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Absolute count of circulating monocytes has been proposed as an independent prognostic
factor in diffuse large B-cell lymphoma (DLBCL). However, monocyte nomenclature includes
various subsets with pro-, anti-inflammatory, or suppressive functions, and their clinical
relevance in DLBCL has been poorly explored. Herein, we broadly assessed circulating
monocyte heterogeneity in 91 DLBCL patients. Classical- (cMO, CD14pos CD16neg) and
intermediate- (iMO, CD14pos CD16pos) monocytes accumulated in DLBCL peripheral blood
and exhibited an inflammatory phenotype. On the opposite, nonclassical monocytes
(ncMOSlanpos, CD14low CD16pos Slanneg and ncMOSlanneg, CD14low CD16pos, Slanneg)
were decreased in peripheral blood. Tumor-conditioned monocytes presented similarities
with ncMO phenotype from DLBCL and were prone to migrate in response to CCL5 and
CXCL12, and presented similarities with DLBCL-infiltrated myeloid cells, as defined bymass
cytometry. Finally, we demonstrated the adverse value of an accumulation of nonclassical
monocytes in 2 independent cohorts of DLBCL.

Keywords: B cell lymphoma, DLBCL, biomarker, monocyte, immune suppression
INTRODUCTION

Circulating monocytes are classified by their CD14 and CD16 expression as classical- (cMO, CD14pos

CD16neg), intermediate- (iMO, CD14pos CD16pos), and nonclassical- monocytes (ncMO, CD14low

CD16pos) (1). In addition, Slan expression [6-Sulfo LacNac, which is a carbohydrate modification of P-
selectin glycoprotein ligand-1 (PSGL-1)], allows the sub-classification of ncMO Slanpos (CD14low
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CD16pos Slanpos) and ncMO Slanneg (CD14low CD16pos Slanneg) (2,
3). Lastly monocytic myeloid derived suppressor cells (M-MDSC,
CD14pos HLA-DRlow) found in acute or chronic inflammatory
context, including cancers, are defined by an impairment of T- and
NK- effector functions (4). This nomenclature reflects pro-
inflammatory, anti-inflammatory, or suppressive functions
described for monocytes (5, 6).

In diffuse large B-cell lymphoma (DLBCL), tumor
microenvironment (TME), myeloid cells are supportive of the
neoplastic process (7–10). In blood from DLBCL patients, an
increase in circulating monocytes is a marker of adverse
prognosis (11–15). However, so far monocytes were considered
as a whole, and few studies analyzed the monocyte subsets and
their clinical relevance even if their intrinsic functions are known
to be different. Among monocyte subsets: i) Slanpos monocytes
were increased and displayed high rituximab mediated antibody-
dependent cellular cytotoxicity (16); ii) an increase in CD16pos or
CD11bposCX3CR1pos monocytes predicted poor progression
free- and overall- survival (17, 18); iii) CD14posCD163posPD-
L1pos monocytes were increased (19); and finally iv) functional
M-MDSCs were enriched in peripheral blood and predicted poor
event-free survival (20–22). In DLBCL tumor, the myeloid
compartment heterogeneity was recently approached by high
dimensional analysis revealing distinct macrophage phenotype
across lymphoma subtypes (23).

In light with the observation that various monocyte subsets
are involved in the biology of DLBCL, we investigated the
canonical cMO, iMO, ncMO Slanpos, and ncMO Slanneg

subsets in two large cohorts of patients. We quantified these
subsets, analyzed their phenotype and functions as well as the
clinical relevance of these cells. We found here that in DLBCL,
ncMO are prone to migrate into tissues and that their increase in
peripheral blood is associated with an adverse prognosis.
METHODS

Samples
A cohort of 91 DLBCL patients at diagnosis from the BMS-
LyTRANS clinical trial (ClinicalTrials.gov Identifier:
NCT01287923) was used in this study. Clinical characteristics
of DLBCL patients enrolled in this training cohort are listed in
Table 1. Patients with previous corticosteroid treatment were
excluded from this study. As controls, age-matched heathy
donors (HD, n = 49), follicular lymphomas (n = 9), mantle cell
lymphomas (n = 9), chronic lymphocytic leukemias (n = 11), and
marginal zone lymphomas (n = 10) were included. Part of these
samples (DLBCL and HD) were used in a previous work (22).
Prognosis scores were validated in a second cohort of 155
DLBCL patients from the recently published GAINED trial
(ClinicalTrials.gov Identifier: NCT01659099) (24). Clinical
characteristics of DLBCL patients enrolled in this validation
cohort are listed in Table 1. The research protocol was
conducted under French legal guidelines and fulfilled the
requirements of the local institutional ethics committee and
biosecurity procedures.
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Fluorescent Flow Cytometry Analysis
Blood samples were collected on heparin tubes. Flow cytometry
analysis of M-MDSCs, cMO, iMO, and ncMO were performed
on whole blood (300 µL/tube) with the antibody panel shown
Table S1 and the gating strategy defined Figure S1. Absolute
counts were obtained by using Flow-Count beads (Beckman
Coulter, Brea, CA). An erythrocytes lysis (Uti-Lyse Dako,
Carpinteria, CA) was performed before analysis by flow
cytometry (Navios, Beckman Coulter). Analyses were
performed using Kaluza software (Beckman Coulter).

In Vitro Culture
OCI-Ly3 and OCI-Ly19 cell lines were cultured in OCI-Ly
medium (IMDM supplemented with 10% human AB
serum,1% penicillin–streptomycin (Invitrogen) and 50 µM of
b-Mercaptoethanol). For supernatants, OCI-Ly 3 and 19 were
seeded at 3 x106 cells/ml in OCI-Ly medium for 24h (37°C, 5%
CO2). Supernatants were obtained after centrifugation and were
frozen at -80°C until migration assay. For control of migration
assay, OCI-Ly medium were incubated at (37°C, 5% CO2)
without cells for 24h before centrifugation and freezing.

Monocytes were obtained from PBMCs by elutriation before
cryopreservation (plate-forme DTC; CIC Biotherapie, Nantes,
France). Monocytes were thawed and resuspended at 4 x106

cells/mL in RPMI 1640 (Invitrogen, Carlsband, CA, USA)
supplemented with 10% FCS and antibiotics (Invitrogen) and
then diluted at 2 x106 cells/mL by adding, as control, the OCI-Ly
medium (IMDM supplemented with 10% human AB serum,1%
penicillin–streptomycin and 50 µM of b-Mercaptoethanol, or
OCI-Ly3 or OCI-Ly19 supernatant. Two mL of cell suspension
were seeded in a 6-well plate during 4 days before mass
cytometry analysis or migration assay.

Mass Cytometry Analysis
Cell labeling and mass-cytometry analysis were performed as
previously described. (25–27) Briefly, cells were incubated with
25 µM cisplatin (Fluidigm San Francisco, CA, USA). Then, 5
x106 cells were washed in PBS (HyClone Laboratories, Logan,
UT, USA) containing 1% BSA (Thermo Fisher Scientific) and
stained in 100 µL PBS and BSA 1%-containing Antibody
cocktail. Cells were stained for 30 min at RT with the
antibodies (Table S2) Cells were washed twice in PBS - BSA
1% before fixation in 1.6% PFA, and permeabilization with
methanol (Electron Microscopy Sciences, Hatfield, PA, USA).
After incubating overnight at -20°C in MeOH, cells were washed
twice with PBS -BSA 1% and stained 20 min with iridium
intercalator (Fluidigm, Sunnyvale, CA, US). Finally, cells were
washed twice with PBS and twice with diH2O before acquisition
a CyTOF 2.0 mass cytometer (Fluidigm). Mass cytometry raw
data were deposited in Flow Repository (http://flowrepository.
org/id/FR-FCM-Z4N6).

Data Processing and Analysis
Data analysis was performed using the workflow previously
developed (23). Briefly, after acquisition, intrafile signal drift
was normalized and.fcs files were obtained using CyTOF
December 2021 | Volume 12 | Article 755623
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software. To diminish batch effects, all files were normalized on
EQ Beads (Fluidigm) using the premessa R package (https://
github.com/ParkerICI/premessa). Raw median intensity values
were transformed to a hyperbolic arcsine (arcsinh) and then
analysis was performed using Cytobank software (Beckman
Coulter, Brea, CA, USA).

Migration Assay
At day 4 of monocyte culture with OCI-Ly3, or OCI-Ly19
supernatant, or control culture medium, cells were collected and
washed twice in PBS before starvation during 1 hour (37°C, 5%
CO2) at 10

6 cells/mL in RPMI 1% HSA. Then, cells were washed
once, counted and 100 µL of cells at 106 cells/mL were added to the
upper compartment of Transwell chambers with 5 µM pore filters
(Corning Incorporated, Kennebunk, ME, USA). The lower
chamber contained a chemiokine among CCL2 (R&D Systems,
30 ng/ml), CCL3 (R&D Systems, 20 ng/ml), CCL5 (R&D Systems,
30 ng/ml), CCL22 (R&D Systems, 20 ng/ml), CXCL5 (R&D
Systems, 20 ng/ml), CXCL12 (R&D Systems, 20 ng/ml), or
RPMI 1640 1% HSA as control (corresponding to Basal
migration). Cells in the lower chamber were collected after 5h
(37°C, 5% CO2) and the absolute number of viable (DAPI
negative) monocytes was quantified by flow cytometry using
Precision Count Beads™ (Biolegend Inc, San Diego, CA, USA).
The absolute number of cells (Total Cells) added to the upper
compartment at the beginning of migration assay was also
determined for each condition (control, OCI-Ly3 and OCI-
Ly19) with Precision Count Beads™. Percentage of cells that
have specifically migrated against a chemokine was calculated as
follow: Specific migration = (Lower chamber - Basal migration)/
Total cells x 100. The migration represents the variation of this
percentage with OCI-Ly supernatants compared to control culture
medium (% of specific migration with supernatant – % of specific
migration with medium) for each chemokine.
Frontiers in Immunology | www.frontiersin.org 3
Cell Sorting
cMO (CD19neg CD3neg CD335neg CD45pos CD14high CD16neg),
iMO (CD19neg CD3neg CD335neg CD45pos CD14high CD16pos),
ncMO Slanpos (CD19neg CD3neg CD335neg CD45pos CD14low

CD16pos Slanpos), and ncMO Slanneg (CD19neg CD3neg CD335neg

CD45pos CD14low CD16pos Slanneg) were sorted from thawed
PBMC of DLBCL patients and HD using an ARIA II (FACSAria,
BD Biosciences).

Quantitative Real-Time PCR
Total RNA was extracted usingNucleospin® RNA XS kit
(Macherey-Nagel, Duren, Germany). cDNA was then
generated using Fluidigm Reverse Transcription Master Mix
(Fluidigm). The qPCR were performed in triplicate using 96.96
Dynamic Array™ IFCs and the BioMark™ HD System from
Fluidigm. For each sample, the mean CT value for the gene of
interest was calculated, normalized to the geometric mean value
of the 2 housekeeping genes (CDKN1B and ELF1) (Table S3),
and compared to the median value obtained from the reference
population (HD cMO or iMO, and DLBCL ncMO) using the 2-
ddCT method. Results were expressed as the ratio of sample
mean to reference mean for each gene.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism 8.4.3
software (GraphPad Software, San Diego, CA, USA) using
Pearson correlation, Wilcoxon, Mann-Whitney, Ordinary one-
way ANOVA with Tukey’s multiple comparisons test, and
Fishers’s exact tests as appropriate. Optimal thresholds were
defined with the maxstat package, log-rank tests were performed
with the survminer package, cox model for univariate and
multivariate analysis were performed with the survival package.
Analyses were generated with R v4.0.3, using Rstudio v1.3.1093.
TABLE 1 | Patient’s characteristics at baseline.

Healthy donors (n = 49) BMS-LyTRANSTraining cohort (n = 91) GAINED (24) Validation cohort (n = 155)

Average age, years (range) 52.9 (25-66) 55.7 (18-83) 44.9 (19-60)
Male, n (%) 30 (61.2%) 56 (61.5%) 86 (55.5%)
Female, n (%) 19 (38.8%) 35 (38.5%) 69 (44.5%)
aaIPI, n (%)
0 to 1 NA 46 (59%)* 68 (43.9%)
2 NA 28 (35.9%)* 71 (45.8%)
3 NA 4 (5.1%)* 16 (10.3%)
Cell of origin, n (%)
GCB (Hans& or Nanostring@) NA 30 (54.5%)*,& 83 (74.8%)*,@

Non-GCB (Hans&) or ABC (Nanostring@) NA 25 (45.5%)*,& 28 (25.2%)*,@

Unclassified@ NA NA 9@

Insufficient material NA 36 35
Chemotherapy, n
Rituximab CHOP NA 69 37
Rituximab ACVBP NA 0 39
Obinutuzumab CHOP NA 6 40
Obinutuzumab ACVBP NA 0 38
Other treatment NA 3 0
Unknown or not treated NA 13 1
Dec
aaIPI, age adjusted International prognostic index; GCB, germinal center B cell; ABC, activated B cell *percentage among cases with known data; &defined by Hans algorithm;
@defined by nanostring analysis. CHOP, cyclophosphamide, doxorubicine, vincristine, and prednisone; ACVBP, doxorubicine, prednisone, cyclophosphamide, vindesine, and
bleomycine; NA, not applicable.
ember 2021 | Volume 12 | Article 755623
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Data Sharing Statement
For original data, please contact the corresponding author. Mass
cytometry raw data were deposited in Flow Repository (http://
flowrepository.org/id/FR-FCM-Z4N6. QPCR raw data are
included in Table S4.
RESULTS

cMO and iMO Are Increased in DLBCL
We have previously shown that M-MDSCs accumulated in
DLBCL peripheral blood (22). However, this increase accounts
for only a part of the total monocyte accumulation suggesting
that additional monocyte subsets are also increased in DLBCL
samples (Figure 1A). We quantified the absolute count of the 4
circulating monocyte subsets M-MDSC, cMO, iMO, and ncMO.
M-MDSC, cMO, and iMO were increased in DLBCL when
compared to HDs (P <.05, median: 5.75 x106 cells/L vs 2.8
x106 cells/L, 348.8 x106 cells/L vs 274.1 x106 cells/L, and 34.4
x106 cells/L vs 26.1 x106 cells/L; respectively). Conversely, ncMO
were significantly decreased in DLBCL when compared to HD
Frontiers in Immunology | www.frontiersin.org 4
(P <.0001, median: 17.1 x106 cells/L vs 36.1 x106 cells/L;
Figure 1B). Noteworthy, whereas the increase of cMO and
iMO was also found in other B cell lymphomas, this decrease
in ncMOwas specific of DLBCL (Figure S2). Then, we wondered
in which monocyte subset M-MDSCs were included. Of note
M-MDSC count was correlated with total monocyte (R = .57,
P <.0001), cMO (R = .61, P <.0001), but was not correlated with
iMO and ncMO (Figure 1C) No correlation were observed
between MO subsets in HD samples (data not shown).
Regarding CD14 and CD16 expression, M-MDSCs were
essentially aligned with the cMO phenotype and to a lesser
extent to iMO (Figure 1D). Altogether, these results confirmed
that in addition to MDSCs, cMO and iMO were also involved in
the monocyte increase observed in DLBCL patients.

DLBCL cMO and iMO Share a Common
Inflammatory Phenotype
To further identify the immune properties of monocyte
subsets, we sorted cMO and iMO from DLBCL (n=7) and HD
(n=4) samples. Gene expression was assessed by high
throughput qPCR on 71 genes involved in myeloid biology (22)
A B

C

D

FIGURE 1 | cMO and iMO are increased in peripheral blood from DLBCL. (A) Monocyte absolute counts in HD (n = 49) and DLBCL (n = 88). For the 23 DLBCL
samples with monocyte above 528 x106 monocytes/L (corresponding to the 90th percentile of HD), proportion of M-MDSC within monocyte (B) M-MDSC in HD
(n = 43) and DLBCL (n = 69) and monocyte subset counts [classical- (cMO), intermediate- (iMO), and nonclassical- (ncMO)] in peripheral blood from HD (n = 55) and
DLBCL patients (n = 91). (C) Pearson correlation between M-MDSC and monocyte (MO), cMO, iMO, and ncMO (n = 68). (D) Mean fluorescent intensity (MFI) for
CD14, CD16, and HLA-DR. Each dot represents a DLBCL sample (n = 33) colored by monocyte subset (MDSC, cMO, iMO, and ncMO). Mann-Whitney test were
performed. *P <. 05, ****P < .0001.
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(Tables S3, S4, and Figure S3). Of note, 6 cMO and 5 iMO out of
7 DLBCL were clustered (Figure 2A and Figure S3). DLBCL
cMO and DLBCL iMO were significantly enriched for
inflammatory genes (FCGR3A, CD36, FCGR1A, CYBB, AIM2,
STAT6, FCGR2A, CCR2, NLRC4, S100A8, and CD14 genes), when
compared to the corresponding subsets in HDs (P <.05,
∣log2FC∣>1) (Figure 2B). In addition, S100A9 and CD163 were
also increased in DLBCL cMO, whereas CD33 and ITGAM were
enriched only in DLBCL iMO. For both subsets, SLC7A11,
CD274, and CXCL1 were expressed at lower levels in DLBCLs
(Figure 2B). Biological processes enriched in DLBCL cMO and
iMO included apoptosis, production of ROS, immune response,
and phagocytosis (Figure 2C). By flow cytometry, we showed that
cMO and iMO from DLBCL displayed a higher expression of
CD64 and CCR2 (P <.05), without variation in HLA-DR and
Frontiers in Immunology | www.frontiersin.org 5
CD163 (Figure 2D). Altogether, these results suggested that, in
DLBCL, cMO and iMO share a common deregulated
inflammatory phenotype.

DLBCL ncMO Are Decreased in Peripheral
Blood and Exhibit an Inflammatory- and
Tolerogenic-Like- Phenotype
We then focused on ncMO in DLBCL samples and found that
both subsets of ncMO (ncMO Slanpos and ncMO Slanneg) were
decreased in DLBCLs when compared to HDs [ncMO Slanpos

median at 3.3 x106 cells/L vs 9.1 x106 cells/L (P <.001) and ncMO
Slanneg median at 19 x106 cells/L vs 23.7 x106 cells/L (P <.05),
respectively] (Figure 3A). No increase of apoptosis was detected
in ncMO from DLBCL patients (data not shown). Then, sorted
ncMO Slanpos and ncMO Slanneg from DLBCL and HD samples
A

B

C

D

FIGURE 2 | Circulating cMO and iMO share a common inflammatory phenotype, in DLBCL. (A) Unsupervised hierarchical clustering of classical- (cMO) and intermediate-
(iMO) monocytes, from HD (n = 4) and DLBCL (n = 7) samples. See Table S3 for a list of genes analyzed on monocyte subsets after cell sorting. Pearson’s correlation and
complete linkage was employed. (B) Transcripts differentially expressed (P <.05; ∣log2FC∣ > 1) between DLBCLs and HDs, for cMO and iMO. (C) Predicted top 5 biological
processes increased for cMO and iMO from DLBCL (Ingenuity Pathway Analysis, z-score > 2.5, ranked by p-value). (D)Mean fluorescence (MFI) for CD64, HLA-DR, CD163,
CD14, CD16, and CCR2 for HD (n = 16) and DLBCL (n = 33) samples. Mann-Whitney test were performed. *P < .05, **P < .01, ***P < .001, ns, non-significant.
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A B

C

D

FIGURE 3 | ncMO are decreased in peripheral blood but exhibit an inflammatory- and tolerogenic- phenotype. (A) Nonclassical Slanpos or Slanneg (ncMOSlanpos and
ncMoSlanneg) monocytes from HDs (n = 28) and DLBCLs (n = 56). Mann-Whitney test were performed. *P <.05, ***P <.001. (B) Unsupervised hierarchical clustering
of classical- (cMO), intermediate- (iMO), nonclassical Slanpos- or Slanneg- (ncMOSlanpos and ncMoSlanneg) monocytes from DLBCL (n = 7) samples. DLBCL identity
(#). List of genes analyzed on monocyte subsets after cell sorting is on Table S3. Pearson’s correlation and complete linkage was employed. (C) Transcripts
differentially expressed (P <.05; ∣log2FC∣ > 1) between DLBCLs (n=7) and HDs (n=4), for ncMO Slanpos and ncMO Slanneg. Predicted top 5 biological processes
increased for ncMO Slanpos and ncMO Slanneg from DLBCL when compared to HD samples (Ingenuity Pathway Analysis, z-score > 2.5, ranked by p-value).
(D) Transcripts (P <.05; ∣log2FC∣ > 1) enriched in ncMO compared to cMO and iMO for DLBCL. Predicted top 5 biological processes increased for ncMO
compared to cMO and iMO, from DLBCL (Ingenuity Pathway Analysis, z-score > 2.5, ranked by p-value).
Frontiers in Immunology | www.frontiersin.org December 2021 | Volume 12 | Article 7556236
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were analyzed by high-throughput Q-PCR (Figure S4). To
explore the similarities between ncMO Slanpos, ncMO Slanneg,
iMO, and cMO, we performed an unsupervised hierarchical
clustering on the DLBCL samples. For 6 out of 7 patients,
cMO and iMO were separated from ncMO independently of
Slan expression (Figure 3B and Figure S5). In addition, ncMO
Slanpos and ncMO Slanneg exhibited tolerogenic genes
(PDCD1LG2, IL10, IDO, CD274, AGER, TNFAIP6) (Figure 3C
and Figure S5), most of these genes were not expressed in HD
ncMO (Figure S6). In DLBCL, cMO and iMO in one hand and
ncMO Slanpos and ncMO Slanneg in the other hand shared
similar gene expression (Figure 2A and Figure S5), thus we
compared the gene expression between ncMO, irrespectively of
the Slan status, and both cMO and iMO. DLBCL ncMO were
enriched for both inflammatory (CXCL10, AIM2, IL12A) and
tolerogenic (PDCD1LG2, IL10, IDO, CD274, AGER) genes
(P <.05, ∣log2FC∣ > 1) compared to cMO and iMO
(Figure 3C). Biological processes involved by genes enriched in
ncMO from DLBCL patients were growth of tumor, inhibition of
cells, and chemotaxis (Figures 3C, D).
Tumor Conditioned Monocytes Give Rise
to MO Prone to Migrate in Response to
CCL5 and CXCL12
In order to evaluate how tumor B cells contribute directly to the
phenotype of DLBCL monocytes, we cultured monocytes from
Frontiers in Immunology | www.frontiersin.org 7
HD with supernatants from the DLBCL cell lines OCI-Ly3 and
OCI-Ly19. After coculture, we analyzed the monocyte phenotype
by mass cytometry (23, 25) and noticed an increased expression
of CD16, Slan, CD64, CD163. We concluded that tumor
conditioned monocytes triggered the cMO to ncMO transition
(Figure 4A). Then we wondered if these cells were prone to
migrate into tissue. Tumor-condit ioned monocytes
demonstrated an increase in in vitro migration in response to
CCL5 and CXCL12 when compared to non-conditioned
monocytes (Figure 4B).
High Level of Circulating ncMO Is
Correlated With an Adverse Prognosis
in DLBCL
Then, we evaluated the prognosis value of cMO, iMO, and
ncMO in DLBCL. We used i) the proportion of ncMO to other
monocytes (ratio ncMO to sum of cMO and iMO) and ii) the
absolute count of circulating cMO, iMO, and ncMO. Analysis
was performed on 52 patients for which clinical data were
available. cMO and iMO were not associated with prognosis
(data not shown). By contrast, patients with high proportion of
ncMO and high absolute count of circulating ncMO were
associated with a lower event-free survival probability (P =
.043 and P = .0061, respectively) using thresholds (ratio at 0.06
and ncMO at 20.58 x106 cells/L) defined with the maxstat
package (Figure 5A and Figure S7). To validate the prognosis
A B

FIGURE 4 | Tumor cells supernatants polarize monocytes with higher migratory abilities. (A) Monocytes from healthy donors (n = 2) were treated with OCI-Ly3, OCI-
Ly19 supernatant, or vehicle as control. Overlay histograms represent mean marker intensities for selected markers. Monocytes treated with vehicle (grey), OCI-Ly19
supernatant (orange), or OCI-Ly19 supernatant (green). Top: experiment 1. Bottom: experiment 2. (B) Migration assay for HD monocytes (n = 4) cultured or not with
OCI-Ly3 and OCI-Ly19 supernatant in response to CCL2, CCL3, CCL5, CCL22, CXCL5, and CXCL12. Wilcoxon matched-pairs signed rank test were used to
compare tumor-conditioned monocytes migration to the control condition (OCI-Ly medium). *P < .05, **P < .01 (22).
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value of ncMO obtained on this training cohort, we analyzed by
flow cytometry the proportion of monocyte subsets in an
independent cohort of 155 DLBCL samples from the recently
published GAINED trial (NCT01659099) (24). With the
previously calculated thresholds, high proportion of ncMO
and high absolute count of ncMO was associated with a lower
overall survival (P = .017 and P = .011, respectively)
(Figure 5A). A univariate analysis on the validation cohort
showed that Ann Arbor Stage III-IV, ECOG status >1, elevated
LDH, PET4 positivity, and increase in circulating ncMO were
associated with lower OS (Table 2). In a multivariable analysis
Ann Arbor Stage III-IV, PET4 positivity, increase in circulating
ncMO remained statistically significant (Table 2). We
previously demonstrated the accumulation of M-MDSC in
DLBCL (22) and since no phenotypic overlap existed between
Frontiers in Immunology | www.frontiersin.org 8
M-MDSC and ncMO (Figure 1D), we wondered if patients’
characteristics were different between M-MDSChigh and
ncMOhigh DLBCLs. Both M-MDSC and ncMO were
infrequently increased together [11 cases out of 155 (7.1%)];
ncMO were increased alone in 51 cases (32.9%), and M-MDSC
were increased alone in 28 cases (18.1%) (Figure 5B).
Interest ingly , ncMOhigh and M-MDSChigh pat ients
corresponded to different types of patients. In particular
when compared to ncMOlow, ncMOhigh were enriched in
ABC DLBCL subtypes [37.5 vs 15.9% (P = .014)] and in older
patients [median age at 50 vs 46 years (P = .044)]. On the other
hand, when compared to ncMOhigh, M-MDSChigh patients were
younger [median age at 42 vs 50 years (P = .0027)] and had
higher levels of soluble PD-L1 [sPD-L1 at 1849 vs 1142 pg/mL
(P = .008)] (Figure 5B).
A

B

FIGURE 5 | High levels of circulating ncMO is correlated to adverse prognosis in DLBCL. (A) Event-free survival (EFS) in training cohorts (NCT01287923) and overall
survival (OS) in validation cohorts (NCT01659099) (24). Patients were stratified on the ratio of ncMO to other monocytes (cMO and iMO) and on the absolute count
of circulating ncMO. Threshold was defined on the training cohort using the maxstat package (Figure S7). Survival probability was calculated for both groups with a
log-rank test. (B) Absolute count for ncMO (threshold at 20.58 x106 cells/L) and M-MDSC (threshold at 22.51 x106 cells/L) (22), and distribution of age and soluble
PD-L1 (sPD-L1), *P < .05, **P < .01.
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DISCUSSION

Although the prognostic relevance of total monocyte count has
been described in large cohorts of DLBCL in the last decade (11–
15), few studies evaluated which particular monocyte subset was
involved. In a previous work, we have shown an accumulation of
M-MDSC (CD14pos HLA-DRlow) in peripheral blood from
DLBCL patients (22). Because M-MDSCs were not responsible
for the whole increase in monocytes in our cohort, we explored
cMO, iMO, and ncMO subsets. We demonstrated an increase in
cMOs and iMOs in DLBCL, as in other lymphomas subtypes
tested (CLL, MCL, MZL, and FL). In DLBCL, these MO subsets
shared an inflammatory phenotype. By contrast, ncMOs were
decreased in peripheral blood only in DLBCLs when compared
to HDs or other B cell lymphomas. Interestingly, high number of
circulating ncMO was an adverse prognosis in 2 independent
cohorts of DLBCL patients. Finally, we found that tumor-
conditioned monocytes shared a common phenotype with
ncMOs and were prone to migrate in response to chemokines.

Surprisingly cMO and iMO from DLBCL showed common
deregulated pathways with an enrichment for FCGR3A, CD36,
FCGR1A, CYBB, AIM2, STAT6, FCGR2A, CCR2, NLRC4, S100A8,
and CD14. These genes are broadly expressed in cMO in healthy
Frontiers in Immunology | www.frontiersin.org 9
samples (2, 5) andour results suggest that iMOandcMOare tumor-
educated and polarized to a common inflammatory phenotype in
DLBCL. In our studywe found a decrease in both circulatingncMO
Slanneg and ncMO Slanpos when compared to HDs, whereas an
increase in ncMO Slanpos was previously described in DLBCL (16).
This discrepancy might be explained by differences in patient
characteristics between both studies. In particular patients were
older in the study fromVerni et coll [63.9 years (range: 31-86) vs 50
years (range:18-83)] and at higher grade (clinical stage III-IV at
80.5% vs 70% and IPI ≥3 at 55.6% vs 40%) (16). In CLL, an increase
of ncMOcorrelates with high cytogenetic risk (deletion 11q, 17p, or
trisomy 12) (28). In our study, an increase of the proportion of
circulating ncMO was a worse prognosis factor in 2 independent
cohorts. This was previously suggested on 45 DLBCLs where the
decrease of CD16neg monocyte to CD16pos monocyte ratio
predicted poor prognosis, however conclusions were limited
because iMO and cMO were analyzed conjointly (17). ncMO
abundance also predicted patient survival of pediatric and adult B
acute lymphoblastic leukemia (29). Interestingly, in a pre-clinical
mouse model of B cell lymphomas, Ly6Clow monocytes
(corresponding to the ncMO) (30) accumulated and showed high
levels of immunosuppressive genes (PD-L1, PD-L2, Arg1, IDO1,
andCD163) associatedwith suppression of T cell proliferation (31).
TABLE 2 | Factors influencing overall survival in validation cohort.

Risk factors N (%) Univariate analysis Multivariate analysis

HR P HR P

Age (years) >50 59 (38.1%) 1.096 0.84
≤50 96 (61.9%)

Gender Male 86 (55.5%) 1.027 0.952
Female 69 (44.5%)

ECOG ≥2 18 (11.6%) 3.61 0.008 1.567 0.440
0-1 137 (88.4%)

Ann Arbor stage III-IV 130 (83.9%) 7.52 0.006 8.42 0.002
I-II 25 (16.1%)

LDH Elevated 52 (34.4%) 2.852 0.025 2.432 0.131
Normal 99 (65.6%)

aaIPI 2-3 87 (56.1%) 1.447 0.431
0-1 68 (43.9%)

Bulk ≥10 cm 47 (30.3%) 1.283 0.595
<10 cm 108 (69.7%)

COO ABC 83 (74.8%) 1.704 0.302
GCB 28 (25.2%)

BCL2 ≥70% 87 (67.4%) 0.5 0.283
<70% 42 (32.6%)

MYC ≥40% 53 (46.5%) 1.172 0.767
<40% 61 (53.6%)

DE MYC/BCL2 Yes 45 (29.8%) 0.847 0.75
No 106 (70.2%)

Treatment arm Obinutuzumab 76 (49.4%) 1.089 0.853
Rituximab 78 (50.6%)

Chemotherapy CHOP 77 (50%) 0.881 0.784
ACVBP 77 (50%)

PET2/PET4 PET4+ 26 (19%) 3.744 0.013 2.943 0.03
PET2- or PET2+/PET4- 111 (81%)

ncMO (x106/L) ≥20.58 62 (40%) 3.135 0.015 3.362 0.047
<20.58 93 (60%)
December 20
21 | Volume 12 | Arti
ECOG, Eastern Cooperative Oncology Group scale; LDH, lactate deshydrogenase; aaIPI, age adjusted International prognostic index; COO, cell of origin; DE, double expressor; PET2,
PET after cycle 2; PET4, PET after cycle 4; ncMO, non-classical monocyte.
Bold depict significant p-values.
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In colorectal cancerLy6Clowmonocytemediated immunosuppression
by IL-10 production (32). Finally, ncMO were increased in gastric
cancer (33). Conversely, in a lung cancermodel, LyClow monocytes
recruited NK cells to prevent cancermetastasis (34). In DLBCL, we
and others focused on total monocyte and on M-MDSC and few
attentions were given to other monocyte subsets. Interestingly,
ncMO and M-MDSC have non-overlapping phenotype regarding
HLA-DR expression and these cells infrequently correlated in
patients suggesting different mechanism of myelopoiesis
dysregulation. Patients that were enriched in circulating MDSCs
were younger and presented high amount of sPD-L1, a pejorative
marker (35). Interestingly, release of PD-L1 was a mechanism of
immune suppression suggested in DLBCL (22). Nonclassical
monocytes have been associated age in healthy patients (36),
however, no correlation was found in DLBCL samples between
age and ncMO (data not shown).

Beside immunosuppression, gene enriched in ncMO were
related to chemotaxis. Circulating ncMO are diminished in
DLBCL, on the contrary there were enriched in other B cell
lymphomas or solid tumor (37), thus we hypothesized that these
cells might migrate into tissue to contribute to the tumor-
associated macrophage compartment. CCL2, CCL3, CCL5,
CCL22, CXCL5, and CXCL12 are involved in monocyte,
MDSC, and macrophage recruitment into the TME (38).
Tumor-conditioned monocyte shown an increased migration
in response to CXCL5, CXCL12, CCL3, and CCL5. In our
previous study, CXCL5 expression was increased in peripheral
blood from DLBCL compared to healthy donors and its
expression was related to a worse event-free survival (22).
CCL3 is also increased in DLBCL when compared to HD and
high level correlates with shorter survival (39, 40). CCL5 is
involved in macrophage recruitment in DLBCL (41)

In DLBCL, TAM are heterogenous (23), in particular a Slanpos

macrophage subset is involved in rituximab mediated antibody
dependent cellular cytotoxicity (16). In agreement, we found in
DLBCL a compartment of cells expressing Slan at high level with
CD14, CD32, and HLA-DR. However, DLBCL clusters that
correlated with tumor-conditioned monocytes highly expressed
CD64,CD36, andS100A9and thuspresented similaritieswith IFNg
in-vitro polarized macrophages (25). Few studies compared paired
samples from circulating and in situ myeloid cells. In melanoma
patient, myeloid cells obtained from the blood, but not from the
tumor, were suppressive (42). In lung adenocarcinoma,
macrophages phenotype detected in tumor were not present in
peripheral blood (43). Currently, there is no model of lymphoma
that allows tracking the myeloid cell from the blood to the tissues.
Future studies entailing a prospective collection of paired blood and
tumor samples are needed to confirm these observations on ncMO
and to put in perspective the myeloid compartment with the T/NK
compartment. Also, it would be interested to test the prognosis
value in cohort of DLBCL treated with other immunotherapies and
correlate with responders vs non-responders.

Our study as some limitations, in particular the lack of
extensive functional studies due to the low number of
circulating ncMO in DLBCL samples precluding large cell
sorting. Data on gene expression in the monocyte subsets need
Frontiers in Immunology | www.frontiersin.org 10
confirmation with cell preparations, for which a high purity is
documented. Even if we previously identified CD16
macrophages subsets in DLBCL in dissociated tissue (23),
additional studies with high dimensional spatial positioning of
macrophage subsets will enrich our study. Finally, functional
assays would be required to definitively address the suppressive
activity of DLBCL ncMO for instance using mice models
allowing to track the cMO to ncMO transition and the
migration to tissue during the lymphoma course will also be
valuable. Taken together, our results show that ncMO are
involved in the DLBCL physiopathology and impact the
prognosis of the disease. Given the current and our previous
data, we propose that cMO and iMO are reflecting the
inflammatory status in DLBCL, whereas M-MDSC are
responsible of a systemic suppressive response, and ncMO are
involved in suppressive response and migration to tissue.
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Figure S1 | Gating strategy.

Figure S2 | All monocyte subsets are increased in B-cell lymphomas A- Monocyte
subsets counts in peripheral blood from HD (n = 6), follicular lymphomas (n = 9),
mantle cell lymphomas (MCL, n = 9), chronic lymphocytic leukemias (CLL, n = 11),
and marginal zone lymphomas (SMZL, n = 10). On these patients, flow cytometry
was performed on cryopreserved cells. B- Ratio between MO (classical and
intermediate) and ncMO in B-cell lymphomas.

Figure S3 | Q-PCR analysis, unsupervised hierarchical clustering for cMO and
iMO from DLBCL and HD patients cMO and iMO were sorted from 7 DLBCL and 4
Frontiers in Immunology | www.frontiersin.org 11
HD before analysis by high-throughput Q-PCR for genes listed in Table S3.
Pearson's correlation and complete linkage were employed.

Figure S4 | Q-PCR analysis, unsupervised hierarchical clustering for ncMO
Slanpos and ncMO Slanneg from DLBCL and HD patients ncMO Slanpos and
ncMO Slanneg were sorted from 7 DLBCL and 4 HD before analysis by high-
throughput Q-PCR for genes listed in Table S3. Pearson's correlation and complete
linkage were employed.

Figure S5 | Q-PCR analysis, unsupervised hierarchical clustering for cMO, iMO, ncMO
Slanpos andncMOSlanneg fromDLBCLpatients cMO, iMO, ncMOSlanpos, andncMO
Slannegwere sorted from7DLBCLbefore analysis by high-throughputQ-PCR for genes
listed in Table S3. Pearson's correlation and complete linkage were employed.

Figure S6 | Q-PCR analysis, unsupervised hierarchical clustering for cMO, iMO,
ncMO Slanpos and ncMO Slanneg from DLBCL and HD patients cMO, iMO, ncMO
Slanpos, and ncMO Slanneg were sorted from 7 DLBCL and 4 HD before analysis
by high-throughput Q-PCR for genes listed in Table S3. Pearson's correlation and
complete linkage were employed.

Figure S7 | High levels of circulating ncMO is an adverse event in DLBCL.Event-
free survival (EFS) in training cohorts (NCT01287923) Threshold of the ratio of ncMO
to other monocytes parameter was defined on the training cohort using the maxstat
package.

Table S1 | Antibodies for fluorescent flow cytometry analysis.

Table S2 | Antibodies or parameters used for mass cytometry analysis.

Table S3 | List of genes evaluatedbyhigh-throughputQ-PCRonmonocyte subsets.

Table S4 | QPCR data.
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