
ORIGINAL RESEARCH
published: 14 October 2021

doi: 10.3389/fneur.2021.715455

Frontiers in Neurology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 715455

Edited by:

Alexandre Eusebio,

Aix-Marseille Université, France

Reviewed by:

Jong-Min Kim,

Seoul National University Bundang

Hospital, South Korea

Timothy West,

University of Oxford, United Kingdom

*Correspondence:

Fangang Meng

mengfg@ccmu.edu.cn

Specialty section:

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

Received: 27 May 2021

Accepted: 26 August 2021

Published: 14 October 2021

Citation:

Li Z, Liu C, Wang Q, Liang K, Han C,

Qiao H, Zhang J and Meng F (2021)

Abnormal Functional Brain Network in

Parkinson’s Disease and the Effect of

Acute Deep Brain Stimulation.

Front. Neurol. 12:715455.

doi: 10.3389/fneur.2021.715455

Abnormal Functional Brain Network
in Parkinson’s Disease and the Effect
of Acute Deep Brain Stimulation
Zhibao Li 1, Chong Liu 1, Qiao Wang 1, Kun Liang 1, Chunlei Han 2,3, Hui Qiao 4,

Jianguo Zhang 1,2,3 and Fangang Meng 1,2,3,5*

1Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,
2Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 3 Beijing Key

Laboratory of Neurostimulation, Beijing, China, 4 Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,
5Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China

Objective: The objective of this study was to use functional connectivity and graphic

indicators to investigate the abnormal brain network topological characteristics caused

by Parkinson’s disease (PD) and the effect of acute deep brain stimulation (DBS) on those

characteristics in patients with PD.

Methods: We recorded high-density EEG (256 channels) data from 21 healthy controls

(HC) and 20 patients with PD who were in the DBS-OFF state and DBS-ON state

during the resting state with eyes closed. A high-density EEG source connectivity

method was used to identify functional brain networks. Power spectral density (PSD)

analysis was compared between the groups. Functional connectivity was calculated for

68 brain regions in the theta (4–8Hz), alpha (8–13Hz), beta1 (13–20Hz), and beta2

(20–30Hz) frequency bands. Network estimates were measured at both the global

(network topology) and local (inter-regional connection) levels.

Results: Compared with HC, PSD was significantly increased in the theta (p = 0.003)

frequency band and was decreased in the beta1 (p = 0.009) and beta2 (p = 0.04)

frequency bands in patients with PD. However, there were no differences in any frequency

bands between patients with PD with DBS-OFF and DBS-ON. The clustering coefficient

and local efficiency of patients with PD showed a significant decrease in the alpha,

beta1, and beta2 frequency bands (p < 0.001). In addition, edgewise statistics showed

a significant difference between the HC and patients with PD in all analyzed frequency

bands (p< 0.005). However, there were no significant differences between the DBS-OFF

state and DBS-ON state in the brain network, except for the functional connectivity in

the beta2 frequency band (p < 0.05).

Conclusion: Compared with HC, patients with PD showed the following characteristics:

slowed EEG background activity, decreased clustering coefficient and local efficiency

of the brain network, as well as both increased and decreased functional connectivity

between different brain areas. Acute DBS induces a local response of the brain network

in patients with PD, mainly showing decreased functional connectivity in a few brain

regions in the beta2 frequency band.
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Parkinson’s disease
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INTRODUCTION

Over the last few decades, the demonstration of alteration in the
structural network or functional network via neuroimaging data
has gained increasing attention in neuroscience and cognitive
neuroscience research (1–4). Neuroimaging can non-invasively
probe changes in brain function in vivo, which helps us to
investigate the pathophysiologic deficits caused by neurological
disorders. Modern network science including dynamic systems
theory, graph theory, statistics, and connectivity analysis has
been applied to investigate topological properties of the
brain under various states and conditions. Graph theory, a
powerful mathematical approach, illustrates a complex network
architecture based on the modern theory of networks, which can
offer new insights into the structure and function of the brain
network, including their architecture, evolution, development,
and clinical disorders. In the brain network, the architecture
is characterized as a set of nodes (brain regions) connected
by edges (3). The nodes and edges defined from neuroimaging
data can be used to represent the brain network to study
topological properties (organization) and functional connectivity
by network-based statistics. Several neuroimaging approaches
have been used to demonstrate functional changes of the brain
in many conditions such as epilepsy (5), Parkinson’s disease
(PD) (6), and Alzheimer’s disease (7) and have achieved many
significant insights.

PD is characterized mainly by the motor symptoms of
tremor, rigidity, bradykinesia, and postural instability and is
accompanied by various non-motor (non-movement) symptoms
such as depression, sleep disturbances, and dementia (8). The
main cause of PD is damage to dopaminergic neurons in
the substantia nigra, which results in a lack of dopamine
in the mesencephalic structures and basal ganglia (8, 9).
However, such local nervous tissue deficits often can lead to
dysfunction of the global nervous system (10–12). Therefore,
neurological dysfunction caused by PD is not only located
in the basal ganglia region but also involves the neocortex.
For patients with PD experiencing reduced drug efficacy
in the middle and late stages of the disease, deep brain
stimulation (DBS) therapy is an established treatment method.
DBS involves surgical placement of unilateral or bilateral leads
(wires) transcranially in the subthalamic nucleus (STN) or
the globus pallidus interna (GPi). It can effectively relieve
motor and non-motor symptoms, improving the quality
of life for patients with PD (13, 14). Previous studies
have used several methods including functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG),
and standard electroencephalography (EEG) to demonstrate that
compared with healthy controls (HC), there are alterations of
the topological properties in patients with PD (12, 15–17).
Furthermore, DBS can induce local changes in the beta band:
cortical–subcortical connectivity changes and attenuation of
interhemispheric corticocortical coherence in the sensorimotor
areas (12, 18). However, so far PD-related changes in brain
connectivity networks have never been investigated using high-
density EEG based on connectivity analysis and graph theory. In
addition, generally, DBS can immediately improve the symptoms

of patients with PD who respond to DBS treatment, but whether
there is an acute (within 24 h), large-scale brain network response
remains unclear. In the present study, we recorded high-density
EEG during an eyes-closed, resting state in HC and patients
with PD in the DBS-ON and DBS-OFF states. Furthermore, we
adopted source-level EEG to construct the brain network. The
objective of this study was to use functional connectivity and
graphic indicators to investigate the abnormal brain network
topological characteristics caused by PD and investigate the effect
of acute DBS on the abnormal brain network topology of patients
with PD.

MATERIALS AND METHODS

Participants
We enrolled a total of 41 participants in this study. Twenty-one
were age- and gender-matched HC (7 female, age range 52–58
years, mean age 55.9 years; 14 male, age range 51–70 years, mean
age 57.8 years). Twenty patients were diagnosed with PD (10
female, age range 51–70 years, mean age 60.2 years; 10 male,
age range 50–75 years, mean age 59.6 years). The diagnosis was
based on the clinical diagnostic criteria of the U.K. Parkinson’s
Disease Society Brain Bank. All the patients with PD underwent
surgical treatment with DBS targeting the STN. In addition,
each patient underwent clinical assessment with the Hoehn and
Yahr (H-Y) scale and the Unified Parkinson’s Disease Rating
Scale III (UPDRS-III) preoperatively (baseline) and the first day
after the start of DBS (30 days after surgery). The inclusion
criterion for the patients with PD was having a good therapeutic
effect with STN-DBS. The exclusion criteria were: (1) typical PD
syndrome induced by drugs or metabolic disorders, encephalitis,
or other disease represented by similar symptoms (i.e., multiple
system atrophy, progressive supranuclear palsy, and Lewy body
dementia); (2) history of significant neurological disease or brain
surgery; and (3) neuroimaging findings of severe abnormalities
or lesions. The study was approved by the Institutional Review
Board of Beijing Tiantan Hospital, Capital Medical University,
and written informed consent was obtained from all participants.

EEG Acquisition and Preprocessing
To begin, all the participants were advised to sit in a chair in a
comfortable position and relax for 5min before EEG acquisition.
During recording, participants were instructed to keep their eyes
closed and remain awake. The resting-state EEG was recorded
using a high-density 256-channel system (EGI System 400;
Electrical Geodesics, Inc., Eugene, OR). Electrode impedance
was kept below 30 kΩ , and 10min of ongoing EEG data were
acquired with a sampling rate of 1,000Hz. The acquisition
reference was Cz. For patients with PD, the EEG acquisition was
performed two times. The first time, EEG data were acquired
before the DBS was started (DBS-OFF state). The second time,
EEG acquisition was performed 24 h after the DBS was started
(DBS-ON state). To eliminate the effects of drugs, patients were
asked not to take any anti-Parkinsonian drugs during the 12 h
prior to the acquisition.

To remove muscle artifacts, the electrodes in the face and
neck were removed to reduce to 204 channels. EEG data
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were split into non-overlapping epochs of 2 s and segments
contaminated by artifacts were deleted and bad channels were
interpolated. To remove the artifact fromDBS, which was 130Hz,
a band-pass filter was used between 1 and 30Hz. Subsequently,
independent component analysis (ICA) was used to remove
the ballistocardiographic, myoelectric, and oculomotor artifacts.
Thereafter, components related to ballistocardiography, saccadic
eye movements, channel noise, and eye blinking were removed
based on the waveform, topography, and spectrogram. Finally,
for every participant, 5min of artifact-free EEG data were
selected for the next analysis.

EEG Source Estimation and Source
Parcellation
To localize brain sources and reconstruct their time courses,
two steps were required. The first step was to construct a
head model, which contains information about the electrical
and geometrical characteristics of the head. In this step,
a template MRI and EEG data were co-registered through
identification of the same anatomical landmarks (left and right
pre-auricular points and nasion). A realistic head model was
built by segmented MRI using FreeSurfer (19) (https://surfer.
nmr.mgh.harvard.edu). The lead field matrix was then computed
for a cortical mesh with 15,000 vertices using Brainstorm
(20) (https://neuroimage.usc.edu/brainstorm/Introduction) and
OpenMEEG (http://openmeeg.github.io) (21). The second step
was to construct a source model, which provides information
about the location and orientation of the dipole sources to
be estimated. This step also solved the EEG inverse problem
to reconstruct the temporal dynamics of the cortical regions.
In this step, we used weighted minimum-norm estimation
(wMNE) to reconstruct the dynamics of the cortical sources.
Finally, the source-level time series were extracted using the
Desikan–Killiany atlas (22), which contains 68 brain regions
(Supplementary Table 1).

Power Spectrum Density Analysis
After obtaining continuous recordings at the source level, the
average power over this resting period was estimated in four
frequency bands: theta (4–8Hz), alpha (8–13Hz), beta1 (13–
20Hz), and beta2 (20–30Hz). The PSD analysis of the full
300 s rest recording was computed by a standard fast Fourier
transform (FFT) approach with the Welch technique and
Hanning windowing function (4-s epoch and overlap of 50%).
The signal-to-noise ratio (SNR) of each frequency band was
estimated by ratio of within band power to out of band power
in each group.

Functional Connectivity Analysis
Functional connectivity was calculated with phase
synchronization (PS) between each two brain areas. Although
many studies advised to use phase lag index (PLI) to measure
functional connectivity because PLI can overcome the influence
of volume conduction, PLI is easy to miss linear but functionally
meaningful interactions and reduce phase differences under
noisy conditions (23). So, in this study, we used the phase-locking
value (PLV) to measure PS. PLV is a range between 0 and 1,

which shows interactions between two oscillatory time series by
quantification of phase relationships. We calculated the PLV at
the four frequency bands. Compared with other combinations,
the combination of wMNE/PLV is superior (24).

Network Analysis
In the present study, network analysis was conducted by
graph theory, with a series of nodes (brain regions) and edges
(connectivity) between nodes. Graph theory is used to extract
information from the functional connectivity matrix. Because we
used the Desikan–Killiany atlas that contains 68 brain regions
to parcellate the brain, we constructed a network with 68 nodes
in this study. The result was fully connected, weighted, and
undirected networks. The connection strength between every two
nodes was defined as their connectivity (range between 0 and
1). The functional connectivity matrices of each subject were
constructed over the range of sparsity thresholds between 0.05
and 0.5. Within each group, the minimum network sparsity is
when all nodes are connected in the network at the 0.05 threshold
value. Network analysis was conducted at two levels: the global
level and the edgewise level. For the global level, the following
graph metrics were calculated:

Characteristic Path Length
The characteristic path length is the average shortest path length
between all pairs of nodes in the network and is the most
used measure of functional integration. Random and complex
networks have short mean path lengths.

Global Efficiency (Eglobal)
The global efficiency is the inverse of the average shortest path
length and is used to quantify the overall efficiency of information
transfer across the whole network (25). It is also used as ameasure
of functional integration. A higher global efficiency indicates a
faster parallel transfer of information in a network and a superior
integration of information (26).

Clustering Coefficient
The mean clustering coefficient for the network reflects,
on average, the prevalence of clustered connectivity around
individual nodes, and it is often interpreted as a metric of
information segregation in networks. The clustering coefficient
quantifies the number of connections that exist between the
nearest neighbors of a node as a proportion of the maximum
number of possible connections (27).

Local Efficiency (Elocal)
The local efficiency is the average efficiency of the local subgraphs,
and it measures how efficient communication is among the first
neighbors of a given node when it is removed. It is also used as a
metric of functional segregation in the network.

For the edgewise level, we used the measure of each of the
weights (correlation value) to quantify functional connectivity.

Data Statistics
Because of the present study’s exploratory method with relatively
small sample sizes, the group difference in PSD between the HC
and patients with PD in DBS-OFF was tested with independent
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TABLE 1 | Demographics and clinical variables.

Healthy

controls

PD

(DBS-OFF)

PD

(DBS-ON)

Between-

group

differences

Gender (F/M) 7/14 10/10 – P = 0.35

Age (years) 57.1 ± 4.1 59.9 ± 6.1 – P = 0.098

Illness duration (years) – 8.2 ± 3.6 – –

UPDRS-III – 46.5 ± 9.9 17.1 ± 9.0 P < 0.001

H-Y scale – 3 – –

F, female; M, male; UPDRS, Unified Parkinson’s Disease Rating Scale; H-Y, Hoehn

and Yahr.

non-parametric permutation tests. The group difference in PSD
between patients with PD in DBS-OFF and DBS-ON was tested
with paired non-parametric permutation tests. The number of
randomizations was 1,000. The group differences of all the graph
matrices were tested using an independent t-test and paired-test
between HC and PD with DBS-OFF and between patients with
PD in DBS-OFF and patients with PD in DBS-ON, respectively.
The false discovery rate (FDR) with p < 0.05 was applied to
control for multiple comparisons. The edgewise connectivity
was conducted with the network-based statistic (NBS) (28). The
independent and paired t-test were used to test group differences
between HC and patients with PD in DBS-OFF, and between
patients with PD in DBS-OFF and DBS-ON, respectively. NBS
was used to control the error rate (Edge p= 0.05, Component p=
0.01, Number of permutations = 5,000). The statistical analyses
were performed with GRETNA (29) and NBS. A p < 0.05 was
considered statistically significant.

RESULTS

Demographics and Clinical Variables
There were no significant differences in age and gender between
the patients with PD and HC. For patients with PD, the
illness duration was 8.2 ± 3.6 years, and there were significant
differences in the UPDRS-III scale between the DBS-OFF and
DBS-ON states (46.5 ± 9.9 vs. 17.1 ± 9.0, p < 0.001). The
improvement rate in the UPDRS-III scale rating was 0.63± 0.17.
These results are listed in Table 1.

Power-Based Topology Analysis
The results of the frequency-based analysis show that compared
with HC, there was a significant increase of PSD in the theta
(p = 0.003) and decrease of PSD in the beta1 (p = 0.009) and
beta2 (p= 0.04) frequency bands in patients with PD in the DBS-
OFF and DBS-ON states. In contrast, there was no difference in
the alpha frequency band. However, there were no differences
between patients with PD in DBS-OFF and DBS-ON for any
frequency bands. In addition, the difference between HC and
patients with PT in DBS-ON was similar to HC vs. patients with
PD in DBS-OFF. The results are summarized in Figure 1. In
addition, the SNR of the theta band of patients with PD was more
than HC, and the SNR of the alpha and beta1 bands of HC were

more than patients with PD. There was no difference of SNR at
the beta2 band in groups (Supplementary Figure 1).

Global Graph Metrics
On the global level, we analyzed group differences in normalized
characteristic path length, global efficiency, clustering coefficient,
and local efficiency in all sparsity threshold. Interestingly, among
the two parameters that measure the ability of brain network
integration, we did not find any difference among groups in
characteristic path length and global efficiency. However, we
found that the clustering coefficient (p < 0.001) and local
efficiency (p< 0.001), which measure the ability of brain network
segregation, of patients with PD in DBS-OFF and DBS-ON
decreased significantly for the alpha, beta1, and beta2 frequency
bands in lower-density networks (sparsity threshold = 0.05),
compared with HC (Figure 2). There were no differences in all
global graph metrics between patients with PD in DBS-OFF and
DBS-ON in any frequency bands.

Edgewise Analysis
The edgewise analysis was conducted using the NBS toolbox,
and the results revealed broad-spectrum differences of functional
connectivity between HC and patients with PD in DBS-OFF.
Significant differences were found at all four analyzed frequencies
(Figure 3). However, the difference between DBS-OFF and DBS-
ON was slight, only at one frequency band (beta2) (Figure 4).

For the theta network, results only showed significant
differences between HC and DBS-OFF. Compared with HC,
there were significant decreases of functional connectivity in 85
edges with 50 nodes (p < 0.001) and increases of functional
connectivity in 207 edges with 68 nodes (p < 0.001). In the
alpha network, there was a significant difference only between
HC and DBS-OFF. Compared with HC, 88 edges with 53 nodes,
there was a decrease (p < 0.002); however, there was an increase
in 91 edges with 51 nodes (p = 0.002). For the beta1 network,
results showed that compared with HC, 112 edges with 57 nodes,
there was a decrease and 156 edges with 64 nodes, there was an
increase in patients with PD in DBS-OFF (p < 0.001). In the
beta2 network, results showed that compared with HC, 84 edges
with 45 nodes, there was a decrease (p < 0.001) and 168 edges
with 61 nodes an increase (p < 0.001) in patients with PD in
DBS-OFF. In addition, 15 edges with 14 nodes of patients with
PD in DBS-ON were lower than in DBS-OFF (p = 0.037). To
further demonstrate which changes (decrease or increase) were
more predominant in functional connectivity analysis between
patients with PD and HC, we compared the amounts of increase
and decrease in edges as well as the relative node for every
frequency band. Although there was no statistically significant
difference, the mean of increased connectivity was higher than
that for decreased connectivity (92.25± 13.28 vs. 155.50± 48.20,
p= 0.074).

DISCUSSION

In the present study, we used functional connectivity analysis
and graph theory based on constructed-source EEG signal to
demonstrate that, compared with HC, the patients with PD
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FIGURE 1 | The power-based topology analysis: statistics of power spectral density for each group of patients and healthy controls at four frequency bands: theta

(4–8Hz), alpha (8–13Hz), beta1 (13–20Hz), and beta2 (20–30Hz). The * denotes a p < 0.05 and ** denotes a p < 0.01.

showed significant decreases in PSD in the theta, beta1, and
beta2 frequency bands. In addition, on the global level, clustering
coefficient and local efficiency also showed significant decreases
in patients with PD for the alpha, beta1, and beta2 frequency
bands. On the edgewise level, the functional connectivity of
patients with PD was both decreased and increased, but overall,
there was a trend toward increased functional connectivity.
However, there was a significant difference only in functional
connectivity at the beta2 frequency band between patients with
PD in the DBS-OFF and DBS-ON states.

EEG Power and Parkinson’s Disease
In early studies, several reports on EEG and MEG studies
demonstrated that patients with PD exhibited power changes
at multiple frequency bands compared with HC, with theta
and alpha1 bands increasing and beta bands decreasing (30–
32). Overall, the rhythm of EEG activity in patients with PD is
slowing. Moreover, the slowing of resting-state EEG background
activity is positively associated with disease progression (33) and
negatively associated with cognition (34, 35). In longitudinal EEG
studies, lower peak frequency and higher delta/theta power were
the best predictors for future conversion to PD dementia (36, 37).
In this study, although we did not find alpha frequency band
increase, the significant increase of theta frequency and decrease
of beta frequency bands were in line with previous studies. The

slowing activity of EEG is interpreted as decreased flexibility in
brain activity.

Brain Network of Parkinson’s Disease
Network-wide changes in PD are consistently reported, and
earlier studies demonstrated that functional connectivity
increased with disease progression in the 4–30Hz range (30, 38).
In addition, Bosboom et al. (39) showed that the functional
connectivity of different brain areas increased in multiple
frequency bands including theta (4–8Hz), alpha (8–13Hz), and
beta (13–30Hz) bands in patients with PD without dementia
compared with healthy people. In the present study, we found
that although the increased functional connectivity seems to
dominate, there were also many areas of decreased functional
connectivity. This result was consistent with results of a previous
study in which the functional connectivity of patients with PD
initially increased but decreased over time in relation to disease
progression—especially for cognitive decline (40). This finding
suggests that the functional connectivity changes in patients with
PD are complex and dynamic with disease progression.

Graph theory can be used to evaluate macroscopic brain
connections on the local or global levels. A previous study
showed that compared with HC, patients with early-stage PD
showed decreases in local clustering with a preserved path
length in the delta frequency band (17). In addition, longitudinal
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FIGURE 2 | Group comparison of the graphic index across sparsity thresholds. The grey shadings indicate significant group difference at given sparsity thresholds.

analysis over 4 years in patients with PD revealed that local
clustering progressively decreased in multiple frequency bands
together with a decrease in path length in the alpha 2
range. Moreover, the longitudinal brain network changes were
associated with attenuation of cognitive and motor function
(17). In the present study, although we did not find that
there were significant changes in functional integration (global
efficiency and characteristic path length) of the brain network,
we found a significant decrease in clustering coefficient and local
efficiency, which indicated decreased brain network segregation
in patients with PD, and the brain networks of patients
with PD move toward a more random network organization
compared with healthy people. Moreover, our results were not
completely consistent with previously published studies; this may
be because of a difference in patients’ clinical manifestations,
disease progression, or measurement methods of the brain
network. Further, the topological characteristics in the brain
network may show dynamic changes over the whole course of
PD, and so the study of brain networks of patients with PD
at a single time point cannot provide enough information on
topological characteristics.

The Effect of DBS on Brain Network in PD
Although the effect of DBS on the brain network has been
studied, the number of studies is still small. Most studies
have focused on the basal-ganglia-cortical motor circuits and
cerebello-thalamo-cortical circuits (41). A movement-related
potential study had shown interhemispheric cortico-cortical

coherence in the beta band was significantly reduced between
the bilateral sensorimotor areas in the DBS-ON state (18).
Horn et al. (16) demonstrated that effective DBS can increase
overall connectivity in the motor network, normalize the
network profile toward HC, and specifically strengthen thalamo-
cortical connectivity while reducing striatal control over basal
ganglia and cerebellar structures. In the present study, although
the motor symptoms of patients with PD were significantly
relieved, the brain network changes caused by acute DBS
were slight; the functional connectivity only decreased in the
beta2 frequency band. This finding can be explained by the
fact that the EEG recording of patients with PD in DBS-ON
was made 24 h after DBS began taking effect, which might
not be enough time for the brain to produce significant
network changes. In contrast to previous studies (18, 42), this
study focused on the therapeutic effect of acute DBS. The
formation of the brain network is the result of persistent
effects. Okun (43) noted that DBS acted on the cells and fibers
around the electrode to inhibit cells and excite fibers (44, 45);
furthermore, there were changes in the firing rate and pattern
of individual neurons in the basal ganglia (46). Meanwhile,
DBS also acts at synapses and triggers neighboring astrocytes
to promote the release of calcium and neurotransmitters as
well as increase local cerebral blood flow (47–50). Finally,
DBS induces local and possibly distal proliferation of neural
precursor cells. The long-term effects of these actions will
eventually lead to large-scale network changes. Therefore, acute
DBS may only induce local brain network changes, which will
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FIGURE 3 | Edgewise significant difference between healthy control and patients with PD in DBS-OFF: the left three columns of circular graphs show significant group

differences across groups. The “Left” column shows significant group differences of functional connectivity within the left hemisphere at given frequency bands. The

“Right” column shows significant group differences of functional connectivity within the right hemisphere at given frequency bands. The “Left-Right” column shows

significant group differences of functional connectivity between the hemispheres at given frequency bands. The orange lines indicate increased functional connectivity,

and the blue lines indicate decreased functional connectivity. The right two columns of matrixes indicate the functional connectivity of the group average at given

frequency bands.

gradually expand over time until the whole brain network
is affected.

Methodological Considerations
Brain network analysis is a helpful tool to explore both normal
and abnormal brain activity. The development of imaging
techniques such as MEG, fMRI, and EEG has greatly promoted
studies of the brain network. Scalp-level EEG signals are not
recommended for use in brain network analysis (51); in contrast,
the use of source-level EEG signals to analyze the brain network
is advised (52). There are two main issues with scalp-level
EEG analysis of functional connectivity: (1) the location of
EEG channels cannot accurately reflect brain activity at the
source level, and (2) because of the existence of effects of

field spread and volume conduction (52), spurious estimates
of functional connectivity may occur between channels, where
more than one channel can pick up the activity of an underlying
source or one channel can pick up more than one underlying
source. However, the network representation based on source-
level EEG is a better approximation of the unknown true
network organization, and the source estimate itself has the
effect of reducing volume conduction. Another study suggested
using phase lag index (PLI) to calculate functional connectivity
to remove volume conduction; however, its risk of missing
linear but functionally meaningful interactions and reducing
phase differences under noisy conditions may result in the
attenuation of the existing difference between HC and patients
with PD or the existing difference between patients with PD
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FIGURE 4 | Edgewise significant difference between patients with PD in DBS-OFF and DBS-ON at beta2 frequency band. The circular graph (A) shows the group

difference of functional connectivity between two groups. The middle matrix (B) indicates functional connectivity of the group average of patients with PD in DBS-OFF,

and the right matrix (C) indicates functional connectivity of the group average of patients with PD in DBS-ON.

in DBS-OFF and DNS-ON. This is unfavorable for estimating
the difference in local functional connectivity between patients
with PD in DBS-ON and DBS-OFF. In this study, the choice of
wMNE/PLV was supported by two comparative analyses (24, 53)
that demonstrated the superiority of wMNE/PLV over other
combinations of five inverse algorithms and five connectivity
measures. This method was first used to reveal relevant networks
in a picture-naming task (53) and was then extended to the
functional connectivity disruption of PD dementia (54) and the
tracking of the spatiotemporal dynamics of reconstructed brain
networks (55).

Study Limitations
Although there were some significant changes in patients with
PD in the DBS-OFF and DBS-ON states, several limitations
existed in this study. First, as the EEG recordings of patients with
PD were made 1 month after surgery, the readings might have
been affected by a postoperative stun effect, which was likely to
associate with a reduction in spontaneous beta activity in the STN
and temporary amelioration of Parkinsonism (56). Although the
local edema in STN might fade away, local neuron lesions are
permanent. Second, the sample size was relatively small; a larger
cohort may yield more significant and robust results. Third, we
did not consider the relationship between brain network changes
and cognitive level. Dementia is one of the most common and
important non-motor symptoms encountered in advanced PD
(57). Previous studies demonstrated that the PSD and brain
network changes are associated with the cognitive level (54, 58–
60). Fourth, although we took a set of strict measures to reduce an
artifact of EEG data, there were still differences of SNR between
groups. On one hand, it is because of the inherent shortcoming
of EEG. Daniel and his colleagues have demonstrated that,
compared with MEG, the SNR of deep sources was large,
however, the SNR of superficial sources was lower (61). On
the other hand, pathological movement of patients with PD

may influence the SNR of EEG data. Finally, our study only
involved STN-DBS instead of GPi-DBS. Like the STN, the GPi is a
common therapeutic target for PD. A recent study demonstrated
that STN-DBS modulates two distinct neurocircuits, named
the GPi-thalamus-deep cerebellar nuclei circuit and the M1-
putamen-cerebellum circuit (62). This suggests STN-DBS and
GPi-DBS have different effects on brain networks.

In conclusion, compared with HC, patients with PD showed
characteristic slowing of EEG background activity, decreased
clustering coefficient, and local efficiency of the brain network
as well as both increased and decreased functional connectivity
between different brain areas. Acute DBS only induces a local
response in the brain network of patients with PD, mainly
showing decreased functional connectivity in a few brain regions
of the beta2 frequency band.
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