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ABSTRACT: Drug design involves the process of identifying and designing molecules that bind well to a given receptor. A vital
computational component of this process is the protein−ligand interaction scoring functions that evaluate the binding ability of
various molecules or ligands with a given protein receptor binding pocket reasonably accurately. With the publicly available protein−
ligand binding affinity data sets in both sequential and structural forms, machine learning methods have gained traction as a top
choice for developing such scoring functions. While the performance shown by these models is optimistic, there are several hidden
biases present in these data sets themselves that affect the utility of such models for practical purposes such as virtual screening. In
this work, we use published methods to systematically investigate several such factors or biases present in these data sets. In our
analysis, we highlight the importance of considering sequence, protein−ligand interaction, and pocket structure similarity while
constructing data splits and provide an explanation for good protein-only and ligand-only performances in some data sets. Through
this study, we provide to the community several pointers for the design of binding affinity predictors and data sets for reliable
applicability.

■ INTRODUCTION
Drug design is the process of developing and identifying small
molecules or ligands that bind to a given protein molecule to
modulate its function for therapeutic causes.1 An integral
requirement for such a process is a scoring function that can
evaluate the strength of binding between the ligand and the
protein.2 Such a scoring function should be able to discern
strong binders from nonbinders and is typically used to
identify good hit candidates for a given receptor from a large
library of molecules, a process more commonly known as
virtual screening.

Machine learning and deep learning have been gaining
traction as top choices for the development of these scoring
functions due to their rapid success in technological domains
such as computer vision3 and natural language processing.4

Protein−ligand scoring functions tend to be a natural
extension of applying such algorithms as molecular information
can easily be represented in the form of three-dimensional
(3D) grids,5 sequences, and graphs.6,7 Although deep learning

models are known to portray a very high accuracy, they are
usually black-box functions that learn hidden features in the
input data to make their predictions. Therefore, it is important
to perform further post hoc analysis to ensure that these
models are focusing on relevant features and are not predicting
based on unintended biasing signals in the data. Ensuring the
absence of biases in data sets enhances the practical utility of
such algorithms, especially in fields such as health care and
molecular informatics.

The database of useful decoys-enhanced (DUD-E)8 and the
maximum unbiased validation (MUV) data set9 were initially
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developed to enable virtual scoring function development and
benchmarking. These data sets contained large libraries of
chemically similar active (binding) and decoy (poorly binding)
molecules for a given set of protein structures. When deep
learning models were trained to classify between actives and
decoys, they showcased very high accuracy.10−12 On further
investigation, however, it was found that chemical descriptors
of the small molecules themselves provided a sufficient signal
to differentiate between the two classes.13−15 This bias
correlated very well with the high accuracy of deep learning
models, thereby indicating that models trained on these data
sets do not focus on protein−ligand interactions but rather on
the features of the ligands themselves for classification. This
leads to a situation where the models perform very well on the
test data but fare poorly on future unseen data. Therefore,
developing a scoring function based on an active vs decoy
classification framework was found to be infeasible. The LIT-
PCBA data set16 was created to address such biases in virtual
screening data sets, but its utility for training deep learning
models needs to be explored further, especially since the data
set contains only 15 targets.

An alternate approach for the scoring function is to use deep
learning models to predict the binding affinity based on the 3D
structures of protein−ligand complexes. This, in turn, could be
used to rank small molecules based on favorable binding
affinities. The PDBbind database17 provides experimentally
determined binding affinity values for protein−ligand cocrystal
structures present in the Protein Data Bank (PDB).18 This
enables the development of deep learning model that takes the
structure of the bound molecules for the prediction of binding
affinity. 3D convolutional neural networks (CNNs),19,20 graph
neural networks (GNNs),21 and more sophisticated deep
learning architectures22 when trained on this data set have
shown good correlation between predicted and experimental
values.

A recent series of studies, however, have shown that when
such models are trained on protein-only or ligand-only
information in this data set, they show similar performances
as the full complex.14,23 This again begs the question of
whether these deep learning models focus on protein−ligand
interactions when individual molecules (ligand-only and
protein-only) themselves are enough to make accurate
predictions on this data set. Another recent work also showed
the efficacy of such deep learning-based protein−ligand scoring
function on different virtual screening benchmarks.24 The deep
learning model showcased a slightly better enrichment factor
over the traditional baseline method (Autodock Vina25) only
for some of the receptors in the DUD-E and LIT-PCBA data
sets. This performance improvement is still seemingly low for
deep learning models compared to the excellent performance
they showcase in drug design tasks like molecular docking.26

Therefore, these data sets need to be studied in greater detail
to improve the screening capabilities of deep learning scoring
functions.

Several other binding affinity data sets provide protein−
ligand data in the form of amino acid sequences and SMILES
strings. These data sets are usually much larger than the data
sets that provide protein−ligand cocrystal structures
(PDBBind), which, in general, are difficult to resolve
experimentally. In this study, we work with the Davis27 and
the KIBA28 data sets that have been widely used by deep
learning models for benchmarking their performances. These
data sets also represent key situations in the virtual screening

process where the structure of the target of interest has not
been resolved and only the amino acid sequence of the protein
is available. Therefore, accurate models on these data sets
could have greater implications in virtual screening, especially
when the structure of the target is difficult to elucidate. These
data sets have been added to a collection of important
therapeutics-related benchmarks called therapeutic data
commons (TDC),29 an open science initiative that aims to
provide AI/ML-ready data sets and tools for health care and
drug discovery method development. The DeepPurpose
toolkit30 was also created for easy development and usage of
methods dependent on these data sets.

Most deep learning methods that have worked with the
sequence-based data sets31−33 so far have split the data
randomly into cross-validation folds to benchmark the models.
However, it is well known that similar protein sequences lead
to similar 3D structures and therefore similar protein−ligand
interactions. Random splits cause such similar sequences to be
present in both training and test sets leading to data leakage in
the benchmark. These models portray very low error rates on
such a benchmark due to this internal bias that is present in
random splits. In some ways, such a split would also reward
overfitting as the test set would not be an indication of the
model’s generalizability.

In this work, we study the presence of various different types
of biases present in protein−ligand data sets that affect deep
learning performances in binding affinity prediction and virtual
screening. We do this by drawing parallels between results
obtained on sequence-based and structure-based data sets for
multiple experiments. We highlight the effect of obtaining
overoptimistic results due to random splitting on both types of
data sets and show how this bias is controlled through well-
constructed data splits that take sequence, pocket structure, or
protein−ligand interaction similarity into account. Further, we
explain the presence of protein-only and ligand-only biases in
PDBbind data set by comparing the performances of the same
experiments on both structure-based and sequence-based data
sets. The idea behind this work is to study the influence of the
splitting methods employed as they eventually determine the
generalizability of the models developed on these data sets.
Thus, in this work, we do not compare new methods on
currently existing benchmarks but rather analyze the perform-
ance of previously published models across nontrivial splitting
methodologies on the same popular data sets they were
initially trained on.

Through this analysis, we provide reasoning as to why deep
learning models do not perform as well in virtual screening
experiments as expected. We also suggest solution that address
biases in both data set construction and model design. With
this work, we aim to provide the community several pointers
on possible paths forward for the development of superior
protein−ligand scoring functions.

■ METHODS
In this work, we use previously published methods and data
sets designed for the protein−ligand binding affinity prediction
to showcase confounding factors and biases in these deep
learning methods. In the subsequent subsections, we describe
the open-source data sets and methods used to obtain our
results.
Data Sets and Preprocessing. The data sets used in this

study have been predominantly utilized for binding affinity
prediction. They provide binding affinity values for protein−
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ligand complexes along with information on the protein and
ligand�either in the form of one-dimensional (1D) sequences
(amino acid sequences and SMILES strings) or in their
cocrystal 3D structures:

• PDBbind v.201917 provides binding affinity values for
protein−ligand cocrystal structures present in the PDB
database. The 2019 version, PDBbind contains a total of
17,652 complexes. These complexes are split into three
subsets, the general set, the refined set, and the core set.
The refined set contains a subset of high-quality
complexes with a resolution better than 2.5 Å and
reported Kd or Ki binding affinity values. The core set is
a subset of the refined set that was introduced as part of
the CASF competitions to benchmark new protein−
ligand scoring functions. Any complex not part of the
refined set is a part of the general set. We only used
protein−ligand pairs in this data set where the molecular
weight of the ligand is <1000 Dalton for our analysis.

Most machine learning binding affinity predictors on
the PDBbind data set have been trained on only the
refined set or on both the general and refined sets and
benchmarked on the 2016 version of the CASF
benchmark set. However, to take advantage of all of
the available complexes in the data set, we construct the
core set by taking a union of the 2007, 2013, and 2016
versions of the CASF benchmarks resulting in a core set
of size 540. We benchmarked the Pafnucy model34 on
this core set for our analysis.

We also analyze model performances for methods that
were designed to work with protein residue sequences
and ligand SMILES strings. These methods were
benchmarked on the following data sets:

• Davis: the Davis kinase binding affinity data set27

provides dissociation constant (Kd) values for all
protein−ligand pairs formed by pairing 68 kinase
inhibitors with 442 kinases.

• KIBA: the kinase inhibitor bioactivity (KIBA) data set28

consists of 52,498 ligands and 467 target proteins. These
proteins and ligands form a total of 246,088 protein−
ligand pairs. The data set provides KIBA scores that are
created to maintain consistency between different
measures of binding affinity (KD, inhibition constant
(KI), and half-maximal inhibitory concentration (IC50))
for each protein−ligand pair.

Most machine learning studies use these data sets, trained and
tested models, by randomly splitting the data set into different
cross-validation folds. To reproduce the performance of the
methods used in this study, we train the models on a random
80:20 train−test split of the data sets.

Cross-Validation Folds. For all of the data sets (PDBbind
and sequence-based data sets), we construct cross-validation
folds that control the level of similarity between test and train
sets, later referred to as clustered cross-validation (CCV) folds,
and compare the performance on these folds to that of
performance on core set (for PDBbind) and random splits (for
sequence-based methods).

We create clustered cross-validation splits by following
similar methodologies as Francoeur et al.23 In general,
clustered cross-validation data splits are created by first
splitting the data into several disjoint sets or simply clusters
based on some measure of similarity and then allocating these
clusters into k folds (Figure 1). The clusters are allocated
sequentially, i.e., we iterate through the clusters, and during
each iteration the cluster in question is allocated to the fold
with the lowest number of data points at that time. Once these

Figure 1. Schematic representation of a typical clustered cross-validation split. (A) Representation of the entire data set, where similar proteins or
data points are of the same color. (B) Links are established between similar proteins or data points to form connected components. (C) All of the
connected components are grouped together to form clusters of similar data points. (D) After all of the clusters are formed, they are allocated to
one of three different folds while trying to ensure that each fold has a similar number of data points.
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folds are created, we perform k-fold cross validation where k-1
folds are used for training and 1-fold is used for testing the
model. The method employed in the study is summarized in
Figure 1. For PDBbind, we create splits based on sequence,
pocket structure, and protein−ligand interaction similarities,
while for the rest of the data sets we create splits based on
sequence similarity.

For all of the data set splits, created using sequence
similarity, we ensure that the protein similarity between any
two data points of different folds is lesser than 50%. To
implement this, we conduct pairwise global sequence align-
ment at a 100% sequence coverage and take the resulting
sequence similarity into account. However, proteins with very
different sequences may still have the same interaction
mechanisms with the same ligand due to common sub-
structures present in the proteins. Therefore, to control such a
bias further, we apply an additional constraint that if any data
points of two different folds have ligand Tanimoto similarity
greater than 90%, then their protein similarity is kept below
40%. For the Davis data set, we create the folds only based on
40% protein similarity with no ligand similarity constraint as all
ligands are paired with all proteins in the Davis data set. Notice
that the fold sizes for KIBA are slightly disproportionate. Fold
0 is larger than the other folds as it contains a very large cluster
of similar data points. However, we also notice that each fold
has enough number of data points for robust cross validation
and therefore we conduct our experiments with the created
folds.

For PDBbind, we also create splits based on pocket structure
and protein−ligand interaction similarity. To measure pairwise
pocket structure similarity, we utilize the PocketMatch
software35 that has been designed to compare and identify
identical binding sites on protein structures. We use a cutoff of
0.7 on the PocketMatch P-max score as a similarity threshold
for our splits. For protein−ligand interactions, we first calculate
the protein−ligand extended connectivity (PLEC).36 Finger-
prints of size 16,384 and a Tanimoto similarity of 0.25 as a
threshold of pairwise similarity were used. The number of
protein−ligand complexes per fold for each data set is reported
in Table 1.

Models. We analyzed the performance of the following
models on the created data splits:

• DeepDTA31 is a deep learning model, which uses only
the sequence information of both proteins and ligands to
predict the binding affinity of the interactions. The
model uses separate 1D CNN blocks to extract ligand
and protein features from the SMILES notation of
ligands and the residue sequence of the proteins,

respectively. It subsequently concatenates the extracted
information and feeds it to a fully connected network for
the prediction of binding affinity. DeepDTA was
implemented using the open-source drug discovery
library DeepPurpose.30

• SimCNN-DTA33 uses a 2D CNN architecture for
binding affinity prediction. First, drug−drug similarity
and target−target pairwise similarity matrices are
constructed using the Tanimoto coefficient and
normalized Smith−Waterman algorithm with all of the
data points in the training set. Then, for each training
point, the outer product of the corresponding target and
ligand similarity vectors (column vectors in the
previously constructed matrices) are taken as input to
a model consisting of a two-dimensional (2D) convolu-
tional neural network. SimCNN-DTA showed a better
ranking capability as compared to DeepDTA. Since
SimCNN-DTA implementation is not open-sourced, we
have reimplemented the method. We obtain similar
results to the published values indicating a correct
reimplementation of the method. The code is available
and can be found at https://github.com/devalab/
Protein-Ligand-Dataset-Bias/tree/master/sim-
CNNDTA.

• GraphDTA32 uses a 2D graph representation of the
ligand molecule and the residue sequence of the protein.
This study compares several graph neural network
(GNN) architectures, i.e., graph convolution network
(GCN), graph attention network (GAT), graph iso-
morphism network (GIN), and GAT−GCN for ligand
input. A convolution neural network (CNN) is used to
extract features from target sequence. The final ligand
and target features from the GNN and CNN,
respectively, are concatenated and used to predict the
binding affinity via fully connected layers. For this study,
we used the graph isomorphism network (GIN)
proposed in the study,32 as it showed better performance
than DeepDTA for both the Davis and KIBA data sets in
the original publication. The open-sourced code for this
method was used to train the GIN model. The source
code for the model is available at https://github.com/
thinng/GraphDTA.

• Pafnucy34 is a deep neural network that consists of 3D
CNN blocks that extract the protein−ligand interaction
information by using the 3D representation of the
complex structure as the input. The protein−ligand
complex is represented in a 3D grid with a 1 Å
resolution. The input is represented as a four-dimen-
sional (4D) tensor such that each point is represented
by the three coordinates and a feature vector of 19
different atomic features like atom type, hybridization,
partial charge, etc. The feature map of the input is
obtained by a series of 3D CNNs, which is followed by a
fully connected layer to make the final binding affinity
prediction. The open-source code for Pafnucy available
at https://gitlab.com/cheminfIBB/pafnucy was used to
obtain results for the model.

• Smina37 is a docking software that utilizes the Autodock
Vina38 scoring function. In this study, we use smina on
PDBbind data set to function as baseline for comparison
with deep learning-based scoring functions used in this
study. The smina scores are converted to the Pk binding
affinity score using

Table 1. Number of Protein−Ligand Pairs per Fold for Each
Data Seta

data set type of similarity fold 0 fold 1 fold 2

PDBbind protein sequence similarity 5536 5536 5536
PDBbind PLEC fingerprint similarity 5536 5536 5536
PDBbind PocketMatch similarity 5711 5394 5485
Davis protein sequence similarity 10,648 10,648 9996
KIBA protein and ligand sequence

similarities
50,137 34,065 34,042

aFor PocketMatch similarity, a few data points have been removed
due to errors that arose while calculating similarity using
PocketMatch.
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P elog ( )T R
k 10

(smina/ )= ×

where T = 295 K is the temperature, R = 1.9872 × 10−3

kcal mol−1 K−1 is the ideal gas constant, and smina is the
Smina score.

All of the data sets and models used in this study are
summarized in Table 2 for quick reference. We also define

ligand-only and protein-only models as those models that have
been trained only ligand or only protein information. This is
done by masking out either protein information (ligand-only)
or ligand information (protein-only) in the input. For example,
this is done in DeepDTA by simply masking out one of the
two CNN blocks corresponding to either ligand or protein
information.

All of the models used in this study have been retrained
using the exact procedure, as suggested in the respective
original studies. All models were also retrained for protein-
only/ligand-only with relevant information masked out from
the input.

■ RESULTS AND DISCUSSION
In this work, we conduct a series of experiments to study the
various types of biases present in protein−ligand data sets that
affect deep learning model’s performances in binding affinity
prediction and virtual screening. We describe our results in
more detail in the subsequent sections.
Overoptimistic Performance in Random Splitting.

Random splitting of the data set into training set and testing
set is the most commonly used method to train and evaluate
ML models. Random splitting tries to achieve the objective of
distributing the data points in a data set into train and test sets
while also maintaining the overall generality of the data points
in both sets. This is done so that the data distribution is even
in test and train sets and one can obtain a reasonable view of
model generalizability. Hence, when such random splitting is
employed for splitting biological data sets, it is certain that data
points from similar groups of proteins are present in both train
and test sets.

It is well known in biology that similar sequences lead to
similar structures and therefore similar interaction mechanisms
with druglike molecules. Due to this phenomenon, random
splitting is not an ideal way of splitting the data as it leads to
similar sequences or structures being present in both train and
test sets, thereby causing a sort of data leakage between the
two. In a way, this type of benchmarking could also be seen as
awarding overfitting due to the high similarity in data points
between the two sets. This data leakage or internal bias can be
controlled by constructing cross-validation splits that handle
the level of sequence similarity between the folds (referred to
as clustered cross-validation splits). This provides a better

outlook on the model’s generalizability on unseen protein−
ligand complexes.

In Table 3, we report the performance of the Pafnucy model
on the PDBbind data set for testing on core vs clustered cross

validation (CCV). The core set in PDBbind can be considered
a special case of random splits as it was created by clustering
sequences in the set and collecting representative sequences
from each cluster. We created clustered cross-validation splits
by following similar methodologies as Francoeur et al.23 (see
the Data Sets and Preprocessing section). We note that while
similar studies have been done on PDBbind before,14,23,39 we
provide these results with the dual purpose of showcasing data
splitting methods that should be adopted for all protein−ligand
tasks (whether it be on structure-based or sequence-based data
sets) and providing a comparison in performance drop
between structure-based and sequence-based methods on
CCV splits. As can be seen from values reported in Table 3,
there is a significant reduction of at least 0.14 in Pearson R
when we go from the core set to the CCV split for Pafnucy.
The Smina Pearson R results also tend to reduce a bit for the
clustered cross-validation splits due to the inclusion of IC50
values in the general set. We also noticed that for very few data
points (11 in total), Smina predicted Pk values that were lower
than −20. Since such outlier scores can arise due to problems
in molecule files and lead to a misleading final average Pearson
R scores, we have decided to not include them in our
correlation calculations. For Pafnucy, the RMSE remains about
the same for sequence-based clustering but increases on
protein−ligand interaction and protein structure-based splits.
On sequence-based splits, the model tends to predict values
closer to the mean of the data set; however, it does not
differentiate between different data points well, as evidenced by
the reduction in Pearson correlation. In general, PLEC
fingerprints and PocketMatch tend to form stricter data splits
to evaluate model generalizability, with PocketMatch being the
suggested method, especially for models that are independent
of the residue sequence. Yet, the model still seems to learn
protein−ligand interactions to some extent as it still has a
positive correlation for all of the data split.

Next, we compared the performance of popular sequence-
based models like DeepDTA, SimCNN-DTA, and GraphDTA
on random splits and CCV splits. The results are reported in
Table 4. The performance measured by mean-squared error
(MSE) and concordance index (CI) closely resembles the
published results for random splits indicating correct
reimplementations of all of the methods. From the reported
values, it can be seen that there is a significant reduction in
performance evidenced by poorer values for all metrics. The
MSE increases by at least 2 times on going from random
splitting to clustered cross validation. The Pearson correlation
between the predicted affinity values and the true affinity
values is also very low (sometimes even lower than 0.5),

Table 2. Data Sets and Various Models Used in This Study

type data set no. of complexes models used

structure-based PDBbind 16,608 Pafnucy
Smina

sequence-based Davis 30,056 DeepDTA
GraphDTA
SimCNN-DTA

KIBA 118,254 DeepDTA
GraphDTA
SimCNN-DTA

Table 3. Performance of Structure-Based Method on
PDBbind for All Types of Splits Created in This Study

type Pearson RP RMSEP Pearson RS RMSES

general-core split 0.73 1.53 0.38 2.65
sequence CCV split 0.59 1.51 0.35 2.52
PLEC CCV split 0.52 1.62 0.35 2.52
PocketMatch CCV split 0.50 1.59 0.29 2.52

PDenotes the results for Pafnucy. SDenotes results for Smina.
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indicating that there is not much of a linear correlation
between the two values. This clearly indicates the level of
optimism random splits provide for these data sets as
compared to more practical situations when the model is
exposed to unseen protein−ligand pairs.

In Figure 2, we showcase the results of random vs CCV for
both structure-based (Pafnucy and Smina on PDBBind data
set) and sequence-based methods (DeepDTA, GraphDTA,
and SimCNN-DTA on Davis and KIBA data sets) for a
visualization of overall performances. Figure 2a clearly
showcases that there is a much greater drop in performance
when switching from random splitting to sequence similarity
CCV for models trained and tested on Davis and KIBA data
sets (sequence-based) when compared to those trained and
tested on PDBbind (structure-based). This clearly indicates
that structure-based methods (Pafnucy) are more generalizable
to novel protein−ligand targets evidenced by their overall
performance in the CCV splits. This is also in agreement with
the intuition that binding affinity depends on the 3D
interactions between the two molecules and therefore
structural information is required to make predictions for
novel complexes. Figure 2b compares CCV and random
splitting performance for all of the individual methods used in
this study. It is noticeable that there is a significant drop in
CCV for deep learning models when compared to their
random splitting counterparts, while it remains largely the
same for Smina. Since Smina is a non-deep learning scoring
function, it remains unaffected by the type of splits used to
evaluate the performance. On the other hand, you can clearly

see the level of overoptimism deep learning functions on the
random split.

From Figure 2b, we notice that Smina results almost remain
unchanged and the obtained Pearson R is very low. This
suggests that although deep learning models on 3D structures
show overoptimistic performance in random splitting, their
CCV performance is still better than a simple classical scoring
function like Smina. It is also worth noting that Smina scores
perform better on the core or refined sets as compared to the
entire PDBbind data set as the general set also contains
datapoint with IC50 target values.

From the same figure, it is visible that DeepDTA has better
performance on CCV splitting as compared to GraphDTA.
Note that GraphDTA showcased the best result for random
splitting but has done much worse on CCV splitting. As a
result, the model seems to be rewarding overfitting due to
similar protein−ligand pairs being present in the train and test
sets. Finally, we see narrow distributions for Pafnucy and
SimCNN-DTA on CCV splits, suggesting that the model
performances are more consistent across different cross-
validation folds.

While structure-based deep learning methods show quite a
bit of promise for protein−ligand scoring, they are still limited
with further biases present in the data set itself. Due to such
biases, they may not perform well in virtual screening
experiments. We discuss such aspects of the data sets in
subsequent sections.
Presence of Only Stable Protein−Ligand Pairs Leads

to Protein-Only and Ligand-Only Biases. A previously

Table 4. Comparison of Performances on Random vs CCV Splits for Sequence-Based Models

on Davis RMSER RMSEC CIR CIC Pearson RR Pearson RC

DeepDTA 0.489 0.790 0.884 0.763 0.841 0.477
SimCNN-DTA 0.548 0.825 0.855 0.739 0.808 0.456
GraphDTA(GIN) 0.478 0.854 0.886 0.670 0.844 0.314
On KIBA RMSER RMSEC CIR CIC RR RC

DeepDTA 0.423 0.764 0.860 0.673 0.864 0.497
SimCNN-DTA 0.484 0.729 0.827 0.657 0.822 0.422
GraphDTA(GIN) 0.383 0.721 0.883 0.658 0.885 0.511

RRepresents performance on random split. CRepresents performance on clustered cross-validation split.

Figure 2. Random splitting vs sequence-based clustered cross-validation performance for all of the models across various data sets used in this study
(left) and random splitting vs sequence similarity-based clustered cross-validation performance comparison for all methods (right).
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reported artifact associated with the structure-based protein−
ligand data sets is the presence of protein-only and ligand-only
biases10,23 This kind of bias entails that models trained on
ligand-only or protein-only information have comparable
performance to that of a model trained on the full complex.
This indicates that the model may not be focusing on learning
appropriate protein−ligand interactions responsible for affect-
ing the binding affinity of the complex to attain high-level
performance. In this section, we draw parallels between
sequence- and structure-based methods to infer the origins
of this bias and discuss possible approaches to control it.

We first see the ligand-only and protein-only performances
for the Pafnucy model on the general-refined-core split. The
results are reported in Table 5.

The results indicate that the ligand-only and protein-only
performances are very comparable to the performance of the
full complex, with the Pearson correlation dropping only by
around 0.1. Both the ligand-only and protein-only Pearson R
are above 0.6, showing that the model is able to attain such
performance even without learning any information from the
protein−ligand interaction. Hence, we can conclude that the
model does not necessarily focus on protein−ligand inter-
actions for making binding affinity predictions.

Next, we check the protein-only and ligand-only perform-
ances of sequence-based models on the Davis and KIBA data
sets. The performance of the models is reported in Tables 6

and 7. As we can see, the performance for protein-only and
ligand-only drops significantly, even for random splits. The
performance is especially poor in the Davis set. The Pearson
correlation for these models is below 0.5 for both protein-only
and ligand-only, which shows that there is a very poor
relationship between predicted and experimental values. This
clearly indicates the absence of such a bias in these data sets.

To explore this absence of bias in the sequence-based data
sets further, we plot the correlation plots of predicted vs
experimental values for the Davis set in Figure 3. We can see
multiple dotted lines parallel to the x axis for both ligand-only
and protein-only experiments. This is because while the model
predicts only a single value for a protein or a ligand, the data
set itself contains multiple experimental values for the same
protein or ligand. These values are also spread across the x axis,
indicating that the data set contains both strongly binding and
poorly binding protein−ligand pairs.

This is in contrast to PDBbind where structures are only
available for strongly binding protein−ligand pairs (stable) as
cocrystal structure resolution is only possible for such pairs.
Therefore, models trained on PDBbind are often not exposed
to poor binding affinity values (unstable complexes) associated
with a ligand or a protein. It can be inferred that this can be the
primary cause of protein-only and ligand-only biases in this
data set. Furthermore, this also points to a more consequential
bias in the data set as models trained on it are never exposed to
unstable protein−ligand pairs with poor binding affinities. This
bias itself could cause low performance in virtual screening as
the model is expected to extrapolate knowledge from stable
protein−ligand pairs to unstable pairs, which is not entirely
trivial. This hypothesis is further supported by relatively low
performance in virtual screening (slightly better than tradi-
tional baseline) by deep learning models predicting binding
affinity on the DUD-E and LIT-PCBA data sets.24

The solution to this problem seems simple, unstable or
poorly binding protein−ligand pairs could be added to
structure-based binding affinity data sets to get a better
guarantee of model’s performance in virtual screening.
However, this is impractical as the structure resolution of
nonbinding protein−ligand pairs is not trivial.

In an attempt to explore alternate solutions to eliminating
protein-only and ligand-only biases, we start with checking
Pafnucy performance on PDBbind cross-validation splits. The
results of these experiments are reported in Table 8. From the
results in the table, it is apparent that the ligand-only and
protein-only performances drop (especially so for protein-
only) with RMSE as high as 1.71 and 1.91 for each. It is
possibly more prominent for protein-only because of the 50%
similarity criteria we used for creating the CCV splits. Hence,
CCV splitting can, in general, be a more robust technique that
handles the protein-only and ligand-only biases to an extent
and thus guarantees a more generalizable model.

One could also make architectural changes to ML models to
enforce focusing on protein−ligand interactions. This would
ensure a reduction in such a bias as the resulting output would
be an outcome of the interactions and not the 3D structure of
the molecules. OnionNet22 employed such a method for the
prediction of binding affinity by taking protein−ligand pairs at
different distance thresholds. Jones et al.21 also reported lower
protein-only and ligand-only biases by taking a combination of
graph-based and spatial features. However, while these
solutions handle the ligand-only and protein-only biases to
an extent, they are not guaranteed to do well in virtual
screening as they are not exposed to nonbinding protein−
ligand pairs, which they may face in virtual screening. This is
an expected limitation for all data-driven methods.

Other techniques could also be utilized to handle this
problem. Docking could be used to obtain more unstable
protein−ligand structures. Alternatively, augmenting machine
learning models with confidence also seems like a possible

Table 5. Ligand-Only and Protein-Only Performance
Comparisons with the Full-Complex Performance on
PDBbind by Pafnucy in General-Refined-Core Split

PDBbind Pearson R RMSE

full complex 0.73 1.53
ligand-only 0.62 1.75
protein-only 0.64 1.73

Table 6. Ligand-Only and Protein-Only Performance
Results of DeepDTA on Davis with Random Splitting
Methods

Davis Pearson R CI RMSE MSE

full complex 0.84 0.88 0.48 0.23
protein-only 0.32 0.65 0.85 0.73
ligand-only 0.48 0.75 0.78 0.61

Table 7. Ligand-Only and Protein-Only Performances of
DeepDTA on KIBA with Random Splitting

KIBA Pearson R CI RMSE MSE

full complex 0.86 0.86 0.42 0.17
protein-only 0.36 0.68 0.77 0.61
ligand-only 0.61 0.70 0.65 0.43
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route as poor confidence is usually well correlated with
erroneous predictions. Finally, large-scale projects may be
required to develop a bias-free protein−ligand data set that
could be used by deep learning for binding affinity prediction.
The final objective is to improve the overall virtual screening
practices, regardless of how well these deep learning models
are developed. Therefore, handling and designing the negative
samples in these data sets is a key issue that needs to be
addressed for the practical usage of such deep learning models.

■ CONCLUSIONS
The utility of deep learning models for biology and drug design
is limited by their performance to unseen data distributions;
therefore, it is important to get a good understanding of model
generalizability by using appropriate data splits and tackling the
different kinds of biases induced in practice.

We utilize popular and published methods to make our
arguments and showcase results. We show a significant drop in
the perceived performance of binding affinity prediction by
deep learning architectures when controlling the levels of
protein sequence similarity in the test and train sets, while non-
deep learning scoring functions remain almost unaffected.
Therefore, we advocate for the usage of the same splitting
technique for benchmarking future machine learning models
developed on these data sets. We showcase the effect of
creating clustered cross-validation splits based on sequence,
structure, and protein−ligand interaction similarity and
conclude that the latter two methods provide much stricter
data splits for assessing model generalizability. On comparing
sequence-based methods and structure-based methods on
sequence similarity clustered cross-validation splits, we
conclude that structure-based methods have better general-
izability. We discuss the presence of ligand-only and protein-
only biases present in PDBbind and provide an explanation of
how it is induced due to the absence of nonbinding protein−
ligand pairs in the data set. We argue that this may indicate a
more prominent bias of having only stable protein−ligand pairs

in the data set, which, in turn, could have an effect on the
ranking power of the developed deep learning scoring function
for virtual screening.

In conclusion, we examined several sources of biases in
protein−ligand data sets that affect deep learning performances
in binding affinity prediction and virtual screening. Alongside,
we suggest different machine learning techniques that could
potentially be used to control such biases. We also point out
the importance of community efforts for developing larger data
sets that take into account such biases. With this, we encourage
the design of deep learning methods that take into account
such biases and could be incorporated into structure-based
drug design pipelines for virtual screening.
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Figure 3. Correlation plots for predicting binding affinity using full complex, ligand-only, and protein-only on Davis data set for DeepDTA with
random splitting.

Table 8. Ligand-Only and Protein-Only Performance
Comparisons with Full Complex by Pafnucy on PDBbind
with CCV Splitting

PDBbind Pearson R MAE RMSE SD

full complex 0.60 1.19 1.51 1.51
ligand-only 0.47 1.35 1.71 1.71
protein-only 0.34 1.52 1.91 1.91
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