
Theranostics 2021, Vol. 11, Issue 14 
 

 
http://www.thno.org 

6703 

Theranostics 
2021; 11(14): 6703-6716. doi: 10.7150/thno.57775 

Research Paper 

Machine learning-assisted immune profiling stratifies 
peri-implantitis patients with unique microbial colonization 
and clinical outcomes 
Chin-Wei Wang1, Yuning Hao2, Riccardo Di Gianfilippo1, James Sugai1, Jiaqian Li1, Wang Gong1, Kenneth S. 
Kornman1, Hom-Lay Wang1, Nobuhiko Kamada4,5, Yuying Xie2, William V. Giannobile1,3,6, Yu Leo Lei1,5 

1. Department of Periodontics and Oral Medicine, the University of Michigan School of Dentistry, Ann Arbor, MI 48109. 
2. Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48823. 
3. Department of Biomedical Engineering, College of Engineering & Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109. 
4. Division of Gastroenterology and Hepatology, Department of Internal Medicine, the University of Michigan Medical School, Ann Arbor, MI 48105. 
5. Rogel Cancer Center, the University of Michigan, Ann Arbor, MI 48105. 
6. Current Affiliation: Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115. 

 Corresponding authors: Yu Leo Lei, DDS, PhD, 1600 Huron Parkway 2355, Ann Arbor, MI 48109. Phone: 734-615-6967; FAX: 734-763-5503; E-mail: leiyuleo@umich.edu; 
William V. Giannobile, DDS, DMSc, 188 Longwood Avenue, Boston, MA 02115. Phone: 617-432-1401; FAX: 617-432-4266; E-mail: william_giannobile@hsdm.harvard.edu; 
Yuying Xie, PhD, PhD, 428 South Shaw Ln, 1513 Engineering Building. Phone: 517-432-0391; E-mail: xyy@msu.edu. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2021.01.03; Accepted: 2021.03.31; Published: 2021.05.03 

Abstract 

Rationale: The endemic of peri-implantitis affects over 25% of dental implants. Current treatment depends on 
empirical patient and site-based stratifications and lacks a consistent risk grading system. 
Methods: We investigated a unique cohort of peri-implantitis patients undergoing regenerative therapy with 
comprehensive clinical, immune, and microbial profiling. We utilized a robust outlier-resistant machine learning 
algorithm for immune deconvolution. 
Results: Unsupervised clustering identified risk groups with distinct immune profiles, microbial colonization 
dynamics, and regenerative outcomes. Low-risk patients exhibited elevated M1/M2-like macrophage ratios and 
lower B-cell infiltration. The low-risk immune profile was characterized by enhanced complement signaling and 
higher levels of Th1 and Th17 cytokines. Fusobacterium nucleatum and Prevotella intermedia were significantly 
enriched in high-risk individuals. Although surgery reduced microbial burden at the peri-implant interface in all 
groups, only low-risk individuals exhibited suppression of keystone pathogen re-colonization. 
Conclusion: Peri-implant immune microenvironment shapes microbial composition and the course of 
regeneration. Immune signatures show untapped potential in improving the risk-grading for peri-implantitis. 

Key words: peri-implantitis; classification; immune profiling; microbiome; FARDEEP 

Introduction 
Dental implants are biocompatible medical 

devices that support the restoration of missing teeth. 
Dental implants-supported crowns offer esthetic, 
functional, and natural-feeling replacement options 
whose market expenditure is estimated to reach $6.8 
billion USD by 2024. Despite how dental implants 
have transformed the reconstructive options, the 
emerging endemic of peri-implantitis has severely 
compromised the long-term success of implant 
dentistry with nearly 25% of all patients receiving 
implants experiencing some forms of peri-implantitis 
[1, 2]. Peri-implantitis leads to progressive bone loss, 

bleeding or suppuration, and an eventual loss of the 
dental implant fixture. Replacement of a new dental 
implant at the previously diseased and damaged site 
is often challenging, if not impossible, due to 
exacerbated bone quality and delayed wound healing. 
Thus, preventive implant maintenance and long-term 
management of peri-implantitis becomes part of the 
routine practice after implant reconstruction. 

However, the use of clinical criteria alone is 
insufficient for the risk assessment and grading of 
peri-implantitis, which limits the design of an optimal 
preventive recall schedule and the risk stratification 
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for treatment planning. Several systematic reviews 
with meta-analyses show that the outcomes of 
peri-implantitis therapies are highly variable and 
unpredictable with the current tools [3, 4], which adds 
complexity in determining the optimal treatment plan 
[5-8]. The development of peri-implantitis is 
considered to be driven by the accumulation of 
bacterial biofilms at the gingival-implant interface in 
susceptible individuals [1, 9-11]. However, little is 
known about the key traits defining susceptible 
versus resistant individuals [12]. Although bearing 
some similarity to periodontitis, another common 
pathologic process involving host-pathogen 
interaction, peri-implantitis-associated destabilization 
progresses even more rapidly [1]. Some seminal 
efforts have been made to profile the microbial 
compositions at the site of peri-implantitis. A 
meta-analysis that includes seven high-quality studies 
shows that some common pathogens at the 
peri-implantitis sites include Fusobacterium nucleatum, 
Treponema denticola, and Porphyromonas gingivalis [13]. 
However, given the highly varied microbial 
compositions and sampling methods, it has been 
challenging to use microbial profiling to classify 
peri-implantitis as a sole measure. 

As inflammatory responses wax and wane, an 
array of immune cells participates in shaping the 
peri-implant immune microenvironment [10]. For 
example, pro-inflammatory TH1 populations are often 
seen in early or stable periodontal diseases; and TH2 
populations are more often identified during disease 
progression [14]. The topical immune 
microenvironment also controls the elimination and 
recolonization dynamics of putative periodontal 
pathogens associated with disease progression. 
Hence, a patient stratification strategy based on the 
immune infiltrate composition informs an attractive 
approach to refine patient risk classification. 

A common challenge in profiling peri-implant 
infiltrating leukocytes (PILs) in clinical specimens is 
the rapid reproducible rendering of the peri-implant 
immune landscape. Immunohistochemical (IHC) 
staining of immune markers offers a convenient tool 
for immune subsets quantitation. However, there are 
two important caveats that limit its value. First, IHC 
can only stain a small panel of markers, which are 
insufficient to reconstruct the composition of multiple 
immune subsets simultaneously. Second, there is 
considerable inter-observer and inter-institutional 
variation in antibody clone selection, quantitation 
method, and cutoff calling. Thus, the introduction of 
immune deconvolution offers an unprecedented 
opportunity to interrogate the immune profiles based 
on signature gene matrices [15]. This class of tools 
uses standard pipelines and immune subset reference 

gene expression matrices to rapidly estimate the 
composition of tissue-resident immune landscape. 

A main challenge for transcriptome-driven 
immune deconvolution is that whole tissue RNA-Seq 
frequently contains data outliers, which substantially 
reduce estimation accuracy. Therefore, we engineered 
a novel robust pipeline, Fast And Robust 
DEconvolution of Expression Profiles (FARDEEP), to 
ensure the highest accuracy in immune subset calling 
[16]. FARDEEP is an integrated R-package that infers 
cell type proportions from bulk tissue transcriptomic 
data sets. A recent independent comparison shows 
that FARDEEP is among the most robust 
computational tools currently available for cell type 
quantitation [17]. We also confirmed its rigor in 
providing precise immune cell profiling in a large 
clinical collection of cancer tissues (n = 520) [18]. 
FARDEEP uses an adaptive least trimmed square 
framework to automatically detect and remove 
outliers before using an immune marker gene 
expression matrix to estimate cell type percentages. 
Using in silico simulations in datasets with different 
levels of Gaussian or heavy-tailed noise, we showed 
that FARDEEP consistently outperforms other 
methods including a robust method CIBERSORT [19], 
as evidenced by the least sum of squared error [16]. 
We also showed that FARDEEP is less susceptible to 
outliers and returns a better estimation of coefficients 
than the existing methods in real datasets. FARDEEP 
provides an estimate related to the absolute quantity 
of each immune cell subset in addition to relative 
percentages. Hence, the objective of this study is to 
provide a proof-of-principle evidence for the utility of 
affordable, automated, and standardized immune 
profiling in the risk stratification of progressive 
peri-implantitis in response to regenerative therapy. 
We characterized the immune landscape of 
peri-implantitis patients and assessed its impact upon 
the regenerative outcomes. As a mechanism, we 
found that the underpinning prognostic potential of 
immune profiling depends on its effect on the 
recolonization dynamics of high-risk pathogens after 
definitive surgical treatment. 

Results 
We rendered a complete immune atlas of 
peri-implant infiltrates 

To thoroughly characterize the immune subset 
composition of peri-implantitis, we screened patients 
displaying advanced peri-implant defects. The 
inclusion criteria included bone loss over two threads 
of implant exposure or 2 mm vertical bone loss and 
greater than 5 mm probing depth with bleed on 
probing at the deepest sites. Patients with 
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autoimmune conditions, such as lichenoid mucositis 
or mucous membrane pemphigoid, as well as patients 
who were immunocompromised were excluded. All 
patients received surgical regenerative therapy 
consisting of debridement and bone grafting. 
Peri-implant granulation tissue was procured and 
subjected to RNA-Seq. Patients were monitored for 6 
months post-tissue harvest and reconstructive 
therapy. Peri-implant crevicular fluid (PICF) cytokine 
and chemokine levels were measured by Luminex 
Multiplex assays. The peri-implant microbiome at 
each follow-up visit was sampled by paper points and 
16S rRNA sequencing (Figure 1A-B). Immune 
deconvolution was performed using FARDEEP. 
FARDEEP can deconvolve TILs using RNA-seq data 
with a previously validated signature matrix 
quanTIseq, which is based on RNA-seq data 
containing ten different immune cell types [15]. 
Specifically, for each sample, we followed a standard 
RNA-seq quality-control pipeline to remove adapter 
sequences and low-quality reads. Then, we quantified 
gene expression levels as transcripts per millions, 
which is in the same form as the signature matrix 
quanTIseq before applying FARDEEP. We have 
validated the rigor and deconvolution accuracy using 
experimental data from a previous study using flow 
cytometric analysis as the “ground truth” [16]. We 
quantitated 10 PIL subsets, including CD4+ T-cells, 
CD8+ T-cells, regulatory T-cells (Tregs), natural killer 
cells (NKs), dendritic cells (DCs), monocytes, 
neutrophils, M1-like macrophages, M2-like 
macrophages, and B-cells. We treated the absolute 
quantities of each immune subset as features for each 
patient and then performed hierarchical clustering 
using the R package (cluster) to group individuals 
with a similar immune composition at the 
peri-implant site. The cluster package measured the 
immune cell abundance differences between patients 
and clustered patients with similar profiles. Then, we 
utilized the dendrogram to separate patients into 
three risk groups (Figure 1C). Each risk group 
demonstrates a unique trait of immune infiltration in 
the peri-implant soft tissue interface region (Figure 
1D). 

Immune landscape predicts peri-implantitis 
regenerative outcomes 

In order to determine whether the composition 
of peri-implant immune infiltrates can be harnessed to 
predict patient outcomes, we compared the probing 
depths at different follow-up time points and overall 
probing depth reduction 6 months post-surgical 
reconstruction. We found that the initial probing 
depths cannot predict prospective reduction, and 
different immune-based risk groups do not show 

significant differences at baseline probing depths. 
However, the low-risk group shows the best 
regeneration at the conclusion of follow-up (Figure 
2A, Table S1). To assess the impact of the immune 
landscape on the temporal improvement of probing 
depths, we constructed a linear mixed effects model, 
and found that PIL composition-based risk 
classification effectively identifies the best overall 
responders and poor responders (Figure 2B). We 
analyzed different clinical parameters including 
patient age, sex, and membrane exposure. We found 
that the only other strong predictor of patient 
regenerative outcomes is membrane exposure. 
Patients without membrane exposure exhibit the best 
regenerative outcomes (Figure 2C). Membrane 
exposure has been associated with distinct tissue 
phenotype such as the available width of the zone of 
keratinized gingiva and tissue thickness. We 
performed a Wilcoxon rank sum test and found that 
membrane exposure is not associated with the width 
of keratinized gingiva (p = 0.38) in this cohort. To 
assess whether immune-based profiling captures a 
prognostic signal that is independent of membrane 
exposure and its associated width of keratinized 
tissue, we included membrane exposure in the mixed 
linear effects model, the PIL-based stratification 
remains a significant independent predictor for the 
regenerative outcomes (p = 0.005 for the immune risk 
groups and time interaction term). To compare PIL 
landscape-based risk classification with traditional 
biomarkers for periodontitis, we performed a 
head-to-head comparison and found that the protein 
levels of IL-1β, MMP-9, and IL-10 in the PICF do not 
predict peri-implantitis outcomes (Figure S1A-C). We 
also examined plaque index, gingival index, and 
bleeding on probing. However, none of the existing 
clinical variables led to a usable risk grading system. 
Overall, these findings suggest that the composition 
of PIL landscape is a robust predictor for 
peri-implantitis reconstructive therapy outcomes, 
especially as compared to other clinical or traditional 
singular biomarker measures. 

Different immune risk groups exhibit unique 
immunologic profiles 

In order to understand which PIL subsets drive 
the clustering results and ultimately the clinical 
outcomes, we compared the abundance of each 
subtype between groups. We found that the low-risk 
group exhibits significantly enhanced M1-like 
macrophages and significantly elevated M1/M2 
ratios (Figure 3A-C). The low-risk and 
intermediate-risk groups show significantly higher 
infiltration of CD4+ T-cells (Figure 3D). An 
examination of regulatory T-cells (Tregs) shows their 



Theranostics 2021, Vol. 11, Issue 14 
 

 
http://www.thno.org 

6706 

highest frequencies in the low-risk group (Figure 3E). 
In addition, we found that the low-risk group exhibits 
the lowest levels of B-cell infiltration (Figure 3G). We 
did not observe differences in CD8+ T-cells, NK-cells, 
or neutrophils among risk groups (Figure 3F-I). 

Different immune risk groups exhibit unique 
genetic features in the peri-implant 
microenvironment 

In order to thoroughly characterize the 
inflammatory and genetic signatures that are driving 
the different immune infiltration phenotypes between 
the high-, intermediate-, and low- immune risk 

groups, we interrogated the complete transcriptomes 
of each peri-implant granulation specimen. We found 
that the low-risk group shows a distinct elevated 
pro-inflammatory signature that is comprised of 
chemokines, CCL7, CCL21, and CXCL5 (Figure 4A-C, 
Table S2A-B). Two Th1 cytokines IL2 and IL5 are also 
significantly higher in the low-risk group (Figure 
4D-E). Interestingly, markers for the innate lymphoid 
cells, CD127 and IL1R1, are also significantly elevated 
in low-risk groups (Figure 4F-G). In addition, we 
noticed significantly elevated expression levels of a 
Th17 signature gene IL17RA in the low-risk group 
(Figure 4H). We also examined the PICF cytokine 

 

 
Figure 1. Risk Stratification of peri-implantitis patients based on the peri-implant immune profiles. (A) After pre-screening, 24 patients fitting the inclusion and 
exclusion criteria were included into the discovery cohort. Peri-implant granulation tissue was procured during regenerative therapy and subjected to whole tissue RNA-Seq. 
Immune deconvolution was performed using FARDEEP, and the patients monitored for up to 6 months. (B) Representative clinical and radiographic images are shown. Red 
arrow indicates the base of the infrabony defect and the blue arrow marks the crest of the bony defect. (C) FARDEEP was employed to resolve the immune composition of each 
peri-implant granulation tissue specimen. Then, unsupervised clustering was performed based on the similarity of peri-implant immune infiltrates. (D) Each column represents 
one patient; and each colored bar represents an immune subset. The color-coded risk groups correspond to the unsupervised clustering (1: High-; 2: Intermediate-; 3: Low- 
Risk). 
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levels in patients with different peri-implant immune 
landscape. We found that the levels of IL-1β and 
MMP-9 trended the highest among high-risk groups 
(Figure S2A-C). The expression levels of FOXP3 are 
also the highest in the low-risk group (Figure 4I), in 
agreement with its high Treg content (Figure 3E). 

To systematically discover the novel genetic 
signatures associated with improved clinical 
outcomes, we utilized probing depth reduction as Y 
and searched the entire transcriptome. Then, we 
performed gene set enrichment analysis (GSEA) to 
identify significant signaling pathways that associates 
with the favorable treatment outcome. Utilizing the 
annotation profiles published by the Broad Institute, 
we discovered four critical and novel pathways, 
including coagulation/complement pathways, 
inflammatory pathways, epithelial-mesenchymal 
transition pathway, and K-RAS signaling (Figure S3A, 
left panel). We examined the annotated genes from 
each pathway and found that the genes driving 
distinct probing depth dynamics in the coagulation 
pathway are all complement components. The control 
of bleeding on probing (BoP) is another common 
clinical endpoint for the management of 
peri-implantitis. Thus, we performed a similar 

analysis using BoP as Y and identified the top 
enriched gene sets, which are highly similar to the 
results using probing depth reduction as the 
endpoint. These pathways include the complement 
pathway, inflammatory pathways, K-RAS signaling, 
and allograft rejection (Figure S3A, right panel). We 
verified the prognostic significance of novel 
identifications by separating the cohort based on the 
median expression levels of the complement cascade 
components C1S, C1QA, C3, C3AR1. We found that 
patients with higher expression levels of the 
complement components exhibited improved 
outcomes (Figure S3B). In agreement with the 
chemokine profile in the unsupervised 
clustering-based risk grading (Figure 4), when we 
separated the cohort based on the median expression 
levels of CCL7, CXCL5, IL32, or CCR5, patients with 
higher expression levels of this signature exhibited the 
best probing depth reduction (Figure S3C). The 
complement system and proinflammatory 
chemokines are part of the first-line defensive system 
and signals against oral pathogens [20], thus raising 
the possibility that the high-risk immune risk group 
suffers from elevated bacterial burden. 

 

 
Figure 2. Peri-implant immune profiling identifies distinct clinical risk groups. (A) Utilizing FARDEEP and unsupervised clustering, patients were classified into three 
risk groups. Probing depths of three time points and the level of reduction among different groups are shown (*p < 0.05, n = 24). (B) Utilizing a linear mixed-effect model, the 
impact of unique PIL traits on the temporal changes of probing depth is shown. The steepest slope represents the greatest probing depth reduction. (C) Utilizing a longitudinal 
linear mixed effect model, the impact of membrane exposure on the temporal changes of probing depth is shown. The steepest slope represents the best probing depth 
reduction. 
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Figure 3. Peri-implantitis risk group strata exhibit unique peri-implant immune microenvironments. Key immune subsets in the peri-implant region, including 
M1-like macrophages, M2-like macrophages, CD4+ T-cells, regulatory T-cells (Treg), CD8+ T-cells, B-cells, NK-cells and neutrophils, were calculated using FARDEEP. Based on 
the clustering results, the component of each subsets was compared across risk groups (A to I) (***p < 0.001, **p < 0.01, *p < 0.05, n = 24). 

 

Distinct immune risk groups exhibit distinct 
microbial compositions 

To better dissect the impact of host peri-implant 
microenvironment on the dynamics of microbiome, 
we performed 16S rRNA sequencing and resolved the 
longitudinal microbiome composition of each patient 
at 5 different visits using the QIIME2 pipeline [21]. We 
calculated their alpha (within sample) and beta 
(between samples) diversities and found that alpha 
diversity in term of Faith’s phylogenetic diversity is 
significantly inversely correlated with the deepest 
probing depth with a p-value of 0.03 (Figure 5A). This 
result indicates that patients with deeper probing 
depths tend to harbor less diverse colonizing 
microbes in the peri-implant region. In addition, there 
was a trending inverse correlation between alpha 
diversity and the overall bacteria load (Figure 5B). As 
the peri-implant immune microenvironment may 
shape the composition of regional microbiome, we 
next sought to determine the species that underpin 
the differences among risk groups using the linear 
discriminant analysis effect size (LEfSe) analysis. The 
different immune risk groups exhibit distinct 

microbial species. Genus Oribacterium was 
preferentially identified in the low-risk group. The 
high- risk group show significantly elevated total 
abundance of the microbes belonging to the genera 
Eggerthia and Rikenellaceae. In addition, the high-risk 
group shows significantly higher levels of microbes in 
the Anaerovoracaceae and Erysipelatoclostridiaceae 
families (Figure 5C-D). An in-depth LEfSe annotation 
further identifies microbial species associated with the 
high-risk immune and clinical phenotypes. 
Fusobacterium nucleatum and Prevotella intermedia were 
significantly enriched in the high-risk group with the 
highest Linear Discriminant Analysis (LDA) scores. 
Porphyromonas-like species were also preferentially 
identified in the high-risk group. Microbes belonging 
to the genera Desulfobulbus, Gemella, Pseudomonas, 
Chloroplast, and Filifactor were enriched in the 
intermediate-risk group (Figure 5C-D). 

Peri-implant immune microenvironment 
shapes the dynamics of pathogen 
recolonization 

Host-pathogen interactions during the disease 
course of peri-implantitis are chronic in nature and 
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may be difficult to model using acute wound healing 
or P. gingivalis oral gavage mouse models. To better 
characterize the impact of immune microenvironment 
on pathogen recolonization considering time as a 
variable, we assessed the evolution of keystone and 
novel pathogens throughout the five follow-up visits. 
Fusobacterium nucleatum levels were significantly 
lower at any given time point in low-risk individuals 
(Figure 6A). Prevotella intermedia, Porphyromonas like 
sp, and Prevotella oralis were largely undetectable in 
low-risk individuals throughout the follow ups 
(Figure 6B-D). The immune-defined low-risk group 
exhibits elevated pathways for pathogen elimination. 
Thus, we speculated that the better regenerative 
outcomes in this group are, in addition to lower red 
complex abundance, attributed to superior overall 
microbial control. To prove this hypothesis, we 
performed a t-SNE analysis, using the genetic 
signatures that are defined in Figure S2 to stratify 
patients on an X-Y dimension. As expected, the 
immune-based risk groups show distinct distances to 

the pre-defined signature matrix. We examined the 
overall bacterial burden in the PICF at 6-month 
post-treatment and found that low-risk and 
intermediate-risk groups show substantially reduced 
bacterial burden than high-risk individuals (Figure 
7A). We additionally traced the burden of two 
high-risk pathogens enriched in peri-implantitis 
lesions, Treponema denticola and Tannerella forsythia 
[22], and found that treatment significantly reduced 
their colonization at the peri-implant interface, as 
shown in the 2-week and 4-week post-treatment time 
points. Notably, low-risk group individuals are able 
to maintain the low burden microbial profile 
throughout the course of follow-ups. In contrast, these 
pathogens re-colonized more rapidly in high-risk 
groups that did not respond as well to regenerative 
therapy (Figure 7B-C). Overall, low-risk patients 
reveal an immune profile that is associated with 
reduced periodontal pathogen recolonization and 
contributes to more optimal clinical outcomes. 

 

 
Figure 4. Different immune risk groups exhibit unique genetic features in the peri-implant microenvironment. We utilized risk groupi3 to identify key genetic 
features driving outcomes, with a monotonic constrain. A total of 410 genes were significantly increased and 134 genes were significantly decreased in the low-risk group. 
Representative genes are shown (A to I) (**p < 0.01, *p < 0.05, n = 24). 



Theranostics 2021, Vol. 11, Issue 14 
 

 
http://www.thno.org 

6710 

 
Figure 5. Distinct microbial profiles were identified in different peri-implantitis risk groups. (A) The Faith’s PD alpha-diversity of the microbial communities of the 
peri-implant regions were calculated and inversely correlated with the deepest probing depths (*p < 0.05, n = 120). (B) The Faith’s PD alpha-diversity of microbial communities 
were marginally inversely correlated with the overall bacterial load. (C) Linear discriminant analysis (LDA) implemented in LEfSe identified the most informative taxons between 
different risk groups. Risk group enriched taxa are highlighted in red (High Risk), blue (Intermediate Risk) and green (Low risk). Only taxa with log LDA score larger than 2 are 
shown. (D) The cladogram reported the most differentially abundant taxa among three risk groups identified from the LDA analysis. 

 

Discussion 
As dental implants continue to transform the 

clinical possibilities for restoring functional 
dentitions, approximately 500,000 patients annually 
undergo implant reconstructive procedures [23]. 
However, the long-term success of at least 25% of 
these dental implants is compromised by the 
emerging endemic of peri-implantitis. Peri-implantitis 
is driven by a dysregulation of the host immune 

response and microbial colonization at the 
peri-implant interface. Although sharing some similar 
pathologic factors with chronic periodontitis, the 
course and therapeutic outcomes of peri-implantitis 
are even more unpredictable. The challenge of 
managing peri-implantitis arises in the difficulty of 
determining the risk profile for susceptible and 
non-susceptible individuals. It has become evident 
that clinical measurements alone are insufficient to 
reliably risk stratify peri-implantitis. 
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Figure 6. Immune profiling identifies unique pathogen colonization dynamics among different risk groups. (A to D) Peri-implant bacterial samples were collected 
at baseline, 2 weeks, 4 weeks, 12 weeks, and 24 weeks. The relative abundance of Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas like sp, and Prevotella oralis, were 
traced over time among different immune risk groups. 

 
To exploit the prognostic potential of the 

peri-implant immune microenvironment, we 
completed a first-in-kind discovery cohort where we 
performed comprehensive immune and microbial 
profiling. Conventional immunohistochemistry or 
immunofluorescence analysis of a few immune 
markers provided the first evidence of the prognostic 
potential immune cells in human diseases. However, 
the interpretation of these findings is technically 
sensitive and often confounded by inter-observer 
variability. In addition, staining of only a few markers 
is insufficient to annotate the global immune 
landscape with high precision. Thus, we engineered a 
robust machine learning pipeline, FARDEEP, to 
employ an RNA-Seq-based approach for the precise 
annotation of the tissue-resident immune landscape 
[16]. Integrating FARDEEP and 16S rRNA microbial 
sequencing into our discovery cohort, several striking 
findings were observed: (a) Unbiased immune 
landscape-based classification precisely identifies 
high- and low-risk patients that are corresponding to 
their treatment outcome; (b) high-risk patients show 
distinct M1/M2 ratios in the peri-implant region; (c) 
high-risk peri-implantitis are characterized by 
reduced signaling that leads to anti-bacterial 
immunity, poor control of peri-implant bacterial 

burden, and elevated levels of “red complex” and 
“orange complex” high-risk pathogens. Although 
bone gain is sometimes used to assess the 
regenerative outcomes, this measurement is 
confounded by a large time span of the reported 
follow-ups from 1-year and beyond and less 
consistent. In addition, even with radiographic bone 
fill of the defect, the ultimate outcome is best 
determined by implant surface re-osseointegration, 
which informs the peri-implant pocket and 
attachment level measurements. As evidence of using 
probing depth reduction as a reproducible primary 
clinical marker for regenerative outcomes, the levels 
of peri-implant pocket depth reduction at 6 months 
show a significant positive correlation with the 
long-term treatment outcome [24]. Given the 
end-point timing of the study, we utilized probing 
depth reduction as the primary clinical parameter to 
assess the treatment outcome of the clinical trial. 

The immune microenvironment dictates the 
plasticity of host response to environmental stimuli 
including pathogen- or damage- associated molecular 
patterns. Such information has shown promising 
applications in stratifying cancer patients [18, 25, 26]. 
To further enhance the rigor of immunoscoring, 
machine learning-based methods have been 
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developed to estimate the global immune subsets to 
increase prognostic power [16, 27]. We found that host 
immune profile and membrane exposure are 
independent stratification factors that can grade 
peri-implantitis. As membrane exposure may also 
affect local immune infiltration, we did not exclude 
these individuals and found that the peri-implant 
immune profile remains an independent and strong 
prognosticator. Membrane exposure can be associated 
with distinct tissue phenotypes and we found that 
membrane exposure is indeed a significant poor 
prognosticator. To rule out the possibility that 
membrane exposure and keratinized gingiva width 
were confounding the prognostic power of 
immune-based stratification, we controlled 
membrane exposure status and still detected a 
significant interaction term between PIL grouping 
and time. Thus, immune-based classification strategy 

captures a strong and independent prognostic signal 
for the outcomes of peri-implantitis. Several robust 
methods have been developed to improve immune 
deconvolution. For example, CIBERSORT is another 
robust method that was developed for immune 
subsets deconvolution [27]. CIBERSORT does not 
consider an intercept to capture potential 
contributions of other cell types and is more 
susceptible to outlier contamination, which is 
ubiquitously present in whole tissue RNA-Seq data 
sets. Utilizing synthetic and real data sets, FARDEEP 
was shown to exhibit more robust pipeline 
performance by automatically detecting and 
removing outliers prior to deconvolution [16]. Indeed, 
the utilization of FARDEEP on this cohort further 
strengthens its prognostic potential in immune-based 
risk grading. 

 

 
Figure 7. Red complex pathogen recolonization is suppressed in low-risk individuals. Each circle represents a single patient. The X-Y dimensions were the first two 
t-SNE directions. (A) The size of the circle represents overall bacterial burden in the peri-implant crevicular fluid 6-month after treatment. The shade of the circle is indicative 
of probing depth reduction. Different color represents distinct immune risk groups. (B to C) Treponema denticola and Tannerella forsythia load dynamics in PICF over time 
displayed in the first two t-SNE dimensions from (A). 
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Several previous studies for periodontitis show 
that a higher percentage of Tregs prevents 
inflammation-induced bone loss [28]. In addition, 
activation of B-cells stimulates the production of 
low-affinity non-protective antibodies and destructive 
IL-1β, leading to exacerbated periodontal lesions [14]. 
We also found the immune landscape-defined 
high-risk individuals tend to show trending higher 
levels of IL-1β and MMP-9 in PICF (Figure S2). Thus, 
the presence of higher Tregs and lower B-cells in the 
low-risk peri-implantitis group are conceptually 
supported by pioneer studies in periodontitis 
patients. Interestingly, our comprehensive annotation 
of the PILs reveals that increased M1/M2 ratios are 
powerful predictors of favorable responses. M1-like 
polarized macrophages promote a Th1-prone immune 
microenvironment, which is often observed in early or 
stable periodontal disease [14]. This immune 
phenotype is more effective in pathogen control and 
developing pathogen-specific Th1-response. 
However, some previous insightful studies using 
murine models show that suppression of 
pro-inflammatory cytokines produced by M1-like 
polarized macrophages contributes to improved bone 
regeneration [29]. Fully recognizing the role of 
M2-like polarization in regeneration, the murine 
periodontitis models, including a Porphyromonas 
gingivalis incubation model and an experimental 
disease ligature model, induce predictable, however 
very rapid bone loss, which does not fully recapitulate 
the disease course in humans. The current murine 
models for peri-implantitis also adopt an acute 
trauma-associated protocol, which may not 
necessarily coincide with the course of a pathogenic 
microbial induction of disease [30]. Due to the 
challenges in modeling peri-implantitis in pre-clinical 
models, biases can be introduced due to the 
accelerated healing in rodents compared to humans 
and the striking differences between periodontal and 
peri-implant surface microstructure [31]. Thus, the 
contribution of bacteria burden and host-pathogen 
interaction over a chronic process can be only 
examined through clinical studies to validate new 
grading schemes. 

Dysbiotic microflora and uncontrolled 
inflammation at the implant-tissue interface are 
considered major underpinnings for the initiation of 
peri-implantitis, progressive probing depth 
exacerbation, and corresponding alveolar bone loss 
[32, 33]. In advanced peri-implantitis lesions, the 
pocket epithelium is limited to the coronal 
compartment and the apical connective tissue is 
directly exposed to pathogen-associated molecular 
patterns and elicits immune response [34]. We 
uncovered several novel innate immune pathways 

that contribute to a low-risk peri-implantitis immune 
profile, which features elevated M1/M2 ratios, 
increased innate lymphoid cells marker gene 
expression, and enhanced complement signaling. The 
low-risk group also presented with unique microbial 
profile distinctive from the high-risk group, in which 
the dominant pathogens were frequently associated 
with clinically severe peri-implantitis [35, 36], 
including F. nucleatum, P. intermedia, Porphyromonas- 
like sp. Other relative abundant potential pathogens 
were Anaerovoracaceae, Rikenellaceae were never 
reported or described to be associated with 
peri-implantitis. 

In our analysis, the standard-of-care surgery 
effectively reduced the overall bacterial burden and 
limited the population of keystone pathogens. In 
contrast, non-surgical mechanical debridement of 
peri-implantitis does not alter the subgingival 
microbial communities, and thus yields less 
predictable treatment outcomes [37]. Notably, 
patients with a low-risk PIL profile continues to 
benefit from superior bacterial burden control over 
time while the bacterial burden was exacerbated more 
rapidly in patients with a high-risk PIL profile. Thus, 
host factors such as PIL profile may dictate the course 
of pathogen clearance to shape the clinical outcomes 
of peri-implantitis. The current study is based on 
peri-implant granulation tissue profiling and the 
patient was already committed to surgical 
interventions prior to risk grading. However, the 
current protocols yield reproducible RNA-Seq results 
with as low as 10 ng total RNA [38]. Thus, future 
studies utilizing RNA extracted from peri-implant 
scaling tissue may be procured to determine whether 
pre-surgical peri-implant immune profiling improves 
the treatment decision-making. 

We utilized a robust environmental noise- 
resistant immune deconvolution machine learning 
algorithm to render the peri-implant immune 
landscape, which harbors a strong potential in 
risk-grading. We characterized a unique low-risk 
immunologic and microbial profile for peri- 
implantitis patients, which exhibits improved innate 
immune signaling and sustained suppression of 
keystone pathogens. Overall, comprehensive immune 
profiling shows stronger potential as risk modifiers 
for peri-implantitis than conventional clinical 
parameters or crevicular cytokines. 

Methods 
Patient inclusion criteria 

Twenty-four patients with at least one dental 
implant diagnosed with peri-implantitis were 
included. The inclusion criteria included patient ages 
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of over 21, over 2 threads of implant exposure with 
infrabony defect, over 5.0 mm probing depth at the 
deepest sites with bleeding on probing. Patients with 
auto-immune conditions, such as lichenoid mucositis 
and mucous membrane pemphigoid, as well as 
patients who were immunocompromised were 
excluded. Patients who displayed a physical status of 
ASA III and beyond are excluded. Patients with 
mal-positioned implants are also excluded. Patients 
who took medications with known effects on bone 
metabolism were excluded. Patients who smoked 
cigarettes or used recreational drugs were excluded. 
Pregnant women were not included in the study. 

Surgical treatment and procurement of 
peri-implant tissue 

After local anesthesia (Xylocaine 
2%-Epinephrine 1:100,000 and 1:50,000, Dentsply 
Pharmaceutical, York, PA, USA), an intra-sulcular 
incision with full thickness flap reflection was 
performed to allow optimal access to the peri-implant 
bone defects. Granulation tissue was carefully 
procured using curettes (Gracey; Hu-Friedy, Chicago, 
IL, USA) and placed immediately into RNAlater 
solution, completely submerged and stored at 4°C 
until the end of the procedure. The tissue was 
subsequently stored at -20°C until needed for further 
processing. The implant surface was mechanically 
debrided with metal curettes and rotary titanium 
brushes (Gracey; Hu-Friedy, Chicago, IL, USA). Then, 
the supracrestal portion of the exposed implant 
surface was treated with implantoplasty. Er:YAG 
laser (J. Morita Corp, Osaka, Japan) was used to 
decontaminate implant surface in half of the cases. 
After decontamination, a composite bone allograft 
(MinerOss and Grafton DBM, BioHorizons) was used 
to fill the infrabony defect and a dermal matrix 
membrane (AlloDerm RTM, BioHorizons) was placed 
to cover the graft and a few millimeters of healthy 
bone. Finally, tissues were securely sutured with 
modified horizontal mattress using PTFE sutures 
(Cytoplast). The treated area was protected with a 
non-eugenol surgical dressing and the patients were 
dismissed with the prescriptions for antibiotic 
regimen (amoxicillin 500mg tid/week), pain 
medication (ibuprofen 600mg prn pain every 6 h) and 
oral rinsing with chlorhexidine gluconate (0.12%) for 
2 weeks. Sutures were removed after 2 and 4 weeks. 

PICF samples 
PICF samples and bacterial plaque were 

collected as previously described [39]. Briefly, three 
PICF sterile paper samples were collected from the 
deepest pocket of each implant. Extraction solution 
(10 g/ml aprotinin, 1 mM phenylmethylsulfonyl 

fluoride, and 0.1% serum albumin in PBS) was 
applied onto the strips, and each strip was washed 
and centrifuged five times to yield a total elution 
volume of 100 µl for Luminex cytokine array analysis. 

Bacterial plaque collection and 16s rRNA 
sequencing 

Patients’ bacterial samples were collected by 
paper points at baseline, 2-week, 4-week, 3-month, 
and 6-month follow-up visits. DNA was extracted 
from the paper points with DNeasy PowerSoil Kit 
(Qiagen) and the qPCR reaction was performed using 
Taqman® Master Mix (Applied Biosystems) in 
StepOnePlus Real-Time PCR System (Applied 
Biosystems). Bac2F and Bac2R primers and 
corresponding Bac2 probe were used for the reaction. 
DNA from Escherichia coli was used as standard. The 
sample was run on quantitative PCR in triplicate. The 
PCR reaction was carried out with an initial holding 
stage of 50 °C for 2 min followed by 95 °C for 10 min. 
The cycling stage consisted of 40 cycles of 95 °C for 15 
s, followed by 60 °C for 1 min. 

Regarding 16S rRNA paired-end sequencing, the 
sequence reads were analyzed using QIIME2 pipeline 
(core 2019.7 distribution), in which the denoising 
algorithm DADA2 was implemented to filter low 
quality sequences [40]. The preprocessed raw 
sequencing reads with an average length of 256 bp 
were then used for taxonomic assignment with the 
Naïve Bayes classifier pre-trained using the Silva 138 
database. Because of the long sequence length and the 
high quality of the 16S rRNA sequencing data, the 
pre-trained classifier can confidently assign most of 
the raw sequences to the species level. 

Deconvolution of the peri-implant immune 
landscape 

Peri-implant granulation tissues of all 24 patients 
was collected and subjected to RNA-Seq for 
transcriptome profiling. Raw sequencing files are 
available at the NCBI Sequence Read Archive (SRA) 
with an accession #: PRJNA667664. RNA-seq data 
were then analyzed using R package Salmon to 
quantify gene expression in terms of Transcripts Per 
Million (TPM). The resulting gene expression data 
were used to estimate the abundance of ten PILs 
including CD4+ T cells, CD8+ T cells, regulatory T 
cells, NK cells, dendritic cells, monocytes, neutrophils, 
M1-like macrophages, M2-like macrophages, and 
B-cells by employing the FARDEEP pipeline with 
quanTIseq signature matrix [15, 16]. The source code 
for FARDEEP, which is implemented in R, is available 
for download at https://github.com/YuningHao/ 
FARDEEP.git. PIL landscape estimates from 
FARDEEP were used for hierarchical clustering to 
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separate patients into three risk groups. The 
hierarchical clustering algorithm was implemented in 
R using package stats based on the Euclidean distance 
of PILs between the 24 patients. 

Statistics 
In order to characterize novel genetic features 

monotonically associated with different immune risk 
groups, Kruskal-Wallis test using R package dplyr 
were used to identify genes significantly associated 
with risk groups (p-value < 0.05). Among those 
significant genes, Dunn post hoc test using R package 
dunn.test was used to select genes monotonically 
increasing or decreasing among the three groups. 
GSEA was performed on the list of genes significantly 
correlated with immune base risk groups. The genes 
ranked by the p-value from Dunn post hoc test were 
analyzed by GSEA (v4.0.3) with GseaPreranked 
analysis, and the significant gene sets were retrieved 
from the hallmark gene sets. Kruskal-Wallis rank sum 
test was performed to compare the probing depth, 
gene expressions, and immune subsets among 
different immune based risk groups. Patients were 
divided into three groups according to PICF cytokine 
and chemokine levels, which were used to test for the 
association with probing depth using Kruskal-Wallis 
rank sum test. 

Study Approval 
The clinical protocol to obtain per-implant tissue 
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