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ABSTRACT

Annotation of protein-coding genes is very important
in bioinformatics and biology and has a decisive in-
fluence on many downstream analyses. Homology-
based gene prediction programs allow for transfer-
ring knowledge about protein-coding genes from an
annotated organism to an organism of interest.

Here, we present a homology-based gene predic-
tion program called GeMoMa. GeMoMa utilizes the
conservation of intron positions within genes to pre-
dict related genes in other organisms. We assess the
performance of GeMoMa and compare it with state-
of-the-art competitors on plant and animal genomes
using an extended best reciprocal hit approach. We
find that GeMoMa often makes more precise pre-
dictions than its competitors yielding a substan-
tially increased number of correct transcripts. Sub-
sequently, we exemplarily validate GeMoMa predic-
tions using Sanger sequencing. Finally, we use RNA-
seq data to compare the predictions of homology-
based gene prediction programs, and find again that
GeMoMa performs well.

Hence, we conclude that exploiting intron position
conservation improves homology-based gene pre-
diction, and we make GeMoMa freely available as
command-line tool and Galaxy integration.

INTRODUCTION

Next Generation Sequencing technologies enable rapid and
cost-efficient sequencing of genomes. However, after se-
quencing and assembling the genome of an organism, it
is important to provide annotations, especially of protein-
coding genes. Annotation pipelines for newly sequenced
genomes utilize three main sources of information: (i) ev-
idence from wet-lab experiments, (ii) ab initio and (iii)

homology-based gene prediction relying on (closely) related
and annotated species (1,2).

Wet-lab experiments like RNA-seq (3) or Iso-seq (4) pro-
vide a wealth of information about transcripts including
exon–intron boundaries and Untranslated region (UTRs),
but are limited to those transcripts expressed under the
studied conditions. Hence, annotations based on RNA-seq
data might miss lowly or very specifically expressed tran-
scripts. By contrast, ab initio gene prediction programs are
computer programs that predict gene models without evi-
dence from wet-lab experiments or related species.

Here, we focus on homology-based gene prediction pro-
grams that predict genes or transcripts in the newly se-
quenced target genomes based on the similarity to known
genes from closely related and, typically, well annotated ref-
erence genomes. Given some knowledge about a gene in
a specific organism, we are interested in whether a simi-
lar or, ideally, an orthologous gene exists in another organ-
ism, which could allow for transferring knowledge from one
species to another.

One of the most popular tools for identifying similar
genes or proteins is Basic Local Alignment Search Tool
(BLAST) (5). However, BLAST does not explicitly account
for the exon–intron structure of genes and, for this reason,
is typically applied to find similar genes or transcripts al-
ready extracted from genomic sequence. Searching for pro-
teins or coding sequences in complete genomes, long and
variable introns might be a problem for BLAST yielding
a plethora of short, similar sequences scattered over the
genome. Hence, BLAST is no gene prediction program in
terms of this manuscript.

To circumvent this problem, several approaches have
been proposed for combining smaller, local hits of high sim-
ilarity to parts of a given gene into larger, complete gene
models, as for instance Genewise (6), exonerate (7), Pro-
jector (8), GeneMapper (9) and genBlastG (10). In this
manuscript, we focus on exonerate and genBlastG. Exon-
erate is a very versatile tool allowing diverse alignments
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and is often used as part of genome annotation pipelines
(11). GenBlastG is specially tailored to aligning proteins to
genomes and especially optimized for runtime.

However, most of these tools do not utilize the known
gene structures, i.e. the exon–intron boundaries and ex-
ons lengths, of the query genes while searching for tar-
get genes, although the gene structure of intron-containing
orthologous genes is strongly conserved throughout the
whole plant or animal kingdom and to a smaller extent even
across kingdoms (12,13). By contrast, Projector (8) and
GeneMapper (9) use the conservation of the gene structure
in addition to the similarity of the encoded amino acid se-
quences. Projector uses a pairHMM approach, while Gen-
eMapper uses bottom-up approach utilizing an alignment
of codons for the exons.

Here, we propose a Gene Model Mapper approach called
GeMoMa that exploits the conservation of gene structures
to predict gene models in a target genome based on the gene
models of a reference genome. Specifically, GeMoMa uses
BLAST as a first step to align individual coding exons to the
genome on the level of (translated) amino acids. For several,
especially short, exons, BLAST will report multiple matches
spread across the genome. To reduce computational com-
plexity for the following steps, GeMoMa segments the
genome into matching regions based on the occurrence of
such exon matches. Within each region, GeMoMa uses a
dynamic programming approach to create a complete gene
model that joins the matching exons in this region in the
correct order, but allows for intron gain and loss during
this procedure. Finally, predicted exons are refined such that
each exon is flanked by proper splice sites and each (coding)
transcript begins with a start codon and ends with a stop
codon.

Aiming at a lowly biased comparison of different tools,
we extend the best reciprocal hit (BRH) approach. Two
genes residing in different genomes are called BRHs or
bidirectional best hits if the corresponding proteins find
each other as the best hit in the opposite genome (14). Of-
ten BRHs are used to determine orthologous genes, but
for several reasons this might be problematic (15). In this
manuscript, we adapt the approach comparing the best hits
of transcripts in different genomes. We enrich the analysis
by several categories, as for instance, correct transcript, cor-
rect gene and correct gene family and measure whether the
complete gene model can be predicted.

Using this extended BRH approach, we test GeMoMa
for gene prediction in plants and animals, and compare
it with exonerate and genBlastG. Subsequently, we uti-
lize Sanger sequencing and demonstrate that predictions of
GeMoMa for Carica papaya might allow for improving par-
tially known gene models or predicting previously unknown
gene models. Finally, we evaluate exonerate, genBlastG and
GeMoMa using RNA-Seq data for Nicotiana benthamiana.

MATERIALS AND METHODS

Algorithm

The main idea for predicting gene models in a genome or
genome assembly is to rely on annotated genes in other
species. In addition to using the amino acid sequence, we

also use the exon–intron boundaries, i.e. the split of the
complete Coding Sequence (CDS) into smaller parts.

Hence, each (partially) coding exon of a transcript is
translated into an amino acid sequence. Subsequently, these
sequences are fed to tblastn to obtain regions potentially
coding for similar amino acid sequences in the target
genome (Text S1).

The tblastn results of each transcript are filtered per con-
tig and strand. For each contig-strand combination, a dy-
namic programming algorithm is performed to assemble the
tblastn results to an initial gene model (Text S1) returning
an initial sum score. Based on this initial sum score, the
contig-strand combinations are filtered obtaining promis-
ing initial gene models using the parameter ct, which spec-
ifies the percentage of the maximal initial sum score that has
to be be succeeded to be used for further analysis.

For each of those contig-strand combinations, regions are
identified that possibly encode for a similar transcript. In
each region, coding parts of the transcript are searched that
have no tblastn result. Again the dynamic programming al-
gorithm is used that this time considers canonical splice sites
and only in-frame combinations of individual parts to ob-
tain a gene model and a corresponding score (Text S1).

Based on this score, the predictions of each region are
ranked and a user-specified number of predictions is re-
turned.

Extended best reciprocal hit approach

In order to compare the predictions of different tools, the
BRH approach was extended to allow for a less biased com-
parison. The BRH approach can be summarized as follows:
Given transcript A encoded in genome 1, we search for the
best matching transcript B in genome 2. Given transcript
B, we are searching for the best matching transcript C in
genome 1. If A equals C, we have a BRH. Hence, the BRH
approach only provides one category.

We extend this approach by introducing 8 additional cat-
egories:

(i) A and C are the same transcript (BRH),
(ii) A and C are different transcripts of the same gene,

(iii) A and C are transcripts of a gene family,
(iv) A and C are transcripts that do not belong to a gene

family,
(v) There is no prediction of transcript A in genome 2,

(vi) There is no annotation (B) in genome 2 that overlaps
with the prediction of transcript A in genome 2,

(vii) There is no prediction of transcript B in genome 1,
(viii) There is no annotation (C) in genome 1 that overlaps

with the prediction of transcript B in genome 1.

Furthermore, we enrich this approach by an additional
measure of confidence. The nucleotide F1 measure was com-
puted twice, namely, between the prediction of transcript
A in genome 2 and transcript B, and between the predic-
tion of transcript B in genome 1 and transcript C (Text S4).
In a nutshell, nucleotide F1 aggregates nucleotide precision
and nucleotide recall into one scalar value varying between
0 and 1 corresponding to completely wrong and perfect pre-
dictions, respectively. Finally, the minimum of these two F1
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values was computed and denoted as minimal F1. Predic-
tions that fall in one of the first four categories were further
characterized by the minimal F1.

Genomes and annotations

For the extended BRH approach, we downloaded the
genome (assemblies) and gene annotation of the plant
species Arabidopsis lyrata, Arabidopsis thaliana, Carica pa-
paya, Oryza sativa and Solanum tuberosum from Phytozome
(16), and the animal species Homo sapiens, Gallus gallus and
Mus musculus from Ensembl (17) (cf. Text S3).

Additionally, we downloaded genome assembly and
gene annotation of Nicotiana benthamiana v0.4.4 (18)
from ftp://ftp.solgenomics.net/genomes/
Nicotiana benthamiana/assemblies/ for map-
ping RNA-seq data and assessing GeMoMa predictions.

For all analyses, we discarded gene models from the given
annotation with missing start or stop codon, premature
stop codon(s) or ambiguous nucleotide(s). In addition, we
only used one representative gene model if several gene
models of a gene have the same CDS, i.e. only differ in their
UTRs.

Polymerase Chain Reaction (PCR) and sequencing

The mRNA was isolated from A. thaliana ecotype Col-0
and C. papaya inflorescences using the Bio & Sell RNA mini
Kit (Bio&Sell e.K., Feucht, Germany). In the case of C. pa-
paya, flowers were stored in RNAshield (Zymo research Eu-
rope GmbH, Freiburg, Germany) prior to RNA isolation.
The cDNA was synthesized using an anchored oligo dT-
Primer and the Maxima H Minus Reverse Transcriptase Kit
(Thermo Fisher Scientific, Germany) using 2–4 �g of total
RNA as template for the reverse transcriptase reaction. The
genomic DNA of A. thaliana was isolated as described pre-
viously (19). The genomic DNA of C. papaya was provided
by Ray Ming who was leading the original C. papaya se-
quencing project (University of Illinois).

For amplification of complementary and genomic DNA
from A. thaliana, primer pairs were deduced and designed
from the published sequence of the TAIR 10 database. For
amplification of the GeMoMa predicted C. papaya exons,
we designed primer pairs as near as possible to the predicted
start codon (ATG) and stop codon. For primer details
see Supplementary Table S7.

The PCR using cDNA of A. thaliana and C. papaya was
done with an appropriate polymerization time of 1 to 2 min
at 72◦C depending on the size of the predicted cDNA length
(from 250 to a maximum of 2037 bp). The genomic DNA of
A. thaliana and C. papaya was amplified as control using the
same primers and conditions adapted to the expected size
(ranging from 1.2 kb up to 7 kb). The 16 kb long C. papaya
gene homologous to At4g16566 was amplified in two parts
covering the first 3.5 kb and the last 4 kb.

To confirm the full length sequence of the amplified cD-
NAs of C. papaya, we subjected them to Sanger-sequencing.
The amplified cDNA and in one case (homologous gene
to At4g16566) the gDNA was purified using the ‘Gene-
JET PCR Purification Kit’ (Thermo Scientific Germany,
Braunschweig) and without cloning send to sequencing at

GATC Biotech AG (Cologne, Germany). We used the PCR-
amplification primer to completely sequence the cDNA
from both sides. Direct sequencing was used to avoid point
mutations which could have been introduced by PCR. In
the case of the gene homologous to At4g38240, the pa-
paya cDNA sequence was unreadable and therefore cloned
using the ‘InsTAclone PCR Cloning Kit’ (Thermo Scien-
tific Germany, Braunschweig). After cloning we performed
amplification by M13 forward and reverse primer (cf. Sup-
plementary Table S7) flanking the multiple cloning site of
pTZ57R/T.

Next Generation Sequencing data

Three transgenic N. benthamiana plants were grown on soil
under 8 h light (120 �Em−2) and 16 h dark at 20◦C. The
transgene, an expression cassette facilitating the expression
of a stroma targeted eGFP, was introduced into N. ben-
thamiana for the purpose of examining the plastids as part
of another experiment (for details cf. (20,21)). A total of
∼100 mg of plant tissue was harvested from the third and
fourth leaves of six week old plants. The Qiagen RNeasy
Plant Mini Kit was used to isolate total RNA from the three
plants (three biological replicates), which was then sent to
MWG Eurofins (Ebersberg, Germany) for RNA sequenc-
ing with Illumina HiSeq 2000 (v3.0 chemistry). RNA-seq
data have been submitted to ENA and are available under
study accession number PRJEB11424.

We independently mapped the RNA-seq triplicates us-
ing TopHat2 (22) v2.0.12 to the Nicotiana benthamiana
genome v0.4.4 using parameter --library-type=fr-
firststrand for strand specificity. For each of the
three mapping files, we assembled transcripts using Cuf-
flinks (23) v2.2.1 using parameter--library-type fr-
firststrand for strand specificity. We finally merged the
three resulting transcript annotations using cuffmerge. The
transcripts reported by cuffmerge were then shortened to
the longest reading frame starting with a start codon and
ending with a stop codon and non-coding exons are re-
moved, since the predictions of all tools considered are
based only on coding regions of the corresponding tran-
scripts.

RESULTS

In this section, we analyze the performance of GeMoMa
on plant and animal genomes. Due to the different intron
size distributions in these kingdoms, we set in all studies the
maximum intron length of GeMoMa for plants to 15 kb
and for animals to 200 kb.

Best reciprocal hits – Benchmark

In a pilot study, we tested the performance of GeMoMa
on the modified projector data set (8,9) for the predic-
tion of mouse transcripts given the approximate regions of
the mouse genome and human reference transcripts. We
find that GeneMapper, which is no longer available, and
GeMoMa perform comparable, while they clearly outper-
form the remaining tools especially for the categories exon
and gene (Text S2).

ftp://ftp.solgenomics.net/genomes/Nicotiana_benthamiana/assemblies/
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Based on these promising results, we performed a large
benchmark study using the extended BRH approach for
predicting gene models in animal and plant genomes, in-
cluding Homo sapiens (HS), Mus musculus (MM), Gallus
gallus (GG), as well as Arabidopsis thaliana (AT), Arabidop-
sis lyrata (AL), Carica papaya (CP), Solanum tuberosum
(ST) and Oryza sativa (OS). Since H. sapiens and A. thaliana
have the best annotated genomes among the selected, we
used these as the start and end point of the extended BRH
approach.

We selected the minimal F1 as a measure of accuracy of
a prediction (see Materials and Methods and Text S4). Ba-
sically, minimal F1 = 1 indicates a perfect prediction in the
sense that the predicted coding exons are perfectly identi-
cal to the coding exons of an annotated transcript on the
target genome, and minimal F1 = 0 indicates a prediction
that does not overlap with any known exons. We may base
the evaluation in the extended BRH on different thresh-
olds on the minimal F1 values corresponding to different
levels of required accuracy. For different thresholds on the
minimal F1 measure, we may determine the corresponding
number of predictions for several categories: correct tran-
script, correct gene, correct gene family and wrong predic-
tion, whereas the remaining categories can be determined
without such a threshold.

In Figure 1A, we present the results for human and mouse
using the different thresholds. For the threshold of minimal
F1 = 1, GeMoMa yields 14 035, 446 and 563 predictions
in the categories correct transcript, correct gene and gene
families, respectively. By contrast, exonerate and genBlastG
yield 8526, 93 and 82 as well as 2430, 108 and 183 predic-
tions in the corresponding categories, respectively.

However, different thresholds might give different results.
Hence, we tested in total three thresholds, namely minimal
F1 > 0, minimal F1 ≥ 0.8 and minimal F1 = 1. In a nut-
shell, we find that exonerate and GeMoMa outperform gen-
BlastG for these three thresholds, whereas GeMoMa per-
forms comparable to exonerate for minimal F1 > 0 and
yields a larger number of correct predictions than exoner-
ate for minimal F1 ≥ 0.8 and minimal F1 = 1.

These results indicate that the relative performance of ap-
proaches depends on the threshold on the minimal F1 val-
ues. For this reason, we plot the number of predictions for
the categories correct transcript, correct gene and correct
gene family against the minimal F1 in Figure 1B. For human
and mouse (top left panel), we find that exonerate performs
better than genBlastG and GeMoMa performs better than
exonerate independent of the minimal F1.

Comparing these results with the other results for animals
and plants, we find for the threshold minimal F1 = 1 that
GeMoMa always predicts the highest number of BRHs of
the category correct transcript (Supplementary Table S5A).
The absolute numbers vary between 3807 and 14 514 for
GeMoMa, whereas the numbers vary between 231 and 10
584 for exonerate and genBlastG. This is equivalent to an
improvement between 37% for A. lyrata and 623% for O.
sativa using GeMoMa instead of genBlastG or exonerate.

Being less conservative and using the category correct
gene family and minimal F1 ≥ 0.8, GeMoMa still outper-
forms its competitors. However, the difference is less pro-

nounced, varying between 7% for A. lyrata and 77% for O.
sativa.

Comparing the number of predictions versus varying
thresholds on the minimal F1 in Figure 1B, we find that
exonerate often performs better than genBlastG, whereas
GeMoMa always performs better than exonerate and gen-
BlastG. Especially for C. papaya, S. tuberosum and O.
sativa, we find that GeMoMa clearly outperforms the other
tools for high values of minimal F1.

In addition, we determined for each of the three tools
and each of the plant and animal genomes those predicted
transcripts that do not match any annotated transcript in
the target organism. If such transcripts are consistently pre-
dicted by all three tools, this might increase our confidence
in those predictions. We find that the number of predicted
transcripts without match in the target genome varies be-
tween 599 for M. musculus and 9607 for G. gallus. Adding
the further constraint that the predictions of the three tools
are located in the same genomic region, the number varies
between 411 for M. musculus and 8068 for G. gallus (Supple-
mentary Table S6). These numbers indicate that there is still
a substantial potential of identifying new transcripts using
tools like genBlastG, exonerate and GeMoMa even in an-
notated genomes.

In Figure 1, we also observe that the accuracy of pre-
dictions decreases with increasing evolutionary distance of
reference and target organism. To further investigate this
observation, we consider two extreme examples (A.thaliana
versus Chlamydomonas reinhardtii and H. sapiens versus
Drosophila melanogaster) in Supplementary Text S8. We
find that, given the large evolutionary distance between
these organisms, the number of perfect predictions (F1 = 1)
is extremely low for all three tools. Hence, we conclude that
homology-based gene prediction using any of the tools con-
sidered greatly profits from using an evolutionary related
organism as reference.

For these genome-wide studies, we fixed all parameters of
GeMoMa as well as genBlastG and exonerate. GeMoMa
parameters that might be tuned for specific applications are
(i) the maximum intron length, (ii) the parameter ct con-
trolling the number of contigs considered and (iii) the sub-
stitution matrix. The choice of the maximum intron length
has a clear impact on the prediction results only for drastic
changes (e.g. 15 kb versus 200 kb for plants and animals, re-
spectively). For the parameterct, lower values yield a larger
number of potential GeMoMa predictions but also result in
an increased runtime. As we considered only the top-ranked
prediction in the benchmark studies above, these are not af-
fected by the choice of ct. We further investigated the influ-
ence of the substitution matrix on the results for A. thaliana
and O. sativa and found that the performance of GeMoMa
is quite stable (Text S7).

Importance of intron position conservation
We examined the characteristics of the approaches based on
the predictions between A. thaliana and O. sativa. First, we
scrutinized the impact of intron position conservation by
running GeMoMa on protein sequences instead of exon-
wise amino acid subsequences (Text S9). We find that the
performance of GeMoMa without intron position is lower
than that of GeMoMa using intron position conservation.
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Figure 1. Results of benchmark studies using the extended BRH approach. In (A), we exemplarily visualize the results for human and mouse for the fixed
minimal F1 of 0, 0.8 and 1. For a minimal F1 > 0, only the categories correct transcript, correct gene, correct gene family and wrong prediction can be
evaluated. In (B), we visualize the results of the categories correct transcript, correct gene and correct gene family for animals (MM, GG) and plants (AL,
CP, ST, OS) for continuous minimal F1.
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Table 1. Overview of the experimental validation of 10 genes which showed a different annotation in phytozome version 10.1 and GeMoMa. The table
lists ten genes which show differences between the annotation and the GeMoMa prediction. Four of these genes have been missed in the official annotation
and six genes have been annotated with a smaller number of exons in comparison to the GeMoMa prediction

AT geneID Contig (strand) Region in kb Type Experimental validation

At1g61780 Sc 198 (−) 52–57 missing gene as predicted
At2g40765 Sc 19.43 (−) 367–369 missing gene as predicted
At4g16566 Sc 29.148 (−) 1559–1575 missing gene as predicted
At5g02060 Sc 33 (−) 1665–1673 missing gene well matching
At3g57910 Sc 85 (−) 586–589 1 missing exon as predicted
At4g38240 Sc 28580 (−) 4–11 2 missing exons well matching
At3g13120 Sc 12 (+) 1568–1570 2 missing exons roughly matching
At5g53450 Sc 3 (−) 509–514 4 missing exons 2 exons as predicted
At2g39910 Sc 19 (+) 1743–1745 2 missing exons 1 exon as predicted
At5g01580 Sc 120 (+) 347–349 1 missing exon no amplification

This difference is especially pronounced for high values of
minimal F1 corresponding to the highest-quality predic-
tions. In summary, these results indicate that utilizing intron
position conservation is a key feature of GeMoMa.

Second, we investigated the number of exons and the pro-
tein identity (PID) for the predictions with F1 = 1 of all
three tools. For computing PID, we aligned the sequences
globally using affine gap costs (gap opening = −11, gap ex-
tension = −1) and the BLOSUM62 substitution matrix. We
determine the PID as the number of matching positions di-
vided by the minimum of the two sequence lengths (24). We
visualize the results for each tool in Figure 2.

We find that the distribution of the number of exons for
exonerate and GeMoMa with intron position conservation
is broader than for genBlastG and GeMoMa without in-
tron position conservation, whereas the distribution of PID
for genBlastG and GeMoMa is broader than for exoner-
ate. Hence, we conclude that GeMoMa with intron position
conservation is able to predict transcripts with many exons
and lower PID more accurately than GeMoMa without in-
tron position conservation, genBlastG and exonerate.

Third, we visualized the difference of the number of ex-
ons of (i) reference gene and prediction, (ii) reference gene
and target gene with F1 =1 and (iii) reference gene and tar-
get gene in category correct transcript with min. F1 =1 (cf.
Supplementary Figure S6). We find that GeMoMa with in-
tron position conservation yields in all three cases a similar,
sharp and symmetric distribution, whereas exonerate, gen-
BlastG and GeMoMa without intron position conservation
yield a broader and asymmetric distribution for (i). This in-
dicates that difference of the number of exons between refer-
ence gene and prediction is more similar to the desired dis-
tribution for GeMoMa with intron position conservation
than for its competitors. Furthermore, the asymmetry indi-
cates that exonerate and genBlastG might tend to miss some
exons.

Despite the sharp distribution of the difference of the
number of exons, we find that GeMoMa is still able to han-
dle intron gain or loss if reasonable. Specifically, we find one
intron loss/gain event in 9.6% and multiple intron loss/gain
events in 1.7% of the predictions in the category correct
transcript with minimal F1 = 1. Exemplarily, GeMoMa pre-
dicts LOC Os07g09720.1 as homolog of AT5G18070.1 with
seven intron gain events, LOC Os08g43570.1 as homolog
of AT2G16730.1 and LOC Os03g63670.1 as homolog of

AT5G08550.1 with five intron loss events each. Hence, we
conclude that GeMoMa is able to handle intron loss or gain.

Experimental validation

To exemplarily demonstrate the quality of GeMoMa pre-
dictions that are either not annotated, i.e. do not have a
match in the target genome, or which have been predicted
with additional exons compared to the existing annotation,
we chose 10 genes from C. papaya and performed wet-lab
experiments. We designed at least two PCR primers for
each gene to amplify the full length cDNA predicted by
GeMoMa. As control, we also designed primer pairs for
the A. thaliana genes which are used as original template
for the GeMoMa prediction. The full primer list is given in
Supplementary Table S7. We successfully amplified all cD-
NAs and genomic DNAs from A. thaliana in accordance to
the annotated genes (cf. Supplementary Figure S7A and B).

We amplified the genomic DNA of these 10 potential
genes of C. papaya, but due to very large introns we had
to amplify in one case (C. papaya homolog of At4g16566)
two fragments of which only one is shown (Supplementary
Figure S7C, At4g16566). We amplified nine out of the 10
potential genes using C. papaya cDNA (Figure 3).

The C. papaya gene homologous to At5g01580 was the
only one which could not be amplified from cDNA (Figure
3). Despite the fact that we tested different primer pairs and
PCR conditions, we were not able to get any cDNA ampli-
fication of this gene. Therefore, we have to assume that in
mRNA from C. papaya flowers neither the annotated nor
the predicted transcript of this gene is expressed. In one
case, At3g57910, we observed two bands indicating that this
gene might be alternatively spliced in C. papaya (cf. Figure
3).

We sequenced the full length cDNAs of the nine success-
fully amplified transcripts, aligned them to the phytozome
entries and the C. papaya reference sequence, and summa-
rized the results in Table 1. In four out of those nine cases
(At1g61780, At2g40765, At4g16566, At3g57910), the pre-
diction perfectly matches the sequenced cDNA confirming
among others the alternative splicing for At3g57910. In case
of At5g02060, we found a 1 bp deletion in the reference se-
quence leading two a 4 bp difference at the donor splice site
of exon 2, which GeMoMa is conceptually unable to adjust
for. In case of At4g38240, we observed minor differences
due to non-canonical splice sites (AT-AC) at intron 13, and
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Figure 2. Number of exons and PID for the predictions with F1 = 1. In parentheses, we give the number of predictions with F1 = 1 for each tool. GeMoMa:
GeMoMa using intron position conservation; GeMoMa-protein: GeMoMa without intron position conservation.

Figure 3. Gel electrophoresis image of C. papaya cDNA of 10 candidate
genes indicating that the GeMoMa predictions for 9 out of these 10 seem
to be reasonable.

after cloning and sequencing we realized that the cDNA
contained in one case out of three the unspliced intron no.
5, leading to an aberrant transcript. In case of At3g13120,
we observed that the predicted three exons roughly match
the two exons of the cDNA. However, due to three 1 bp in-
dels within 80 bp of the reference sequence the first exon
was split in two predicted parts. These indels additionally
caused differences in the splice sites of intron 1. Finally, we
found perfect matches for 2 and 1 additional predicted ex-
ons for At5g53450 and At2g39910, respectively. However
due to gaps in the reference sequence and small Indels, we
also observed some differences.

Assessment using RNA-seq data

We finally evaluated the performance of GeMoMa based on
experimental RNA-seq data for Nicotiana benthamiana. N.

benthamiana is a model plant for plant-microbe interactions
(18,25) and widely used in transient assays and for plant
molecular farming (26,27). It has a substantially larger
genome (∼2.6 Gbp) than A. thaliana. The genome version
used in this study (v0.4.4) comprises 140 890 scaffolds and
contigs. We performed RNA-seq experiments using N. ben-
thamiana leaves in triplicates, mapped the resulting reads to
the genome accounting for splicing and derive experimen-
tally supported transcripts from the mapped reads (see Ma-
terials and Methods). The resulting transcripts served as an
experimental reference in the following evaluations.

We predicted transcripts in N. benthamiana for all A.
thaliana genes also considered in the previous benchmark
studies using exonerate, genBlastG and GeMoMa, and ad-
ditionally included coding sequences of the official 0.4.4
genome annotation into the evaluation. N. benthamiana is
an amphidiploid species (28) with parents related to Nico-
tiana sylvestris and Nicotiana obtusifolia (29) and, hence,
can be expected to carry duplicate variants of many A.
thaliana genes. For this reason, reporting a single hit for
each A. thaliana transcript may not be sufficient to cover
all transcripts that are present in the N. benthamiana 0.4.4
genome annotation.

Hence, we started exonerate, genBlastG and GeMoMa
in two variants, (i) considering only the best prediction for
each A. thaliana transcript and (ii) considering at most 10
predictions judged as reasonable by each of the 3 tools,
which results in a total of 229 758, 237 633 and 347 845
predictions for GeMoMa [We ran GeMoMa with ct = 0.4
and P = 10 to obtain a similar number of predictions as gen-
BlastG.], genBlastG and exonerate, respectively. To further
illustrate potential implications of an improved prediction
of gene models, we consider one specific transcript in Figure
4.

In this region of the N. benthamiana genome exists one ex-
perimentally derived transcript with three exons. All three
tools predict a transcript similar to AT4G26150.1 in this
region, which codes for the transcription factor cytokinin-
responsive GATA factor 1 (CGA1), while the official an-
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Figure 4. Exemplary region of the N. benthamiana genome with the corresponding experimentally derived transcripts, predictions and official annotations,
and mapped reads of one of the replicates.

notation does not list an A. thaliana match for transcript
NbS00022515g0007.1. CGA1 belongs to the B-GATA sub-
family with C-terminal leucine-leucine-methionine domain,
which is involved in the control of germination, greening,
senescence and flowering time downstream from several
growth regulatory signals (30).

The prediction of GeMoMa perfectly matches the exper-
imentally derived transcript except for the UTRs, while the
prediction of exonerate and genBlastG as well as the official
gene annotation show substantial differences. The predic-
tion of exonerate misses the first exon and predicts a shorter
second and third exon. GenBlastG predicts 4 exons, where
all exon overlap the experimentally derived exons. However,
genBlastG predicts none of the exon perfectly. The official
annotation contains one transcript with three exons in this
region, where only the second exon perfectly matches the
experimentally derived exon. By contrast, the third exon is
too short, while the first exon does not even overlap with
one of the experimentally derived exons.

Further examples of specific N. benthamiana transcripts
comprise additional exons only predicted by GeMoMa and
genBlastG (Supplementary Figure S11), exons that are not
present in the prediction of genBlastG and the official an-
notation (Supplementary Figure S8, Supplementary Fig-
ure S12), missing only in the official annotation (Supple-
mentary Figure S9), or missing in the genBlastG prediction
(Supplementary Figure S14). We also find predictions with
experimental support that are substantially different from
the official annotation and the prediction of genBlastG

(Supplementary Figure S10), or that show deviation from
the exonerate and genBlastG prediction, and official anno-
tation in exon positioning and lengths (Supplementary Fig-
ure S13).

After inspecting a few examples, we aim at assessing
the performance of GeMoMa, exonerate and genBlastG,
and the official annotation using transcripts derived from
RNA-seq data as a reference. For each of the experimen-
tally derived transcripts, we considered for the prediction
of all three tools and the official annotation only the best-
matching transcript for further evaluation to avoid scoring
of overlapping predictions for transcripts of multiple, differ-
ent A. thaliana genes. Given a pair of experimentally derived
transcript and best-matching predicted transcript, we com-
puted the corresponding nucleotide F1 measure as before.
We plot the number of matching predictions against differ-
ent thresholds on these nucleotide F1 values in Figure 5A.
Since the total number of experimentally derived transcripts
is fixed, this number of matching predictions is proportional
to sensitivity.

Considering only the best prediction for each A. thaliana
transcript, GeMoMa and genBlastG consistently yield a
larger number of matching predictions than exonerate for
all thresholds on the F1 values, where for GeMoMa, the off-
set is especially pronounced for F1 values between 0.5 and
1.0. GeMoMa also yields a larger number of matching pre-
dictions than genBlastG for F1 values above 0.5.

Turning to the second variant considering at most 10 pre-
dictions, we find that GeMoMa yields a larger number of
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Figure 5. Assessment of genBlastG, exonerate and GeMoMa predictions
compared to experimentally derived transcripts in N. benthamiana. We plot
the number of matching predictions using only the best prediction (solid)
and at most 10 predictions (dotted) for different thresholds on the corre-
sponding (A) nucleotide F1 values and (B) exon F1 values. As a reference,
we also include the official v0.4.4 annotation.

matching transcripts than exonerate only for thresholds of
F1 > 0.6. For values F1 < 0.6, exonerate predicts a larger
number of matching transcripts than GeMoMa. However,
the total number of predictions by exonerate is substan-
tially larger than that of GeMoMa, which also increases the
chance of roughly matching predictions compared to the
experimentally derived transcripts. Comparing GeMoMa
with genBlastG, we find a larger number of matching pre-
dictions of GeMoMa for F1 > 0.65, and the opposite for
F1 < 0.65. For very stringent thresholds above F1 > 0.75,
GeMoMa even yields a slightly larger number of matching
predictions than the official annotation.

For an alternative perspective on prediction accuracy, we
further compared the predictions of GeMoMa, genBlastG
and exonerate on the exon level. To this end, we counted

for each of the tools the number of correctly predicted ex-
ons for each experimentally derived transcript. We consid-
ered an exon as correctly predicted if donor and acceptor
splice site are found at identical position in the transcripts
derived from the RNA-seq data. Based on these counts, we
computed the corresponding exon F1 values (see Materi-
als and Methods) and, in complete analogy to Figure 5A,
plot the number of matching predictions against different
thresholds on the exon F1 values in Figure 5B. Considering
only the best predictions, we find that GeMoMa yields a
larger number of matching predictions than exonerate and
genBlastG for all thresholds on the exon F1 values. In this
case, the differences between the different tools are more
pronounced than on the nucleotide level, which indicates
that a substantial number of transcripts and correspond-
ing exons is largely covered by the predictions of all three
tools. However, the proportion of perfectly matching exons
(including the exact location of splice sites) is larger for the
predictions of genBlastG than for exonerate and larger for
GeMoMa than for exonerate and genBlastG. This picture
is widely consistent considering at most 10 predictions of
all three tools. Notably, GeMoMa also yields a larger num-
ber of matching predictions than the official annotation for
thresholds on the exon F1 value above 0.4.

Finally, we further examined those transcripts that are ei-
ther predicted by GeMoMa using 10 predictions or present
in the official annotation with perfect accuracy, i.e. with a
nucleotide F1 = 1 compared with the experimentally derived
transcripts. The official annotation contains 9863 and the
prediction of GeMoMa contains 14 445 of such perfectly
matching transcripts. The intersection of both sets contains
6660 transcripts, while 3203 transcripts are perfectly match-
ing only for the official annotation and 7785 transcripts are
perfectly matching only for the prediction of GeMoMa. Of
the 6660 transcripts shared between the official annotation
and the GeMoMa prediction, 3296 are also annotated with
the same best-matching A. thaliana gene, whereas 542 tran-
scripts are annotated with a putative A. thaliana homolog in
the GeMoMa prediction but not in the official annotation,
and the remaining 2822 transcripts are annotated with dif-
fering A. thaliana genes. Of the 7785 transcripts that are per-
fectly matching the experimentally derived transcript only
in the GeMoMa prediction, 3668 are annotated with the
same A. thaliana transcript in the official annotation, de-
spite the apparent differences in the gene models. However,
1205 of these transcripts are annotated with a putative A.
thaliana homolog only in the GeMoMa prediction.

Summarizing these results, we obtain a more accurate
gene model for 7785 transcripts when complementing the
official annotation with GeMoMa predictions. In addition,
we gain annotations with putative homolog A. thaliana
genes for 1747 N. benthamiana transcripts. Since all these
GeMoMa predictions considered are perfectly matching ex-
perimentally derived transcripts, this additional informa-
tion is of reasonable confidence.

DISCUSSION

We find that GeMoMa performs better than Genewise, Pro-
jector, exonerate and genBlastG on a small mouse data
set using human gene models, while it performs similar
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to GeneMapper. In addition, GeMoMa outperforms gen-
BlastG and exonerate in genome-wide studies for animals
and plants using different categories of correctness and dif-
ferent thresholds for the minimal F1 measure.

Using the most conservative evaluation, we find that
GeMoMa predicts between 37% and 623% more transcripts
perfectly compared to genBlastG and exonerate. Despite
making the evaluation less conservative, we still observe that
GeMoMa performs better than its competitors by 7% to
77% using the category correct gene family and a minimal
F1 ≥ 0.8. Summarizing these results, we find that GeMoMa
predicts more transcripts with a higher accuracy than its
competitors.

Searching for an explanation of the performance differ-
ences, we compared the predictions of genBlastG, exonerate
and GeMoMa with and without intron position conserva-
tion. We find that GeMoMa with intron position conserva-
tion predicts more transcript with more exons and also with
lower PID. Furthermore, the number of exons in the ref-
erence transcript and the prediction is stronger correlated
using intron position conservation.

Comparing the predictions of genBlastG, exonerate and
GeMoMa, we also find that hundreds to thousands of tran-
scripts have been predicted in overlapping genomic regions,
which might be promising candidates of not yet annotated
transcripts. In wet-lab experiments for papaya, we show that
the predictions of GeMoMa can be used to improve the of-
ficial annotation identifying new transcripts or missing ex-
ons.

Finally, we use data from RNA-seq experiments to de-
rive experimentally supported transcripts in N. benthamiana
and find that a larger number of GeMoMa than exoner-
ate and genBlastG predictions have good experimental sup-
port. We also observe several cases, where the predictions
of GeMoMa are in better accordance to the experimentally
derived transcripts than even the official N. benthamiana an-
notation.

These findings indicate that utilizing intron position con-
servation besides amino acid conservation might be bene-
ficial for gene prediction in related species. In addition, it
raises questions about the quality and the completeness of
existing genome annotations for protein-coding genes. In
several cases, we also find indels in the reference genome
which affect annotations and predictions.

Despite the reasonable performance of GeMoMa, there
is still room for improvement. Currently, GeMoMa only
uses GT and GC as consensus donor splice sites and AG
as consensus acceptor splice sites. Hence, transcripts us-
ing non-canonical splice site cannot be predicted perfectly.
Further improvements might be gained by using additional
intron-related features in addition to intron position con-
servation.

High-quality annotations of protein-coding genes are a
prerequisite for many applications, as for instance, targeted
resequencing including exome-capture (31). Hence, we ex-
pect that GeMoMa might be of broad interest for planing
and conducting such experiments besides general genome
annotation pipelines (32,33).

AVAILABILITY

RNA-seq data have been submitted to ENA and are
available under study accession number PRJEB11424.
GeMoMa is freely available to the community as part of
the Jstacs library (34) and as Galaxy (35) integration at
http://www.jstacs.de/index.php/GeMoMa.
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