
probabilities of all categories add up to 1, to remove redundant
information, we take the first eight probabilities. Since 12 leads of
each ECG signal have 12 branches, the total probability of 12 leads
is 12 × 8 = 96, plus DFs (we use seven HRV features, age, and sex
features), then we finally get 105-dimensional features to construct
a feature vector as input to the XGBoost model. The architecture of
the CBi-DF-XGBoost fusion model is shown in Figure 1.

2.4 Training and Classification
To fully utilize the entire training set, a 5-fold cross-validation
strategy was employed in this work. The original training set was
randomly divided into five subsets. Each of the five subsets took
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turns as the validation set, and the remaining subsets were used as
the training set. This approach was iterated five times by shifting
the test data. The performances were evaluated in each iteration.
Finally, the performances recorded in all five iterations were
averaged and considered as the overall performance of our
proposed system. Our model is also evaluated on the test set.

The experiments were performed on a computer with one
CPU at 2.6 GHz, one NVIDIA GeForce RTX2060 GPU and 64-
Gb memory. All the proposed models are run over a highly
efficient GPU using the Keras deep learning framework (Chollet,
2018). We use stochastic gradient descent (SGD) combined with
the momentum optimization algorithm to train the CNN-
BiLSTM model. The SGD + Momentum algorithm more easily
finds a flatter minimum than the Adam algorithm. Then,
XGBoost conducts fusion training on the CNN-BiLSTM
network array and the domain-specific features. For ablation
studies, we also experimented with 12 independent CNN-
BiLSTMs and the fusion model (CBi-XGBoost) that only fused
12 single-lead models by the XGBoost (Ye and Lu, 2020). The
selection of hyperparameters for the models is shown in Table 2.

3 RESULTS

3.1 Evaluation Metrics
In this paper, the average precision, accuracy, recall rate, F1 score,
receiver operating characteristic (ROC) curve and area under the
curve (AUC) value are adopted to measure the classification
performance. The details are as follows:

Precision � TP

TP + FP
(3)

Accuracy � TP + TN

Total
(4)

Recall � TP

TP + FN
(5)

F1 � 2(Precision × Recall)
Precision + Recall

(6)

For a certain class in the multiclassification problem, TP is the
true positive, which indicates the number of correctly classified

samples in this class, TN is the true negative, which indicates the
number of samples that do not belong to this class and are not
correctly classified into this class. FN is the false negative, which
refers to the number of samples belonging to this class that are
misclassified into other classes and FP denotes the false-positive
positive, which indicates the number of samples misclassified in
this class (Aziz et al., 2019). In our experiments, we use the
average value among classes to evaluate the final performance of
the fusion model. The F1 score is a comprehensive evaluation
index that measures precision and recall (Flach and Kull, 2015).
Among these metrics, the F1 score mainly assesses the
recognition effect, which is the most important evaluation
metric in the dataset. To analyse the performance of the
model more intuitively, the confusion matrix is used to
evaluate the prediction results.

3.2 Performance Evaluation
The 5-fold cross-validation diagnostic performance of CBi-DF-
XGBoost is presented in Table 3. CBi-DF-XGBoost achieved a
mean accuracy of 0.968 for the classification of the nine heart
rhythms. The mean precision and recall were 0.857 and 0.814,
respectively. The macro-average F1 score, which represented the
harmonic mean of precision and recall was 0.825 for CBi-DF-
XGBoost. The micro-average AUC value and macro-average
AUC value were 0.919 and 0.898, respectively. Moreover,
Figure 6 shows the ROC curve of the median macro-average
AUC value for 5-fold cross-validation.

As shown in Table 3 and Figure 6, we noticed that the F1
scores of five heart rhythm types (AF, I-AVB, LBBB, RBBB, and
STD) were higher than those of the normal type, reflecting the
model’s ability to effectively identify abnormal ECG signals, with
the normal type being one of the more difficult-to-predict types.
Indeed, almost all of the top models produced very high F1 scores
(>0.9) for AF and bundle branch blocks. The prediction of CBi-
DF-XGBoost had the highest F1 score (0.933) and AUC value
(0.966) on LBBB and a poor performance on PAC. The prediction
of CBi-DF-XGBoost had the lowest F1 score (0.571) and AUC
value (0.708) on STE, which may be due in part to physicians’
various opinions on how to diagnose STE (McCabe et al., 2013).

3.3 Classification Performance Comparison
To evaluate the performance of the proposed model, we choose
some common network structures and state-of-art ECG

TABLE 2 | Hyperparameters of the models.

Hyperparameter Value

CBi-DF-XGBoost CBi-XGBoost

Boost gbtree gbtree
Learning Rate 0.1 0.1
Max_depth 5 10
Min_child_weight 4 2.6
Colsample_bytree 0.8 0.7
Colsample_bynode 0.2 1
Subsample 0.6 0.7
Max_delta_step 0 5
Eval_metric merror merror
Gamma 0.4 0.3
Num_round 108 120

TABLE 3 | 5-fold cross-validation diagnostic performance of CBi-DF-XGBoost.

Type Accuracy AUC F1 score Precision Recall

Normal 0.941 0.903 0.801 0.758 0.849
AF 0.975 0.957 0.929 0.929 0.929
I-AVB 0.977 0.957 0.889 0.849 0.932
LBBB 0.996 0.966 0.933 0.933 0.933
RBBB 0.957 0.954 0.926 0.920 0.932
PAC 0.960 0.866 0.747 0.737 0.757
PVC 0.961 0.873 0.797 0.835 0.763
STD 0.961 0.898 0.828 0.842 0.815
STE 0.978 0.708 0.571 0.909 0.417
Macro-average 0.968 0.898 0.825 0.857 0.814
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classification algorithms to conduct experiments under the
similar conditions and then compare the classification
performance on the test set. Three common deep neural
network frameworks, VGG (Simonyan and Zisserman, 2015),
ResNet (He et al., 2016), and LSTM (Hochreiter and
Schmidhuber, 1997), are adopted for performance comparison.
Both the VGG and the ResNet networks are classical CNNs for
processing images and signals. VGG based on 1-D convolution
has been widely used in many signal processing tasks. In our
experiments, we choose the VGG net with 16 1-D convolutional
layers for comparison. ResNet designs a residual learning
framework using shortcut identity connections to ease the
training of very deep networks and make feature maps from
shallower layers available at later stages. In our experiments, we
use the 20-layer 1-D ResNet for comparison. Furthermore, two

state-of-the-art ECG analysis methods are also used for
performance comparison. Acharya et al. (Acharya et al., 2017)
implemented an 11-layer CNN algorithm for the automated
detection of normal and myocardial infarction ECG signals.
(Fan et al., 2018) proposed a multiscale CNN (MSCNN) for
screening AF recordings from ECG records. Both methods have
achieved excellent classification results at present for the ECG
classification task. In addition, we also compare the proposed
method with some of the latest reported algorithms [(He et al.,
2019) and (Yao et al., 2020) methodsGHz] that use the same
dataset that we use. (Yao et al., 2020) improved the DNN used in
their previous work (Yao et al., 2018), introducing an attention
module after CNN and LSTM layers. This work gave greater
weights to features extracted from more informative signal
segments.

FIGURE 6 | ROC curves for nine heart-rhythm predictions.

TABLE 4 | Classification performance on the dataset.

Type F1 score

VGG ResNet LSTM Acharya et al Fan et al He et al Yao et al. Our model

Normal 0.77 0.75 0.73 0.70 0.78 — 0.79 0.81
AF 0.87 0.90 0.92 0.90 0.92 — 0.92 0.93
I-AVB 0.79 0.84 0.77 0.75 0.80 — 0.85 0.89
LBBB 0.88 0.86 0.87 0.83 0.88 — 0.87 0.93
RBBB 0.90 0.91 0.92 0.92 0.92 — 0.93 0.93
PAC 0.68 0.63 0.61 0.70 0.76 — 0.74 0.75
PVC 0.82 0.82 0.80 0.85 0.83 — 0.86 0.79
STD 0.80 0.77 0.70 0.75 0.76 — 0.79 0.83
STE 0.52 0.49 0.51 0.47 0.51 — 0.56 0.60
Average F1 Score 0.781 0.773 0.760 0.764 0.796 0.806 0.812 0.828

The mark “—” is filled when the data was not given.
The bold values are the highest F1 score per line.
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Table 4 shows the class-level F1 score and the average F1 score
of eight reference models and our method. As can be observed,
the proposed CBi-DF-XGBoost performs favourably against
other models in terms of the F1 score. Specifically, compared
with the plain VGG and ResNet networks, approximately 4.7%
(0.828–0.781) and 5.5% (0.828–0.773) improvements are
obtained by the proposed approach for the average F1 score,
respectively. Our method obtains a 6.8% (0.828–0.760) gain
compared to LSTM. Acharya et al. and Fan et al. are
surpassed by our method in average F1 scores by 6.4%
(0.828–0.764) and 3.2% (0.828–0.796), respectively. Compared
with He et al. And Yao et al., our method increased the average F1
score by approximately 2.2% (0.828–0.806) and 1.6%
(0.828–0.812), respectively. Furthermore, for each individual
class of N, AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, and
STE, the gains in the F1 score were almost the highest. In
particular, for a single disease, the F1 score increased by 12.0
and 14.0% in detecting paroxysmal arrhythmias (PACs)
compared with ResNet and LSTM. Our method is 13.0 and
11.0% higher than the methods proposed by Acharya et al.
and ResNet in detecting ST-segment elevated, respectively.
Therefore, the comparison shown in Table 4 illustrates the
effectiveness of our model.

3.4 Ablation Studies
To analyse the relative contributions of the different components
of our CBi-DF-XGBoost model, we evaluate some variants of the
proposed method with different settings, including twelve
independent single-lead models (CNN-BiLSTMs) and a fusion
model (CBi-XGBoost) that only fused twelve CNN-BiLSTMs by
the XGBoost.

3.4.1 Single-Lead Models vs. 12-Lead Fusion Model
As shown in Table 5, we compare the F1 scores of classification
prediction using CNN-BiLSTMs and CBi-XGBoost. In this
experiment, we performed cross-validation experiments on the

TABLE 5 | Classification performance comparison between single-lead models
and CBi-XGBoost.

Model F1 Score

I lead CNN-BiLSTM 0.680
II lead CNN-BiLSTM 0.680
III lead CNN-BiLSTM 0.601
aVR lead CNN-BiLSTM 0.700
aVL lead CNN-BiLSTM 0.571
aVF lead CNN-BiLSTM 0.663
V1 lead CNN-BiLSTM 0.665
V2 lead CNN-BiLSTM 0.652
V3 lead CNN-BiLSTM 0.699
V4 leadCNN-BiLSTM 0.688
V5 lead CNN-BiLSTM 0.699
V6 lead CNN-BiLSTM 0.658
CBi-XGBoost 0.806

The bold value is the highest F1 score of the models.

TABLE 6 | Classification performance comparison between CBi-XGBoost and
CBi-DF-XGBoost.

Model AUC F1 score Precision Recall

CBi-XGBoost 0.888 0.806 0.829 0.797
CBi-DF-XGBoost 0.898 0.825 0.857 0.814

FIGURE 7 | (A) Confusion matrix of CBi-DF-XGBoost at its median F1
score for 5-fold cross-validation (B) Confusion matrix of CBi-XGBoost at its
median F1 score for 5-fold cross-validation. The ordinate is the nine label
categories of the data, and the abscissa is the predicted category output
by the model. The number of elements on the diagonal of the matrix is the
number of correct classifications, and the remaining squares show the
number of incorrect classifications.
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classification task for 12 leads. The CBi-XGBoost fused twelve
CNN-BiLSTMs by XGBoost for the classification task. By
comparison, we notice that CBi-XGBoost has a better
performance than CNN-BiLSTMs. The best and worst F1
scores of CNN-BiLSTMs are aVR lead CNN-BiLSTM (0.700)
and aVL lead CNN-BiLSTM (0.571), respectively. The F1 score of
CBi-XGBoost is 0.806, which is an increase of 10.6%
(0.806–0.700) to 23.5% (0.806–0.571) compared with CNN-
BiLSTMs. The above comparison verifies that for S12L-ECGs,
the model can obtain a better classification performance by fusing
features of all leads.

3.4.2 Fusion Without Domain-Specific Features vs.
Fusion With Domain-Specific Features
To investigate the effect of the exclusion of DFs on this
classification problem and the fusion model, we compared
CBi-DF-XGBoost with the model without DFs (CBi-XGBoost).
In the experiment, except for the CBi-DF-XGBoost model fusion
with DFs and the CBi-XGBoost model fusion without DFs, the
fusion models were subjected to a 5-fold cross-validation under
the similar conditions to obtain the average F1 score values for
comparison. The experimental results are shown in Table 6.
Compared to CBi-XGBoost, the macro-average precision and
recall rate of CBi-DF-XGBoost increased by 2.8 and 1.7%,
respectively, the macro-average F1 score increased by
approximately 1.9%, and the macro-average AUC value
increased by 1.0%. Figure 7 shows the confusion matrix of the
two models at their median F1 scores for 5-fold cross-validation.
From the figures, it is clear that CBi-DF-XGBoost better
distinguishes between normal signals and abnormal signals,
especially PAC. This shows that the auxiliary information is
helpful for improving the classification performance of the
fusion model.

4 DISCUSSIONS

Our proposed fusion model (CBi-DF-XGBoost) can effectively
fuse 12 single-lead CNN-BiLSTM models and domain-specific
features, and achieve excellent performance. However, the
following problems still exist for further study.

4.1 The Problem of Inter-subject Variations
Inter-subject variations in the ECG signals will affect the
performance of the model when applied to new patients. In
this paper, we are motivated to address this problem by
adding age and sex features to the model to characterize the
inter-subject variations in the ECG signals. Through
experimental comparison, the performance of the model has
been improved to some extent. However, it may not be
enough to consider only these two features. As Gyawali et al.
proved in their continuous researches (Gyawali et al., 2020;
Gyawali et al., 2022), disentangling factors of anatomical
variations from the ECG data can benefit the downstream task
confounded by such anatomical variations. Their work suggests
the important research direction to deal with the presence of
significant inter-subject variations during an automated analysis

of ECG data. In the future, utilizing the studies of inter-subject
variations such as that presented in (Gyawali et al., 2020; Gyawali
et al., 2022) may better solve the problem of inter-subject
variations, so as to more accurately classify ECG signals
automatically.

4.2 The Problem of Records With Multiple
Labels
Records with multiple labels exist in part of the dataset because
the patient providing the ECG record had more than one disease
at the same time. For records with multiple labels, we involved
them in training and testing as other records. We use the first
label for training. In testing, for such records, we consider this to
be a correct result as long as the classification result is consistent
with one of the labels. However, This approach has two
limitations. First, the features of other diseases in the records
may interfere with the learning of the first-labeled features
during training, thus reducing the system performance.
Second, only one disease can be detected for each patient.
And it is better to detect all the diseases that appear in the
same record. How to improve the fusion model proposed in this
paper to overcome these two limitations is one of our next
research directions.

4.3 The Architecture of Single-Lead Models
Since our study focused on the overall benefits of model and
domain-specific features fusion, we did not focus more on
how to design better single-lead models. However, better
single-lead models should benefit the overall performance of
the fusion model. Future studies could investigate how
different S12L-ECG types might be better modelled by
using information from different single leads, whether
different methods or different network architectures
should be used for different single leads. In the future, we
will continue to try other structures in the deep learning
network to further improve the performance of the
fusion model.

4.4 Different Leads Contribute Differently to
Arrhythmia Detection
We looked at the classification performance of each single-lead
model on each specific diagnosis. We found that some of the
single-lead models performed well on a specific diagnosis (such as
the models for leads I and V1 excelled on the diagnosis of LBBB.
The F1 score of the I lead CNN-BiLSTM on LBBB was 0.934,
while its mean F1 score on all classifications was only 0.680. The
F1 score of the V1 lead CNN-BiLSTM on LBBB was 0.933, while
its mean F1 score on all classifications was only 0.665), which is
also consistent with the studies in (Dale, 2000; Surawicz et al.,
2009; Ikeda, 2021) that LBBB is diagnosed by distinct QRS
morphology at leads I, aVL, V1, V2, V5, and V6. However, we
need more research to obtain definitive statistical results,
including a comprehensive consideration of the interference of
the records with multiple labels, the suitability of single-lead
models for specific diagnoses, and other issues. With a view to
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further investigate the different contributions of different leads to
arrhythmia detection. To investigate how to perform multi-lead
model fusion more effectively.

5 CONCLUSION

In this paper, we present a novel fusionmodel (CBi-DF-XGBoost) for
S12L-ECG record classification by using XGBoost to fuse 12 single-
lead CNN-BiLSTM models and DFs. Ablation studies verify that the
complementary features from the different channels of the S12L-ECG
signal and the auxiliary information of DFs are helpful to improve the
performance of the fusion model. Furthermore, we demonstrate an
outstanding performance for S12L-ECG classification on the dataset
comparedwith some existingmethods. The results of the comparative
experiments confirm the effectiveness of the proposed fusionmethod.
We will apply CBi-DF-XGBoost to other physiological signal analyses
and processing requirements.
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