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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the corona-

virus disease (COVID-19), which poses a major threat to humans worldwide. With the con-

tinuous progress of the pandemic, a growing number of people are infected with SARS-

CoV-2, including hepatocellular carcinoma (HCC) patients. However, the relationship

between COVID-19 and HCC has not been fully elucidated. In order to provide better treat-

ment for HCC patients infected with SARS-CoV-2, it’s urgently needed to identify common

targets and find effective drugs for both. In our study, transcriptomic analysis was performed

on both selected lung epithelial cell datasets of COVID-19 patients and the datasets of HCC

patients to identify the synergistic effect of COVID-19 in HCC patients. What’s more, com-

mon differentially expressed genes were identified, and a protein-protein interactions net-

work was designed. Then, hub genes and basic modules were detected based on the

protein-protein interactions network. Next, functional analysis was performed using gene

ontology terminology and the Kyoto Encyclopedia of Genes and Genomes pathway. Finally,

protein-protein interactions revealed COVID-19 interaction with key proteins associated

with HCC and further identified transcription factor (TF) genes and microRNAs (miRNA)

with differentially expressed gene interactions and transcription factor activity. This study

reveals that COVID-19 and HCC are closely linked at the molecular level and proposes

drugs that may play an important role in HCC patients with COVID-19. More importantly,

according to the results of our research, two critical drugs, Ilomastat and Palmatine, may be

effective for HCC patients with COVID-19, which provides clinicians with a novel therapeutic

idea when facing possible complications in HCC patients with COVID-19.

Introduction

Currently, the world is experiencing a serious pandemic due to the outbreak of coronavirus

disease (COVID-19). The pandemic was caused by severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) [1]. As far as we know, Angiotensin-converting enzyme 2, the
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functional receptor of SARS-CoV-2, is the crux of the viral infection [2]. According to previous

literature, the infection rate of cancer patients was higher than that of the general population

[3]. Furthermore, the case-fatality rate of cancer patients infected with SARS-CoV-2 was

higher than the overall case-fatality rate of the general population infected with SARS-CoV-2.

This indicates that cancer patients are more easily infected with SARS-CoV-2 and have a

higher risk of death [4]. Liver injury caused by SARS-CoV-2 could aggravate the condition of

patients with hepatocellular carcinoma (HCC) [5].

Liver cancer remains a challenge for global health [6]. It is predicted that by 2025, more

than 1 million people will be affected by liver cancer every year [7]. HCC is the most common

type of liver tumor, accounting for more than 90% of all liver tumors. Additionally, over 50%

of HCC patients are infected by the Hepatitis B virus [8]. Benedicto et al. suggested that in

HCC patients with high Neuropilin-1 expression in their liver sinusoidal endothelial cells,

their hepatic stellate cells and tumor cells may have a higher chance of SARS-CoV-2 infection

[9]. The mortality of cancer patients with COVID-19 is much higher than that in non-cancer

patients; however, it is difficult to determine the impact of COVID-19 on HCC because of the

limited data on HCC patients with COVID-19 [10]. Microarray data analysis for COVID-19

and the risk factors of HCC is still unknown.

This study attempted to find the common biological pathways and the relationship between

HCC and COVID-19. We selected two datasets for our research. The SARS-CoV-2 infection

in humans was analyzed using the GSE147507 dataset, while the TCGA-LIHC dataset was

used for the gene expression analysis of HCC. First, we identified respectively the differentially

expressed genes (DEGs) of GSE147507 and TCGA-LIHC. We then searched common DEGs

for COVID-19 and HCC so that we could obtain the basic data for the study. Based on the

common DEGs, pathway analysis and gene set enrichment analysis were performed to further

understand the biological processes of genome-based expression. Most importantly, we identi-

fied hub genes from the common DEGs, a critical step in order to identify relevant effective

drug molecules. We designed protein–protein interactions (PPIs) networks to gather hub

genes. Fig 1 shows the specific workflow of the present study.

Materials and methods

Collection of the dataset

The GSE147507 (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE147507) dataset,

developed by Blanco-Melo et al. [11], describes the SARS-CoV-2 infection’s transcriptional

responses. While the TCGA-LIHC dataset were downloaded from TCGA (https://portal.gdc.

cancer.gov/). The GEO database was employed for gene expression analysis under the

National Center for Biotechnology Information Platform [12]. The Illumina NextSeq 500 plat-

form was utilized for the GSE147507 dataset for extracted RNA sequence analysis [11]. The

COVID-19 dataset (GSE147507) supplies samples consisting of SARS-CoV-2 infection of

human lung epithelial and alveolar cells, and the dataset contains 4 samples. We employed the

TCGA-LIHC dataset containing 374 tumor samples and 50 paraneoplastic tissue samples. The

paraneoplastic tissue samples were used as the control group.

Identification of DEGs and common genes between COVID-19 and HCC

Pinpointing the common DEGs between the GSE147507 and TCGA-LIHC datasets was the

primary task of this study. To discern the DEGs of GSE147507, the researchers used the limma

package of the R (V 3.6.3) programming language. The data generated by microarray analysis

was retrieved by DESeq2 [13] and the limma package [14]. We set the criteria for considering

differences in expression as P values<0.05 and | logFC |>1. Benjamini-Hochberg was
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employed to control the false discovery rate for both datasets [15]. Common DEGs between

the GSE147507 and TCGA-LIHC datasets were identified using the R (V 3.6.3) programming

language.

Gene ontology and pathway findings in terms of gene set enrichment

analysis

Gene set enrichment analysis was performed for gene sets with general biological functions

and chromosomal locations [16]. For gene product annotation, the GO terminology was

utilized, which is divided into three categories: biological processes, molecular functions, and

cellular components [17]. The main reason for identifying GO terms is because of the compre-

hension of molecular activity, cellular action, and the location in the cell where the genes per-

form their functions. The KEGG pathway is commonly applied to understand metabolic

pathways and contains important uses for gene annotation [18]. For a more comprehensive

pathway analysis, the WikiPathways [19], Reactome [20] and BioCarta databases were also

used. All pathways of common genes identified in the previous step were obtained through the

web-based platform Enrichr (https://amp.pharm.mssm.edu/Enrichr/). The Enrichr platform

integrates three database resources, WikiPathways, Reactome, and BioCarta. All three data-

bases are capable of performing gene enrichment analysis. For genome-wide genes in experi-

ments, Enrichr provides genomic enrichment analysis on a web-based platform [21].

Construction of PPIs networks

The common up-regulated and down-regulated DEGs were supplied as input in the Search

Tool for Retrieval of Interacting Genes (STRING) (https://string-db.org/). STRING provides

Fig 1. Fundamental workflow for the current study. Two types of samples (Lung epithelial cells, SARS-CoV-2

infected lung epithelial cells) were collected from SARS-CoV-2 infected lung epithelial cells and both are included in

the GSE147507 dataset. GSE147507 dataset contains a sample of SARS-CoV-2 infected lung epithelial cells and the

TCGA-LIHC dataset contains hepatocellular carcinoma samples. R programming language was used to identify the

Common DEGs from both datasets. From the common DEGs, GO identification, KEGG pathway, PPIs network, TF

and miRNA analysis, hub gene identification and module analysis were designed and based on those analysis drug

molecule identification was performed.

https://doi.org/10.1371/journal.pone.0269249.g001
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interaction-based information based on experiments and predictions, and the interactions

generated through the network tool are defined as 3D structures, attachment information, and

confidence scores [22]. The confidence score was also utilized for the current PPIs network

with a moderate confidence score of 0.400. The confidence score, considered a moderate con-

fidence score, was set using the STRING platform. For the purpose of obtaining a better visual

representation of the network and identifying hub genes, the obtained PPIs were analyzed by

Cytoscape (https://cytoscape.org/).

Identification of hub genes and module analysis

The analysis of the PPIs network for the current study was implemented through Cytoscape.

The hub genes of the corresponding PPIs networks were indicated using the cytoHubba plugin

(http://apps.cytoscape.org/apps/cytohubba). The MCODE (http://apps.cytoscape.org/apps/

mcode) plugin was utilized to identify the most profound modules and intensely connection

regions in the PPIs network. The identification of highly interconnected parts by MCODE

clustering helps to study effective drug design.

TF-gene interactions

Interactions of TF-genes with identified common DEGs reveal the role TFs play in gene func-

tional pathways and expression levels [23]. The NetworkAnalyst (https://www.networkanalyst.

ca/) platform was utilized to identify the interactions of TF-genes with identified common

genes. NetworkAnalyst is a synthetic web-based platform for gene expression across multiple

species and enables them to be meta-analyzed [24]. The network generated for the TF interac-

tion genes is available from the ENCODE (https://www.encodeproject.org/) database included

in the NetworkAnalyst platform.

TF-miRNA coregulatory network

TF-miRNA co-regulatory interactions were collected from the RegNetwork repository [25],

which facilitates the detection of miRNAs and regulatory TFs that regulate DEGs at the post-

transcriptional and transcriptional levels. We used NetworkAnalyst to visualize the TF-

miRNA co-regulatory network. NetworkAnalyst helped to navigate complicated datasets in

the simplest way possible, identifying biological features and functions to derive valid biologi-

cal hypotheses [26].

Identification of candidate drugs

Drug molecules were designed based on the COVID-19 and HCC common DEGs using

DSigDB, which consists of 22,527 genomes. The Enrichr platform was utilized to identify drug

molecules with common DEGs. Data were obtained from the DrugSignatures database

(DSigDB). The results of the drug candidates were generated based on P-values. P < 0.05 was

set as a statistical criterion. Access to the DSigDB was obtained through the Enrichr platform

(https://amp.pharm.mssm.edu/Enrichr/). Enrichr is mainly utilized as an enrichment analysis

platform, providing numerous visual details of the collective function of the genes provided

for input [27].

Results

Identification of common DEGs between COVID-19 and HCC

The GSE147507 dataset was utilized to identify DEGs for COVID-19. 814 DEGs were identi-

fied, including 419 up-regulated genes and 395 down-regulated genes. For the HCC dataset,
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TCGA-LIHC was utilized to identify a total of 4,462 DEGs, of which 3,210 genes were up-regu-

lated and 1,252 genes were down-regulated. As shown in Fig 2, combining the results of the

above analysis, we identified 33 DEGs with common up-regulated expression and 68 DEGs

with common down-regulated expression. These two sets of the DEGs were used to complete

further analysis.

Gene ontology and pathway findings in terms of gene set enrichment

analysis

The current study analyzes GO terms and KEGG pathway for the 33 DEGs with common up-

regulated expression and 68 DEGs with common down-regulated expression. The three best

known GO terms include biological processes, molecular functions, and cellular components.

Our studies illustrate the top GO terms for each subsection (biological processes, cellular com-

ponents, and molecular functions), as shown in Table 1. The data in Table 1 demonstrate that

for biological processes, common 33 DEGs with common up-regulated expression are highly

enhanced in extracellular matrix disassembly and collagen catabolic process. 68 DEGs with

common down-regulated expression are highly enhanced in neutrophil degranulation and

neutrophil activation involved in immune response. Data from the molecular function subsec-

tion suggest that metalloendopeptidase activity is well correlated with 33 common up-regu-

lated genes. Correspondingly, carbohydrate binding is well correlated with 68 DEGs with

common down-regulated expression. Cellular component studies revealed significant involve-

ment of apical part of cell and ficolin-1-rich granule respectively in common up-regulated and

down-regulated DEGs. Table 2 shows the interaction of the complement and coagulation cas-

cades with most genes according to the KEGG pathway database. The information obtained

from Table 2 indicates the interaction of the platelet activation pathway and the malaria path-

way with most genes according to the KEGG pathway database. Fig 3 shows the visualization

results of the GO and KEGG analysis. WikiPathways, Reactome and BioCarta pathway analy-

ses are summarized in Table 3. Fig 4 illustrates the results of the pathway analysis from the

diverse pathway databases, respectively.

Fig 2. Common differentially expressed genes represented by Venn diagrams. 33 commonly differentially up-regulated expressed genes and 68 commonly

differentially down-regulated expressed genes were identified from 814 differentially expressed genes in SARS-CoV-2 infection and 4462 differentially

expressed genes in HCC patients.

https://doi.org/10.1371/journal.pone.0269249.g002
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PPIs network to identify hub genes and module analysis

The PPIs network was created for further analysis of this study, including the hub gene assay

used to identify drug molecules for COVID-19 and HCC. Ultimately, the results of the PPIs

network were connected, and the PPIs analysis was proposed to build the drug compounds at

Table 1. GO analysis of common up-regulated DEGs and common down-regulated DEGs among COVID-19 and HCC.

ONTOLOGY ID Description pvalue p.adjust

UP-GO biological process GO:0022617 extracellular matrix disassembly 2.34e-07 2.68e-04

GO:0030574 collagen catabolic process 1.20e-06 5.47e-04

GO:0032963 collagen metabolic process 1.43e-06 5.47e-04

GO:0070482 response to oxygen levels 3.77e-06 0.001

UP-GO Cellular Component GO:0045177 apical part of cell 2.56e-05 0.002

GO:0016324 apical plasma membrane 1.27e-04 0.006

GO:0005925 focal adhesion 0.004 0.053

GO:0062023 collagen-containing extracellular matrix 0.004 0.053

UP-GO Molecular Function GO:0004222 metalloendopeptidase activity 3.02e-05 0.005

GO:0005178 integrin binding 7.96e-05 0.006

GO:0050839 cell adhesion molecule binding 1.97e-04 0.010

GO:0008237 metallopeptidase activity 2.68e-04 0.011

DOWN-GO biological process GO:0043312 neutrophil degranulation 1.13e-15 7.71e-13

GO:0002283 neutrophil activation involved in immune response 1.27e-15 7.71e-13

GO:0042119 neutrophil activation 1.84e-15 7.71e-13

GO:0002446 neutrophil mediated immunity 1.91e-15 7.71e-13

DOWN-GO Cellular Component GO:0101002 ficolin-1-rich granule 6.47e-10 7.05e-08

GO:0070820 tertiary granule 4.33e-09 1.72e-07

GO:0030667 secretory granule membrane 4.74e-09 1.72e-07

GO:0060205 cytoplasmic vesicle lumen 1.74e-08 3.92e-07

DOWN-GO Molecular Function GO:0030246 carbohydrate binding 4.51e-06 6.59e-04

GO:0050786 RAGE receptor binding 6.62e-06 6.59e-04

GO:0001664 G protein-coupled receptor binding 5.38e-05 0.004

GO:0005125 cytokine activity 1.19e-04 0.006

Note: Top 4 terms of each category are listed. UP: common up-regulated DEGs; DOWN: common down-regulated DEGs

https://doi.org/10.1371/journal.pone.0269249.t001

Table 2. KEGG analysis of common up-regulated DEGs and common down-regulated DEGs among COVID-19 and HCC.

ONTOLOGY ID Description pvalue p.adjust

UP-KEGG hsa04611 Platelet activation 1.08e-04 0.012

hsa04540 Gap junction 7.61e-04 0.034

hsa04912 GnRH signaling pathway 8.94e-04 0.034

hsa04928 Parathyroid hormone synthesis, secretion and action 0.001 0.037

hsa04371 Apelin signaling pathway 0.003 0.061

DOWN-KEGG hsa05144 Malaria 4.14e-06 3.11e-04

hsa04610 Complement and coagulation cascades 5.65e-05 0.002

hsa05150 Staphylococcus aureus infection 1.01e-04 0.003

hsa04380 Osteoclast differentiation 3.90e-04 0.007

hsa04060 Cytokine-cytokine receptor interaction 5.34e-04 0.008

Note: Top 5 terms of each category are listed. UP: common up-regulated DEGs; DOWN: common down-regulated DEGs

https://doi.org/10.1371/journal.pone.0269249.t002
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the center of this study. The PPIs network of common up-regulated DEGs (UP-PPIs network)

contains 28 nodes and 118 edges, as shown in Fig 5A. The PPIs network of common down-

regulated DEGs (DOWN-PPIs network) contains 58 nodes and 645 edges, as shown in Fig 5B.

Identification of hub genes and module analysis for suggesting therapeutic

solutions

To track hub genes from the network of PPIs highlighted in Fig 5, cytohubba, a plug-in for the

Cytoscape software, was utilized. Hub genes were sorted by their degree values, which indi-

cated the number of gene interactions in the PPIs network. In the UP-PPIs network, the top

10 identified hub genes were PDGFRB,MMP14, VWF, CD34, NES,MCAM, CSPG4,MMP1,

SPARCL1 andMMP10. In the DOWN-PPIs network, the top 10 identified hub genes were

IL1B, S100A12, FCGR3B, CCR1, S100A8, CCL3, CCL2, CCL4, CLEC4D and LILRA1. Fig 5

shows the interaction of the hub proteins with other proteins in the PPIs network. Highly

dense modules were designed from the PPIs network using The Molecular Complex Detection

(MCODE), another plug-in for the Cytoscape software. PDGFRB and VWF are two genes

Fig 3. (A, B) Identification results of biological processes, cellular components and molecular functions related to GO terms based on a composite score. The

higher the enrichment score, the higher the number of genes involved in a given ontology. (C, D) Identification of pathway analysis results by KEGG. The

results of pathway term identification by composite score.

https://doi.org/10.1371/journal.pone.0269249.g003
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Table 3. Top 9 pathways from WikiPathways, BioCarta and Reactome databases for common up-regulated DEGs and common down-regulated DEGs among

COVID-19 and HCC.

Databases Pathways P-value Adjusted p-value

UP-WikiPathways Matrix Metalloproteinases WP129 0.00001612 0.001451

Ethanol metabolism resulting in production of ROS by CYP2E1 WP4269 0.01638 0.1301

MFAP5-mediated ovarian cancer cell motility and invasiveness WP3301 0.02125 0.1301

Osteoblast Signaling WP322 0.02286 0.1301

Major receptors targeted by epinephrine and norepinephrine WP4589 0.02447 0.1301

Biomarkers for pyrimidine metabolism disorders WP4584 0.02447 0.1301

GPR40 Pathway WP3958 0.02447 0.1301

Hepatitis C and Hepatocellular Carcinoma WP3646 0.002958 0.06655

Airway smooth muscle cell contraction WP4962 0.02769 0.1301

DOWN-WikiPathways COVID-19 adverse outcome pathway WP4891 0.00001661 0.0005444

Complement and Coagulation Cascades WP558 0.000001559 0.0001298

Lung fibrosis WP3624 0.00000236 0.0001298

Selective expression of chemokine receptors during T-cell polarization WP4494 0.0001289 0.001418

Vitamin B12 metabolism WP1533 0.00002501 0.0005503

Platelet-mediated interactions with vascular and circulating cells WP4462 0.001499 0.01268

Activation of NLRP3 Inflammasome by SARS-CoV-2 WP4876 0.02356 0.07623

Nanomaterial-induced inflammasome activation WP3890 0.02356 0.07623

Hfe effect on hepcidin production WP3924 0.02356 0.07623

UP-BioCarta Inhibition of Matrix Metalloproteinases Homo sapiens h reckPathway 0.01313 0.04688

Estrogen-responsive protein Efp controls cell cycle and breast tumors growth Homo sapiens h EfpPathway 0.02447 0.04688

Aspirin Blocks Signaling Pathway Involved in Platelet Activation Homo sapiens h sppaPathway 0.02769 0.04688

CDK Regulation of DNA Replication Homo sapiens h mcmPathway 0.0293 0.04688

Oxidative Stress Induced Gene Expression Via Nrf2 Homo sapiens h arenrf2Pathway 0.0293 0.04688

Cell Cycle: G2/M Checkpoint Homo sapiens h g2Pathway 0.0357 0.04759

Thrombin signaling and protease-activated receptors Homo sapiens h Par1Pathway 0.04363 0.04987

Phospholipids as signalling intermediaries Homo sapiens h edg1Pathway 0.05308 0.05308

Inhibition of Matrix Metalloproteinases Homo sapiens h reckPathway 0.01313 0.04688

DOWN-BioCarta Pertussis toxin-insensitive CCR5 Signaling in Macrophage Homo sapiens h Ccr5Pathway 0.0004038 0.008523

Hemoglobin’s Chaperone Homo sapiens h ahspPathway 0.0008672 0.008523

Classical Complement Pathway Homo sapiens h classicPathway 0.001162 0.008523

Beta-arrestins in GPCR Desensitization Homo sapiens h bArrestinPathway 0.004067 0.01708

Activation of cAMP-dependent protein kinase, PKA Homo sapiens h gsPathway 0.004358 0.01708

Role of Beta-arrestins in the activation and targeting of MAP kinases Homo sapiens h barr-mapkPathway 0.004659 0.01708

Alternative Complement Pathway Homo sapiens h alternativePathway 0.03349 0.05394

G-Protein Signaling Through Tubby Proteins Homo sapiens h tubbyPathway 0.03349 0.05394

Regulators of Bone Mineralization Homo sapiens h npp1Pathway 0.03678 0.05394

UP-Reactome Activation of Matrix Metalloproteinases Homo sapiens R-HSA-1592389 0.00001965 0.002813

Collagen degradation Homo sapiens R-HSA-1442490 0.00003592 0.002813

Defective CHST3 causes SEDCJD Homo sapiens R-HSA-3595172 0.01149 0.06431

Defective CHSY1 causes TPBS Homo sapiens R-HSA-3595177 0.01149 0.06431

Defective CHST14 causes EDS, musculocontractural type Homo sapiens R-HSA-3595174 0.01149 0.06431

DAG and IP3 signaling Homo sapiens R-HSA-1489509 0.00127 0.0218

Creatine metabolism Homo sapiens R-HSA-71288 0.01638 0.08369

GP1b-IX-V activation signalling Homo sapiens R-HSA-430116 0.01638 0.08369

Adenylate cyclase activating pathway Homo sapiens R-HSA-170660 0.01638 0.08369

DOWN-Reactome Formyl peptide receptors bind formyl peptides and many other ligands Homo sapiens R-HSA-444473 0.000002079 0.00005781

(Continued)
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highlighted in the module network of common up-regulated DEGs (UP-Module analysis net-

work). SIGLEC7 is the gene highlighted in the module network of common down-regulated

DEGs (DOWN-Module analysis network). Module analysis is shown in Fig 6. The UP-Module

analysis network contains 11 nodes and 37 edges. The DOWN-Module analysis network

Table 3. (Continued)

Databases Pathways P-value Adjusted p-value

DEx/H-box helicases activate type I IFN and inflammatory cytokines production Homo sapiens R-HSA-

3134963

0.0008672 0.007534

Advanced glycosylation endproduct receptor signaling Homo sapiens R-HSA-879415 0.0008672 0.007534

Regulation of Complement cascade Homo sapiens R-HSA-977606 0.00009241 0.00107

Ficolins bind to repetitive carbohydrate structures on the target cell surface Homo sapiens R-HSA-2855086 0.01689 0.07572

Scavenging by Class B Receptors Homo sapiens R-HSA-3000471 0.01689 0.07572

Peptide ligand-binding receptors Homo sapiens R-HSA-375276 1.82E-08 8.41E-07

Complement cascade Homo sapiens R-HSA-166658 0.000007721 0.0001789

Chemokine receptors bind chemokines Homo sapiens R-HSA-380108 0.00003929 0.0006068

https://doi.org/10.1371/journal.pone.0269249.t003

Fig 4. Pathway analysis was performed by WikiPathways, BioCarta and Reactome for result identification: (A, B) WikiPathways, (C, D) BioCarta and (E, F)

Reactome.

https://doi.org/10.1371/journal.pone.0269249.g004
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Fig 5. (A) The network of protein-protein interactions (PPIs) for identifying common differentially up-regulated expressed genes common to

both diseases (COVID-19 and HCC). Nodes indicate common differentially expressed genes and edges specify the interconnection between two

genes. The analyzed network has 28 nodes and 118 edges. Hub genes were detected from a network of PPIs with common differentially expressed

genes. The 5 genes highlighted are PDGFRB, MMP14, VWF, MMP1 and NES. (B) The network of PPIs for identifying common differentially

down-regulated expressed genes common to both diseases (COVID-19 and HCC). The analyzed network has 58 nodes and 645 edges. The 5 hub

genes are IL1B, S100A12, FCGR3B, CCR1 and S100A8.

https://doi.org/10.1371/journal.pone.0269249.g005

Fig 6. The module analysis network was obtained from the PPIs network in Fig 5. PDGFRB, VWF and SIGLEC7 are highlighted in red, as these 3 hub

nodes are common between GSE147507 and TCGA-LIHC. This network represents the highly interconnected region of the PPIs network.

https://doi.org/10.1371/journal.pone.0269249.g006
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contains 28 nodes and 331 edges. Topological analysis was performed using cytohubba to

identify the hub genes. The results of the topological analysis are shown in Table 4.

Transcription factor-gene interactions

Transcription factor- (TF) gene interactions were gathered using NetworkAnalyst. For the

common up-regulated and down-regulated DEGs, the TF-genes were characterized. The inter-

action of the TF regulators with the common up-regulated and down-regulated DEGs is

shown in Fig 7. For the common up-regulated DEGs, the network consists of 67 nodes and

278 edges (UP-TF-gene network). The network includes a total of 42 TF-genes. MCM7 is

mainly regulated by 33 TF-genes, ADAM17 is mainly regulated by 25 TF-genes, andMAFG is

mainly regulated by 25 TF-genes. For the common down-regulated DEGs, the network con-

sists of 135 nodes and 358 edges (DOWN-TF-gene network). The network includes a total of

86 TF-genes. SERPINA1 is mainly regulated by 23 TF-genes, C5AR1 is mainly regulated by 21

TF-genes, and ARL5B is mainly regulated by 20 TF-genes. These TF-genes moderate the net-

work of more than one common DEG, which demonstrates the high interaction of TF-genes

with the common up-regulated and down-regulated DEGs. Fig 7 illustrates the TF-gene inter-

action network.

TF-microRNA coregulatory network

TF-microRNA (miRNA) coregulatory network was produced using NetworkAnalyst. Analysis

of the TF-miRNA co-regulatory network and provides the interaction of miRNA and TFs with

the common up-regulated and down-regulated DEGs. This interaction may be responsible for

regulating the expression of DEGs. For the common up-regulated DEGs, the network created

for the TF-miRNA co-regulatory network includes 116 nodes and 299 edges (UP-TF-miRNA

network). Among all miRNAs involved in regulating genes, the largest number of regulated

Table 4. Topological results for the first 10 hub genes.

Network Hub gene Degree Stress Closeness Betweenness Eccentricity

UP-PPIs PDGFRB 18 344 23 100.03175 0.5

MMP14 17 286 22.5 88.55397 0.5

VWF 16 326 22 113.31508 0.5

CD34 15 168 21.33333 45.70714 0.33333

NES 14 168 21 40.75833 0.5

MCAM 13 112 20.5 21.62063 0.5

CSPG4 12 126 20 28.90952 0.5

MMP1 12 112 19.5 28.31548 0.33333

SPARCL1 11 152 19.33333 43.15516 0.33333

MMP10 10 52 18.66667 9.63571 0.33333

DOWN-PPIs IL1B 49 2510 55.33333 500.22298 0.33333

S100A12 45 1438 53.33333 199.29362 0.33333

FCGR3B 42 1316 51.83333 198.22844 0.33333

CCR1 42 1070 51.83333 121.50458 0.33333

S100A8 41 1178 51.33333 177.54056 0.33333

CCL3 37 668 49.33333 71.37717 0.33333

CCL2 36 1106 48.83333 156.4397 0.33333

CCL4 36 634 48.83333 64.33257 0.33333

CLEC4D 35 578 48.16667 46.80746 0.33333

LILRA1 35 590 48.16667 53.01227 0.33333

https://doi.org/10.1371/journal.pone.0269249.t004
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genes was has-miR-16, which was involved in regulating 6 genes. For the common down-regu-

lated DEGs, the network created for the TF-miRNA co-regulatory network includes 191 nodes

and 452 edges (DOWN-TF-miRNA network). Similarly, the largest number of regulated genes

in this network is has-miR-9, which is involved in the regulation of 7 genes. Fig 8 illustrates the

TF-miRNA co-regulatory network.

Fig 7. Network of TF-genes interacting with common differentially expressed genes. The highlighted red nodes represent common genes and the other

nodes represent TF-genes.

https://doi.org/10.1371/journal.pone.0269249.g007

Fig 8. The network presents a TF-miRNA co-regulatory network. Red, orange and yellow nodes are differentially expressed genes, green nodes indicate

miRNAs and blue nodes indicate TF-genes.

https://doi.org/10.1371/journal.pone.0269249.g008
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Identification of candidate drugs

This study aimed to integrate the treatment of COVID-19 and HCC. According to the

DSigDB, drug molecules were derived from the 33 common up-regulated DEGs and 68

common down-regulated DEGs. Among all drug candidates based on adjusted P-values

(P< 0.05), the current study highlights the top ten important drugs. Ilomastat TTD 00008545,

CGS-27023A TTD 00002801, CHEMBL475540 TTD 00006054, LAMININ BOSS, Plasmasteril

BOSS, Ethylene dimethacrylate BOSS, 5194442 MCF7 UP, 9001-31-4 BOSS, fluphenazine

PC3 UP and norcyclobenzaprine PC3 UP are the peak candidates for COVID-19 and HCC

according to common up-regulated DEGs. Palmatine CTD 00000225, betamethasone CTD

00005504, fludrocortisone CTD 00005975, suloctidil HL60 UP, Modrasone CTD 00001031,

Roflumilast CTD 00003916, acetohexamide PC3 UP, alexidine CTD 00000048, Antimycin A

CTD 00005427 and dequalinium CTD 00005770 are the best candidates for COVID-19

and HCC based on common down-regulated DEGs. For the common up-regulated DEGs,

the analysis showed that Ilomastat TTD 00008545, CGS-27023A TTD 00002801 and

CHEMBL475540 TTD 00006054 were the top 3 drug molecules that interacted with the most

genes. For the common down-regulated DEGs, the analysis showed that Palmatine CTD

00000225, betamethasone CTD 00005504 and fludrocortisone CTD 00005975 were the top 3

drug molecules that interacted with the most genes. Since these characteristic drugs were

detected against common DEGs, these drugs represent common drugs for COVID-19 and

HCC. Tables 5 and 6 indicate the drug candidates for the common DEGs in the DSigDB.

Table 5. List of the suggested drugs for UP-DEGs of HCC with COVID-19.

Name of drugs P-value Adjusted p-value gene

Ilomastat TTD 00008545 0.0001725 0.01056 MMP14, MMP1

CGS-27023A TTD 00002801 0.0002036 0.01056 MMP14, MMP1

CHEMBL475540 TTD 00006054 0.0002373 0.01161 MMP14, MMP10

LAMININ BOSS 8.64E-10 7.61E-07 PDGFRB, MMP14

Plasmasteril BOSS 0.0004924 0.01735 VWF, CD34

Ethylene dimethacrylate BOSS 0.000001365 0.0003252 VWF, MMP1

5194442 MCF7 UP 0.0007734 0.02129 MAFG. NDRG1

9001-31-4 BOSS 0.000002652 0.0004673 MMP14, VWF;

fluphenazine PC3 UP 0.0009715 0.02195 MMP1, NDRG1

norcyclobenzaprine PC3 UP 0.001042 0.02296 MMP1, NDRG1

https://doi.org/10.1371/journal.pone.0269249.t005

Table 6. List of the suggested drugs for DOWN-DEGs of HCC with COVID-19.

Name of drugs P-value Adjusted p-value gene

Palmatine CTD 00000225 2.81E-07 0.00007013 SLC5A7, CCL4;

betamethasone CTD 00005504 2.81E-07 0.00007013 IL1B, CCL4;

fludrocortisone CTD 00005975 0.000006082 0.0007 CCL4, CCL3;

suloctidil HL60 UP 1.36E-15 2.04E-12 CCR1, IL1RN;

Modrasone CTD 00001031 0.00000809 0.0008069 CCL4, CCL3

Roflumilast CTD 00003916 0.00001049 0.000981 CCL4, CCL3;

acetohexamide PC3 UP 0.000001031 0.0002202 RSAD2, OAS2;

alexidine CTD 00000048 0.00002039 0.001525 CCL4, CCL3;

Antimycin A CTD 00005427 0.000001727 0.0003073 IL1B, CCL4;

dequalinium CTD 00005770 0.00003503 0.002096 CCL4, CCL3;

https://doi.org/10.1371/journal.pone.0269249.t006
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Discussion

There are no previous studies showing that having liver cancer is a risk factor for COVID-19.

When a patient has liver cancer or even advanced liver cancer, the normal physiological func-

tions of the liver are disrupted, and many critical proteins cannot be synthesized. This condi-

tion may promote the development of COVID-19. This study contributes to the narrative

Bioinformatics curriculum for the meaningful analysis of SARS-CoV-2 affected lung epithelial

and alveolar samples and HCC affected human liver tissue. Bioinformatics-related methods

were used for this study to screen 814 and 4,462 DEGs from GSE147507 and TCGA-LIHC,

respectively. To establish relationships and detect drug candidates based on COVID-19 and

HCC, common DEGs were identified between the GSE147507 and TCGA-LIHC datasets. A

total of 33 common up-regulated DEGs and 68 common down-regulated DEGs were identi-

fied. Next, we continued to analyze GO, the pathway, PPIs networks, TF-gene interactions, the

TF-miRNA coregulatory network, and drug candidate assays.

33 common up-regulated DEGs and 68 common down-regulated DEGs were identified for

detecting GO terms. GO terms were selected based on P-values. Extracellular matrix disassem-

bly, neutrophil degranulation, metalloendopeptidase activity, carbohydrate binding, apical

part of cell and ficolin-1-rich granule were the most important GO terms. Extracellular matrix

breakdown is strongly associated with the pathogenic process of COVID-19. SARS-CoV-2

induces an inflammatory response at the blood-gas barrier, causing the breakdown of adhe-

rens junctions and tight junctions between endothelial cells, leading to the collapse of the

blood-gas barrier and ultimately to hypoxia [28]. Neutrophils play an important role in the

course of COVID19 infection. Increased hyperactivated degranulated neutrophils in alveolar

lavage fluid of patients with neoconiosis compared to influenza [29]. Carbohydrate binding

leads to insulin resistance, the thereby being involved in the pathogenesis of diabetes, COVID-

19 may also predispose infected individuals to hyperglycemia [30, 31]. The top ranked GO

terms according to cellular component are the apical portion of the cell and the paclitaxel-1

enriched granules.

The KEGG pathway of the 33 common up-regulated DEGs and 68 common down-regu-

lated DEGs was identified, as similar pathways were found for COVID-19 and HCC. The top 2

KEGG pathways included platelet activation and Malaria. Increased platelet activation and

platelet-monocyte aggregate formation can be observed in patients with severe COVID-19,

while platelet activation is associated with the severity of COVID-19 and mortality [32]. Plate-

let activation is increased in steatosis to nonalcoholic steatohepatitis (NASH), and antiplatelet

therapy may prevent the development of NASH and subsequent HCC [33]. A study by Wang

et al. found that malaria effectively inhibited HCC progression and prolonged survival time in

tumor-bearing mice [34]. Concurrently, the results of WikiPathways indicated that the most

interactive gene pathway was matrix metalloproteinases and COVID-19 adverse outcome

pathway. A study by Petito et al. also suggested that plasma matrix metalloproteinase 9 was sig-

nificantly increased in COVID-19 patients [35]. The results from the Reactome and BioCarta

pathway also implicated that the most critical pathway is the activation of matrix metallopro-

teinases and the binding of formylated peptides by formylated peptide receptors.

Because hub gene detection, module analysis, and drug identification depend entirely on

the PPIs network, the PPIs network analysis is the most remarkable part of the study. The PPIs

analysis was also generated for 33 common up-regulated DEGs and 68 common down-regu-

lated DEGs. According to the PPIs network the PDGFRB,MMP14, VWF, IL1B, S100A12 and

FCGR3B genes were declared central genes due to their high interaction rate or degree values.

High expression of PDGFRB andMMP14 is associated with poor prognosis of HCC [36–38].

VWF has also been mentioned several times as a biomarker to predict the prognosis of liver
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cancer [33, 39, 40]. VWF is involved in the formation of microvascular thrombi during

COVID19 pathogenesis [41]. The inflammatory cytokine IL-1β was proven to be responsible

for the induction of PD-L1 expression, further mediating immune escape from HCC [42]. Del

Valle et al. revealed low levels of IL-1β expression in the serum of COVID-19 patients [43].

S100A12 was low-expressed in HCC tissues, and lower expression of S100A12 was associated

with poorer OS [44]. To concentrate on critical regions of the PPIs network, modular analysis

of hub genes was implemented. We targeted highly concentrated regions as this is more pro-

ductive according to drug compounding recommendations.

TF-gene interactions were identified with common DEGs. TF-genes act as regulators

according to the expression of genes that may lead to the production of cancer cells. From the

network, MCM7 and SERPINA1 showed high interaction rates with other TF-genes. The

degree values ofMCM7 and SERPINA1 in the TF-gene interaction network were 33 and 23,

respectively. MCM7 facilitates cancer procession through cyclin D1-dependent signaling and

serves as a prognostic marker for patients with HCC [45]. Alpha-1 antitrypsin (AAT), a pre-

dominant plasma serine protease inhibitor encoded by serpina1, is known to promote the

immune response to viral infections [46]. Among the regulators, KLF9 andMTA2 had signifi-

cant interactions. In the TF-gene interaction network, the degree values of KLF9 andMTA2
were 12 and 9, respectively. Fu et al. demonstrated that mRNA and protein levels of KLF9 were

lower in hepatocellular carcinoma (HCC) tissues than in normal tissues and that upregulation

of KLF9 inhibited cell proliferation and movement [47]. Guan et al. revealed that high expres-

sion levels ofMTA2 were closely associated with advanced pathological stages and low overall

survival of patients, and thatMTA2 promoted HCC proliferation and metastasis in vitro and

in vivo by inhibiting the Hippo signaling pathway [48].

Regulatory biomolecules serve as underlying biomarkers in multiple complicating diseases.

With this in mind, miRNAs and TF-genes were utilized to regulate the common DEGs. They

were visualized and analyzed in a TF-miRNA co-regulatory network. 106 miRNAs and 104

TF-genes were identified in this study. Among the TFs with the strongest interactions, JUN
had the high degree value of 12. JUN is a key regulator of inflammatory cytokine genes, such as

CCL2, and is expressed at high levels in COVID-19 patients [49–51]. In a study by Liu et al.,

JUN was discovered to be potentially involved in the molecular mechanisms of HCC patho-

genesis [52]. SP1 had the high degree value of 10. SP1-regulated RasGRP1 transcription stimu-

lates proliferation of HCC [53]. TF-genes are responders that perform expression regulation

by binding to target genes and miRNAs and can regulate gene expression through mRNA deg-

radation [54].

Antimycin A is considered to be effective in decreasing the activity of coronaviruses and

also has the potential to treat COVID-19 [55]. It is predicted that cell surface-bound immuno-

globulin (csBiP) readily binds to SARS-CoV-2. CsBiP has a peptide-binding substrate-binding

domain (SBD), and acetohexamide can bind to the SBD thereby interfering with the binding

of SARS-CoV-2 to csBiP [56]. Betamethasone improves symptoms of hyposmia in patients

with COVID-19 [57]. Since SARS-CoV-2 is a novel virus, drug treatment has been less exten-

sively studied thus far. For this reason, we were only able to gather a small number of samples

for analysis. In the future, once more samples become available, the ongoing study will gain

further validity in the context of the SARS-CoV-2 pandemic.

Conclusions

In regards to transcriptomic analysis, no other studies on SARS-CoV-2 and HCC have been

done so far. We completed an analysis of the DEGs between the two datasets, filtered the mate-

rial by common gene identification and tried to identify the infection response between
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SARS-CoV-2 and HCC affected hepatocytes. In this study, we elucidated the intrinsic associa-

tion between HCC and COVID-19 by identifying key genes that are commonly up- or down-

regulated by HCC and COVID-19. In addition, this study also indicates that COVID-19 may

be a risk factor for the progression of HCC. Drug targets are logically suggested because they

are derived from the identification of hub genes and may serve as a positive preamble to

already approved drugs. HCC and COVID-19 share common targets. We propose these tar-

gets to help scientists and clinicians better investigate the mechanisms underlying the possible

complications in HCC patients with COVID-19. Given that SARS-CoV-2 is a recently evolved

virus, studies of its risk factors and infection are scarce. Unique studies of SARS-CoV-2 will

become increasingly significant as more data sets become available.
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