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Abstract

Background

Mass spectrometry (MS) analysis using direct infusion of biological fluids is often problem-

atic due to high salts/buffers. Iodinated contrast media (ICM) are frequently used for diag-

nostic imaging purposes, sometimes inducing acute kidney injury (AKI) in patients with

reduced kidney function. Therefore, detection of ICM in spent hemodialysates is important

for AKI patients who require urgent continuous hemodiafiltration (CHDF) because it allows

noninvasive assessment of the patient’s treatment. In this study, we used a novel desalina-

tion tube before MS to inject the sample directly and detect ICM.

Methods

Firstly, spent hemodialysates of one patient were injected directly into the electrospray ioni-

zation (ESI) source equipped with a quadrupole time-of-flight mass spectrometer (Q-TOF

MS) coupled to an online desalination tube for the detection of ICM and other metabolites.

Thereafter, spent hemodialysates of two patients were injected directly into the ESI source

equipped with a triple quadrupole mass spectrometer (TQ-MS) connected to that online

desalination tube to confirm the detection of ICM.
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Results

We detected iohexol (an ICM) from untreated spent hemodialysates of the patient-adminis-

tered iohexol for computed tomography using Q-TOF MS. Using MRM profile analysis, we

have confirmed the detection of ICM in the untreated spent hemodialysates of the patients

administered for coronary angiography before starting CHDF. Using the desalination tube,

we observed approximately 178 times higher signal intensity and 8 times improved signal-

to-noise ratio for ioversol (an ICM) compared to data obtained without the desalination tube.

This system was capable of tracking the changes of ioversol in spent hemodialysates of AKI

patients by measuring spent hemodialysates.

Conclusion

The online desalination tube coupled with MS showed the capability of detecting iohexol

and ioversol in spent hemodialysates without additional sample preparation or chro-

matographic separation. This approach also demonstrated the capacity to monitor the iover-

sol changes in patients’ spent hemodialysates.

Introduction

Mass spectrometry (MS) has emerged as a powerful analytical technique in various disciplines,

including biomedical research, in recent years. The use of MS is increasing in biomedical

science day by day due to its capability of high throughput screening of new uremic analytes

[1–3] and toxins [4]. Among the various ionization methods, electrospray ionization (ESI) is

widely used to study heterogeneous complex mixtures due to its high sensitivity [5]. To ensure

a stable ESI process, the presence of excess salts and nonvolatile solutes/buffers in aqueous

solutions is not desired [6]. A high concentration of salts, nonvolatile buffers, and endogenous

metabolites (amines, fatty acids, etc.) in bio-fluids interfere with ESI-MS analysis significantly

in many ways, such as orifice/interface contamination, clogging of ionization portion, ion sup-

pression [7], and peak splitting [8]. However, some bio-fluids are salty (e.g., cerebrospinal flu-

ids contain 145 mM Na) [9], while others need nonvolatile salts buffers and solubilizing agents

(such as organic solvents or detergents) to preserve the stability and integrity of biomolecules

and their complexes [5]. Therefore, direct analysis of untreated bio-fluids by MS represents a

considerable challenge.

Hemodiafiltration (HDF) has become the key management modality for patients with vari-

ous acute kidney injury (AKI) entities such as contrast media-induced AKI and nephropathy

[10], septic AKI, and rhabdomyolysis-associated AKI [11]. It has emerged as an alternative to

current innovative renal replacement therapy, which removes higher molecular weights ure-

mic solutes more efficiently than conventional hemodialysis [12]. A significant amount of dial-

ysis concentrate is required to maintain the homeostasis of bodily fluids, electrolytes,

osmolality, pH, and the removal of toxic products from the bloodstream simultaneously. This

procedure produces large quantities of spent hemodialysates (Fig 1A), containing much of the

patient’s information, such as metabolites removed from the body and drugs administered. It

would be advantageous and noninvasive if we could use spent hemodialysates effluent to deter-

mine the patient’s clinical condition. However, spent hemodialysates contain inorganic salts

and nonvolatile solutes/buffers, making them more challenging to analyze by MS [1]. To

address these challenges, a convenient desalination tube was installed just before the ESI
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source (Fig 1B). It is capable of removing both cation and anion simultaneously by adsorbing

excess salts needed to be purged from samples or mobile phase during analysis [13, 14].

Iodinated Contrast Media (ICM) are widely used for therapeutic and diagnostic imaging

purposes [15]. However, the onset of new complications or exacerbation of renal dysfunction

following the administration of ICM occurs among high-risk patients with preexisting chronic

renal failure, diabetes, and multiple myeloma. For example, ICM showed nephrotoxic effects

in patients with diabetes and impaired renal function undergoing coronary or aortofemoral

angiography [16]. Their multiple exposures cause a direct cytotoxic effect on renal tubular epi-

thelial and endothelial cells, resulting in impaired intrarenal hemodynamics, hypoxia, ische-

mia, and necrosis [17]. Therefore, the detection of ICM in spent hemodialysates is

advantageous in monitoring the effect of continuous hemodiafiltration (CHDF) treatment. It

will provide new indications about the appropriate dosages, route of administration, and com-

prehensive risk assessment versus the possible benefit of the contrast-assisted investigation or

an alternative imaging strategy concerning the patient’s clinical condition.

Fig 1. An overview of spent hemodialysate analysis using online desalination tubes. (A) spent hemodialysates were

collected from acute kidney injury (AKI) patients and (B) subsequently analyzed by online desalination tube coupled

with MS.

https://doi.org/10.1371/journal.pone.0268751.g001
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A variety of approaches have been applied in order to measure ICM, such as iohexol and

ioversol in plasma [18], serum [19], urine [20], and wastewater [21], but no analytical method

has been reported for the detection of ICM in spent hemodialysates matrix. Several approaches

for online desalting and direct infusion of biological samples without chromatographic separa-

tions have been developed [22–24]. However, almost all of them have common weaknesses,

mainly the ion suppression effect, due to the lack of chromatographic separations. Our simple

and convenient approach enables the direct injection of untreated salty spent hemodialysates

into MS and subsequently detects iohexol and ioversol, bringing it closer to its use in clinical

practice. The online desalting approach offers speed and labor decrease for samples clean-up

based on the ion-exchange technique resulting in faster performances than conventional ana-

lytical methods. This configuration is also beneficial for overcoming the ion suppression effect,

which results in increased signal intensity and improved spectral signal to noise ratio (S/N). In

the present work, we described the advantages of using the online desalting tube coupled to

quadrupole time of flight (Q-TOF) mass spectrometer (Synapt G2 Q-TOF MS) for the detec-

tion of iodinated contrast agent iohexol and triple quadrupole (TQ) mass spectrometer (Xevo

TQ-XS MS) for the detection of iodinated contrast agent ioversol in untreated spent hemodia-

lysates collected from the patients with preexisting AKI without laborious sample preparation.

Materials and methods

Chemicals and equipment

Ioversol (Brand name: Optiray1 350) was purchased from Guerbet, Japan Co., Ltd. (Tokyo,

Japan). LC-MS grade methanol, acetonitrile, formic acid, and water were purchased from

Wako Pure Chemical Industries (Osaka, Japan). Ammonium acetate solution was purchased

from Kanto Chemical Co., Inc. (Tokyo, Japan). CFAN desalination tubes (Lot no:

10100CFAN20001) were purchased from MS-Solutions (Tokyo, Japan).

Patients and sample collection

Spent hemodialysates were obtained from three patients admitted to the intensive care unit

(ICU) department, Hamamatsu University Hospital, Japan. For Patient #1, we collected the

spent hemodialysates at 2h, 4h, 6h, and 24h after the start of CHDF. He underwent a contrast-

enhanced computed tomography (CT) scan at 6h after the beginning of CHDF and was given

150 mL of iohexol (300 mg I/mL) intravenously for that purpose. For patients #2 and #3, we

collected the spent hemodialysates sampled at 0h, 0.5h, 1h, 2h, 4h, 6h, and 24h after the start of

CHDF and stored them at -80˚C until use. Patient #2 underwent coronary angiography

(CAG) the day before starting CHDF, and 30 mL of ioversol (350 mg I/mL) was administered

intravenously in less than 40 min. Patient #3 underwent 2-times CAG and administrated 70

mL and 100 mL of ioversol (350 mg I/mL) intravenously one day and two days prior to

CHDF, respectively (S1 Table). CHDF was commenced on the next day of CAG and continued

up to 24h in patients #2 and #3. The ethics committee of Hamamatsu University School of

Medicine, Hamamatsu, Japan approved this research work (ethical approval number:19–169).

Patients who were scheduled for spent hemodialysates collection provided written informed

consent to use their sample in this study.

Preparation of stock solution and spent hemodialysate samples

The ioversol stock solution was prepared by mixing Optiray1 350 in 100% water at concentra-

tions of 741 mg/mL and stored at -20˚C for up to 3 months for further use. Later, the working

standard solution was prepared in 50% methanol at 10 μg/mL concentrations by diluting the
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stock standard solution and kept at 4˚C for up to 1 month for further use. The spent hemodia-

lysates were thawed entirely at 4˚C. The bio-fluids gently vortexed for 30 seconds and collected

the upper portion into the LC vials. Samples were maintained at 10˚C in the autosampler, and

5 μL of the samples were injected.

Instrumentation and MS apparatus for flow injection analysis (FIA)

FIA by Synapt G2 Q-TOF MS. The direct flow injection analysis of spent hemodialysates

was performed using the online desalination tube connected with an ESI source equipped with

a Q-TOF MS (Synapt G2 Q-TOF MS, Waters, Milford, MA, USA) in positive ion mode. The

spray solvent (20 mM ammonium acetate in 50% methanol) was maintained at a flow rate of

0.2 mL/min using a solvent pump (ACQUITY UPLC Binary Solvent Manager, Waters, Mil-

ford, MA, USA). The ESI source conditions in positive ion mode were optimized using a capil-

lary voltage of 4.0 kV, a cone voltage of 30 V, a source temperature of 150˚C, a desolvation

temperature of 450˚C, a cone gas flow of 50 L/h, and a desolvation gas flow of 800 L/h. Ions

from spent hemodialysates were obtained in a range of m/z 100 to 1000. The mass spectra were

calibrated using sodium formate solution (500 μM) in 2-propanol: water (90:10, v/v) prior to

measurements. We used lock spray (leucine-enkephalin solution; m/z 556.28) to obtain high

mass accuracy.

FIA by Xevo TQ-XS MS. The direct flow injection of spent hemodialysates was per-

formed using the online desalination tube connected with an ESI source equipped with a

TQ-MS (Xevo TQ-XS MS, Waters, Milford, MA, USA) in positive ion mode. The spray solvent

(0.1% formic acid in 50% methanol) was maintained at a flow rate of 0.2 mL/min using a sol-

vent pump (ACQUITY UPLC Binary Solvent Manager, Waters, Milford, MA, USA). We opti-

mized the TQ-MS parameters for maximum sensitivity as follows, scan mode: multiple

reaction monitoring (MRM), ionization mode: positive, capillary voltage: 3.0 kV, cone voltage:

30 V, source temperature of 150˚C, desolvation temperature: 500˚C, desolvation gas flow:

600 L/h, cone gas flow: 150 L/h, N2 gas pressure: 7.0 bar.

Data analysis

MassLynx (Waters, Milford, MA, USA; version 4.1) software was used for data acquisition and

analysis. For the S/N ratio calculation, the maximum signal height above the mean noise was

divided by the root mean square deviation from the mean noise. The obtained m/z peaks were

identified by referring to the human metabolome database (HMBD) and previous literature.

Results

Detection of ICM & endogenous metabolites in untreated spent

hemodialysates

We injected the spent hemodialysates of patient #1 directly into Q-TOF MS via the online

desalination tube (Fig 2). As expected, the peaks (m/z 821.89 and m/z 843.86) corresponding

to the contrast agent iohexol were detected only in the sample obtained after 24h of initiating

CHDF (Fig 2D). At the same time, we also detected the peaks of three endogenous metabolites

(m/z 114.07, 162.11, and 229.15 corresponding to creatinine, L-carnitine, and N, N, N-tri-

methyl-L-alanyl-L-proline betaine (TMAP) respectively) in samples obtained after 2h, 4h, 6h,

and 24h of CHDF respectively (Fig 2A–2D and Table 1). Furthermore, the peaks (m/z 807.87

and m/z 829.86) corresponding to ioversol along with three endogenous metabolites (creati-

nine, L-carnitine, and TMAP) were detected in the sample obtained from patients #2 and #3
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Fig 2. Detection of iohexol (an ICM) and three endogenous metabolites in untreated spent hemodialysates of patient #1 by

Synapt G2 Q-TOF MS. The peaks corresponding to creatinine, L-carnitine, and TMAP were detected in samples obtained (A) 2h,

(B) 4h, and (C) 6h after the start of CHDF. (D) Three endogenous metabolites along with the iohexol (m/z 821.89 and m/z 843.86)

were detected in the sample collected 24h after the start of CHDF (iohexol was injected 6h after the start of CHDF).

https://doi.org/10.1371/journal.pone.0268751.g002
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simultaneously (S1 Fig and Table 1). This technique can monitor the changes of metabolites

with time (2-24h) in spent hemodialysates of AKI patients (S2 Fig).

Evaluation of the ioversol adsorption within desalination tubes

We injected ioversol solution (10 μg/mL) into Q-TOF MS with or without the online desalina-

tion tubes to test the adsorption of ioversol within the tubes. We observed a stable peak for

ioversol in both cases. When the ioversol solution was injected using the desalination tube, the

order of adduct ions was dominated by [M+H]+>[M+NH4]+>[M+Na]+, with total intensity

of 1.98 x 104. On the other hand, when the ioversol solution was injected without the desalina-

tion tube, the order of adduct ions was dominated by [M+H]+>[M+Na]+>[M+NH4]+, with

total intensity of 1.46 x 104. It revealed almost similar signal intensity with the exception of the

ratio of those adducts ions. This finding suggests that ioversol was not absorbed within the

desalination tubes (Fig 3, Table 2).

The effect of the online desalination tube in the measurement of untreated

spent hemodialysates

We applied the online desalination tube to the mass spectrometry system to directly examine

the untreated spent hemodialysates. This setup allows the direct injection of untreated spent

hemodialysates into TQ-MS without additional sample preparation. We observed stable and

higher signal sensitivity for ioversol due to its desalting ability. This approach enhances the sig-

nal intensity and improves the S/N for ioversol (m/z 807.9>588.8) by approximately 178 times

and 8 times, respectively, compared to data obtained without using it (Fig 4A and 4D, and S3

Table). In addition to increased sensitivity, the usage of online desalination tubes mitigates the

peak broadening during analysis. By applying this method, we found the same product ion

transition (m/z 807.9>588.8) in untreated spent hemodialysates of patients #2 and #3 (S3 Fig).

In addition, the lowest detectable concentration of ioversol is 0.1 ng/mL in spent hemodialy-

sates or methanol, with S/N of approximately 4 or 33, respectively (S4 and S5 Figs).

Tracking the changes of ioversol in spent hemodialysates with time

We examined the untreated spent hemodialysates of patients #2 and #3 at 7-time intervals (0-

24h) following the initiation of CHDF. The online desalination tube coupled with TQ-MS can

track the changes of ioversol in spent hemodialysates with time (0-24h). We observed higher

ioversol signal intensity of patient #2 at 1h and subsequently decreased the signal intensity at 2h,

4h, 6h, and 24h after starting CHDF. Patient #3 had the higher ioversol signal intensity at the

beginning (0h) and then decreased it after 0.5h, 1h, 2h, 4h, 6h, and 24h of starting CHDF. The

ioversol signal intensity was consistently higher in patient #3 compared to patient #2 (Fig 5).

Table 1. List of peaks in the Q-TOF MS obtained from spent hemodialysates.

Observed m/z Theoretical m/z Assigned Molecules Mass error (ppm) Reference

114.0665 114.0667 [M+H] + Creatinine 3 [25]

162.1105 161.1052 [M+H] + L-carnitine 12 [2]

229.1542 229.1552 [M+H] + TMAP 2 [26]

821.8853 821.8876 [M+H] + Iohexol 3 [20]

843.8632 843.8695 [M+Na] + Iohexol 7 HMDB

807.8700 807.8719 [M+H] + Ioversol 2 [19]

829.8620 829.8539 [M+Na] + Ioversol 10 HMDB

https://doi.org/10.1371/journal.pone.0268751.t001
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Fig 3. Ioversol was not adsorbed by desalination tubes. (A) Mass spectra were obtained using the desalination tube and (B)

mass spectra were obtained without the desalination tube.

https://doi.org/10.1371/journal.pone.0268751.g003
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Discussion

In this study, we connected the online desalination tube before ESI-MS that achieved direct

injection of untreated salty spent hemodialysates and simultaneously detected the ICM and

endogenous metabolites. Previously, our group developed this desalination tube and showed

Table 2. Q-TOF MS data for the evaluation of ioversol adsorption by desalination tube.

Status of desalination tube during analysis Intensity values of ioversol Total intensity

[M+H]+ [M+Na]+ [M+NH4]+

With desalination tube 1.80 x 104 64 1.65 x 103 1.98 x 104

Without desalination tube 1.16 x 104 2.98 x 103 50 1.46 x 104

https://doi.org/10.1371/journal.pone.0268751.t002

Fig 4. Differences in the measurement results of untreated spent hemodialysates with and without an online desalination tube.

When spent hemodialysates were injected into TQ-MS directly using (A, C) and without using (B, D) an online desalination tube,

which revealed the differences in the measurement results. (A), (B) denoted the ioversol signal intensity in the same scale bar, and (C),

(D) denoted the ioversol signal intensity in the same scale bar.

https://doi.org/10.1371/journal.pone.0268751.g004
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its efficiency. The adsorption rate for phosphate and potassium in two distinct solutions (10

mmol/L KH2PO4 in 50% acetonitrile and 10 mmol/L KH2PO4 in 100% water) was more than

82% for up to 25 min, demonstrating its desalting ability [14]. This finding motivates us to

apply the desalination tube to analyze salty, spent hemodialysates. It acts as a contaminant

remover that causes the diffusion in the physical spaces within the tubes or adsorption on ion-

exchange resin depending on the analytes prior to ESI-MS analysis [13]. Our study describes

the benefit of using the online desalination tube coupled to Q-TOF MS that aids in detecting

the ICM (iohexol) and other three endogenous metabolites concomitantly (Fig 2 and Table 1)

in salty spent hemodialysates without sample extraction and chromatographic separations. It

may purify the spent hemodialysates based on the ion-exchange technique, consequently

resolving issues such as excess inorganic salts (Na+, K+, Mg2+, Ca2+, Cl−, SO4
2−, and PO4

3–),

nonvolatile solutes/buffers, and other impurities. We observed the identical endogenous

metabolites in patients #2 and #3, with the exception of the iohexol. As expected, iohexol was

found in patient #1, and ioversol was found in patients #2 and #3 (S1 Fig). This approach

showed stable and higher signal sensitivity for contrast agents and other endogeneous metabo-

lites concurrently due to the online desalting capability (Fig 2). After that, we checked the

adsorption of ioversol within the desalination tubes by injecting ioversol solution (10 μg/mL

ioversol in 50% methanol) into Q-TOF MS with or without the desalination tubes. The results

showed a stable peak for ioversol and the adduct ions dominated by [M+H]+ in both cases.

The ratio of adduct ions detected differed depending on whether tubes were used or not (Fig

3), but the total intensity was higher with tubes (Table 2). This observation suggests that the

adsorption of ioversol by the desalination tubes does not need to be considered.

Fig 5. The changes of ioversol signal intensity with time (0-24h) in spent hemodialysates. The square shape and

pyramid shape lines denote the time-dependent changes of ioversol signal intensity in patients #2 and #3, respectively.

https://doi.org/10.1371/journal.pone.0268751.g005
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MRM profiling was carried out using a TQ-MS with three aligned quadrupole masses for

the salty spent hemodialysates study. To optimize the discrimination of transitions, we infused

ioversol (10 μg/ml) into TQ-MS via an online desalination tube at a flow rate of 0.2 mL/min

and interrogated using 7-different collision energy (CE). The product-ion transition (m/z
807.9>588.8) was optimized based on their best intensity by considering specific CE 25 eV (S2

Table). The MRM transition of ioversol (m/z 807.9>588.8) was organized into a method to

measure the untreated spent hemodialysates directly. Thereafter, we examined the effect of

online desalination tubes in measuring untreated salty spent hemodialysates. The application

of an online desalination tube coupled with TQ-MS reduces ion suppression effects, resulting

in increased signal intensity and improved S/N ratio (Fig 4A and 4C). In contrast, severe ion

suppression and peak broadening were observed without the desalination tube, resulting in

reduced signal intensity (Fig 4B and 4D). Our approach showed approximately 178 times

higher signal intensity and 8 times greater S/N for the ioversol compared to those obtained

without the desalination tube (Fig 4A and 4D, and S3 Table). The increase in signal intensity

and the improvements in the S/N ratio significantly empower TQ-MS performance to examine

the untreated salty spent hemodialysates directly without sample extraction and chro-

matographic separations. Using our method, we examined the untreated salty spent hemodia-

lysates of patients #2 and #3 and obtained the specific ion pairs (m/z 807.9>588.8) within 1

min (S3 Fig), which does not require additional sample handling and chromatographic run

time. To check the limit of detection (LOD), we spiked spent hemodialysates (collected

before ioversol injection) or methanol with ioversol at 6 known concentration levels

ranging from 0.01 to 1000 ng/mL. This method detected the lowest known concentration

(0.1 ng/mL) of ioversol with the S/N of approximately 4 or 33 (S4 and S5 Figs). The conven-

tional workflows used for detecting the ICM require sample extraction steps (protein precipi-

tation, centrifugation, drying, dilution) with chromatographic separation [18–21]. Conversely,

we detected the iohexol and ioversol in untreated spent hemodialysates directly without addi-

tional sample extraction and chromatographic separation. Furthermore, we were able to miti-

gate the ion suppression effects and acquired a stable signal for ICM and other endogenous

metabolites, which is unusual during the direct examination of untreated biological samples

[27].

Our study showed the benefit of employing the online desalination tube, which strengthens

the TQ-MS to monitor the changes of ioversol in spent hemodialysates of AKI patients during

CHDF. The ioversol signal intensity in patient #3 was higher in contrast to patient #2 because

she had undergone 2-times CAG and received higher ioversol dosages before initiating CHDF

(Fig 5). The higher dosages of ioversol may further worsen the renal complications in patients

with types-2 diabetes, as an earlier study reported that ICM are exclusively associated with

contrast-induced nephropathy in patients with diabetes mellitus [28]. Our approach showed

the ability to tract ioversol changes with time in the AKI patient’s spent hemodialysates. The

changes in ioversol signal intensity were time-dependent (0-24h) in patients #2 and #3 (Fig 5),

suggesting that CHDF removes ioversol with time. This phenomenon may reduce the severe

risk factor for contrast-induced AKI and other complications. Although the elimination rate

and half-life of ioversol determination demand quantitative analysis using blood samples, this

technique represents the online noninvasive real-time monitoring of the changes of ioversol

with time (0-24h) by measuring untreated spent hemodialysates.

Conclusion

The online desalination tube coupled with MS showed the capability of direct detection of

iohexol and ioversol in untreated salty spent hemodialysates with high sensitivity. It also
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showed the ability to track the changes of ioversol in spent hemodialysates of AKI patients dur-

ing CHDF. It is expected to be applied in evaluating the clinical predictors of contrast-induced

AKI in the future.
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