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The immune response is remodeled with aging in a process called

immunosenescence. Some immunologists conceive immunosenescence as an

adaptation of immunity to the aged immune-environment rather than a merely

collapsed reactivity of immune cells against microbes and tumor cells. Others

believe on an uninterrupted activation of the innate immune system with aging,

leading to a low grade, sterile and chronic proinflammatory state called

inflammaging. For instance, it is possible that chronic infection by

cytomegalovirus leads to persistent production of viral load. This phenomenon

offers periodic stimuli to the immune system that ultimately contribute to the

remodeling of the immune response. If investigating immunosenescence at the

cellular level is already a difficult task, considering the population level is much

more complex. However, by studying immunosenescence at the population level,

we can extract valuable results with viable applications. While studies with animal

models allow scientists to deepen their understanding of the mechanisms of

immunosenescence, studying large populations can bring practical innovations to

medicine and the health system. Many researchers and funders have dedicated

themselves to producing methods for the evaluation of immunosenescence on a

large scale, aiming to elucidate new mechanisms by which diseases are

established in the elderly. The description of how the immune response is

remodeled with aging emerges as a new tool to identify the subset of subjects

in which unhealthy aging is a matter of time, to help better individualize clinical

management and select patients who may benefit. of early interventions. This

review focuses on functional assays as valuable methods for measuring the

remodeling of the immune response with aging and discuss their clinical

impact. We also recall fundamental concepts for understanding the aging

process of the immune response. In addition, we highlight future prospects for

immunosenescence research.
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Introduction

The increase in maximum life expectancy that humanity has

experienced in recent decades has raised concerns related to

healthy aging. In this scenario, understanding the modifications

that occur in the immune system emerges as a milestone for

physicians and scientists. The immune response is fluidly altered

with aging (immunosenescence) and results in increased

susceptibility to several clinical conditions, such as infectious

diseases (1). This essentially negative concept has given way to

another broader and evolutionary-based concept. Some

immunologists conceive immunosenescence as an adaptation

of immunity to the aged immune-environment rather than a

collapsed reactivity of immune cells against microbes and tumor

cells. Some of these modifications have been shown to have a

negative impact on the functioning of the various immune

system components and may have a significant impact on

patients’ responsiveness to infections, vaccination and

diminished immunosurveillance (2).

Both adaptive and innate immunity are influenced by aging.

Some subjects experience uninterrupted activation of the innate

immune system, leading to a relative increase in activating

cytokines and the production of innate cells. Once

uncontrolled, the unproportioned activation of innate

immunity may be detrimental and associated with a decrease

in functionality in a clinical syndrome known as frailty

(Figure 1) (3). The pro-inflammatory state occasioned by

continuous immune stimulation is called inflammaging (3).

The source of this stimulation may be endogenous or

exogenous (4–8) and its final product is a low grade, sterile
Frontiers in Immunology 02
and chronic pro-inflammatory state (3). Inflammaging may

disrupt neuro-endocrine and metabolic homeostasis, leading to

loss of lean mass and low performance among elderly (9). It is

important to highlight that chronic low-grade inflammation is

relevant, but not sufficient to lead to frailty. The risk for this

multifactorial condition can be influenced by several

sociodemographic variables (10).

Likewise, adaptive immunity remarkably changes as age

evolves. Bone marrow is reorganized, and the hematopoietic

stem cell pool most prominently differentiates into the myeloid

lineage, outnumbering the lymphoid compartment (11). To this

progenitor disequilibrium should be added thymic involution,

which compromises the generation of new naïve T cells.

However, the assessment of the functionality of the immune

system rather than the absolute number of immune cells alone

seems to better reflect the complexity of reshaping process of the

immune response with age.

Assessing the functionality of the immune system is a great

challenge. In fact, many functional assays have been developed

to trace the steps related to the establishment of the

immune response. Herein, we discuss the assessment of

immunosenescence in human populations. The literature was

accessed through international databases where we searched for

articles on clinical and experimental research that added new

knowledge about the field of immunosenescence. Our aim is to

focus on functional assays as valuable methods to measure

immune response remodeling with aging and their clinical

impact. We discuss fundamental concepts for understanding

the aging process of the immune response and present future

perspectives in the investigation of immunosenescence. This
FIGURE 1

Inflammaging and its clinical impact. Over time, endogenous or exogenous chronic immune stimulation leads to an increase in the pro-
inflammatory tone characteristic of inflammaging. The metabolic consequence of this pro-inflammatory state is the biochemical imbalance that
culminates in loss of strength, loss of performance and loss of functionality. While the figure summarizes the impact of inflammation on frailty, it
is important to note that frailty is also influenced by sociodemographic risk factors.
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discussion will bring new insights to the clinical management of

the elderly.
Physiology of immunosenescence

Aging is associated with changing patterns in

physiological functions. More than a simple state of relative

immunodeficiency, immunosenescence must be considered a

complex ongoing remodeling of immune cells and their

biological microenvironment. Indeed, immunosenescence has

been recognized as a more intricate process involving the

composition, phenotype and function of cells from both innate

and adaptive subsets of immunity (12, 13). Table 1 summarizes

the physiological alterations that occur with immune cells.

Age-related remodeling may influence the homeostasis of

neutrophils, natural killer (NK) cells, monocytes/macrophages,

and dendritic cells, all considered hallmarks of the innate

immune response (15). It has been recently reported that the

function of innate immunity extends beyond protection against

infections (14, 24). NK cells also promote granule exocytosis

targeting senescent cells (24). NK cells from elderly individuals

exhibit impaired perforin release upon stimulation (14),

suggesting that NK cell immunosenescence may be a

mechanism that justifies the accumulation of senescent cells in

aged tissue. It is noteworthy that human aging is associated with

a reduced frequency of NKp46+ NK cells (25). The NKp46

receptor mediates the recognition and elimination of

inflammatory cells by NK cells (14). This reinforces the notion

that the rates of NK-cell-mediated inflammatory cell apoptosis
Frontiers in Immunology 03
may be reduced in elderly individuals, explaining the slower

resolution of inflammation (26).

The age-related remodeling of polymorphonuclear

leukocytes and macrophages may help to explain the delay in

wound healing also observed in older patients (16). In addition,

aging is associated with a subclinical chronic inflammatory state

characterized by elevated levels of proinflammatory cytokines

and acute phase proteins, as well as reduced levels of anti-

inflammatory cytokines, a state called inflammaging (27). Most

likely, elderly individuals sustain a low-grade inflammation by

stable antigenic stimulation (4). The source of antigens may be

exogenous, such as cytomegalovirus (5, 6), or endogenous, such

as posttranslational-modified macromolecules (7).

Cytomegalovirus (CMV) is a beta herpesvirus that completes

its cycle in human cells and can be in latency (reservoir cells

include hematopoietic progenitors, monocytes, dendritic cells,

endothelial cells, and lymphoid vessels) for a long time (28).

Figure 2 shows the many steps through which CMV can

influence the remodeling of the immune system over

time. The first observations linking CMV infection to

immunosenescence were reported by Looney et al, who

demonstrated that there is a strong and independent

association between CMV seropositivity and an increased

number of CD28- CD4 or CD8 T cells (29). After an acute

infection, CMV elicits a CD8-based T-cell response, as well as

CD4 and B lymphocyte activation (30). Persistent production of

CMV viral load offers periodic stimuli to the immune system,

leading to the maintenance of virus-specific T cells in lymphoid

organs and peripheral vessels (31). Thereafter, a subset of CMV-

specific CD8+ T cells is generated in each viral reactivation cycle
TABLE 1 Physiologic alterations that immune cells face with aging.

Cell Type of immune response Features acquired with aging Clinical impact Reference

NK Innate ✔ Impaired perforin degranulation ✔ Slow wound healing

✔ Immunesurveillance and tumorigenesis

(14)

Neutrophil Innate ✔ Impaired chemotaxis

✔ Impaired cytotoxic function

✔ Slow would healing

✔ Immune response against infectious
diseases

(15–18)

Macrophage Innate ✔ Impaired phagocytosis

✔ Impaired cytokine secretion

✔ Impaired antigen presentation

✔ Impaired effector mechanism of immune
response

✔ Slow would healing

✔ Immune response against infectious
diseases

(15)

B cell Adaptive ✔ The repertoire diversity of B cells reduce over
time

✔ Impaired class switch recombination

✔ Vaccine response

✔ Antibody secretion

(19–21)

T cell Adaptive ✔ Impaired development of new naïve cells

✔ Impaired secretion of cytokines by CD4+ cells

✔ Impaired cytotoxic function of CD8+ cells

✔ Vaccine response

✔ Antibody secretion

✔ Immune response against virus

(22, 23)

Dendritic
cell

Adaptive ✔ Impaired antigen presentation

✔ Diminished IFN-gamma production

✔ Vaccine response

✔ Antibody secretion

✔ Immune response against infectious
diseases

(15)
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(a phenomenon known as memory inflation) (31, 32). The

majority of CMV-specific CD8+ T cells are mature and

terminally differentiated (33), and CMV infection is associated

with a reduction in the telomere length of the circulating T-cell

pool (34). Both these features are typical of immunosenescence.

Interestingly, Khan et al. demonstrated that in elderly

individuals, CMV positivity leads to the development of

oligoclonal populations of CMV-specific CD8 T cells that can

constitute up to one-quarter of the total CD8 T-cell population

(35). These results suggest that CMV infection could contribute

to the acceleration of immunosenescence by promoting the

contraction of the CD8 T-cell repertoire with aging. However,

there are some contradictory results that indicated no causality

with inflammation (36). Some authors failed to show the

association between CMV and frailty, and CMV infection was

even correlated with improved survival in the elderly, indicating

that further investigation is needed to clarify the role of CMV in

immunosenescence (37, 38).

The adaptive immune response also changes as age evolves.

The adaptive immune response may become impaired with age

as a consequence of thymic involution and insufficiency of

hematopoietic stem cells (39, 40). The elderly are less able to

respond to neoantigens than young individuals because fewer

new naïve cells leave the thymus in elderly individuals, although

some older people may experience a phenomenon of partial

replenishment of the T cell repertoire (22, 23). Indeed, T cells are

the most affected compartment of the adaptive immunity

response because T cells from aged individuals are usually

lower in number and slower than those of young individuals

regarding proliferation, telomerase activity, or induction of
Frontiers in Immunology 04
signaling events (41, 42). Furthermore, almost all adult

regulatory T lymphocytes are suppressive and apoptosis-

prone populations at a late stage of differentiation (43). In

addition, transplant patients at old age may present increased

incidence and severity of rejection, as well as increased resistance

to tolerance induction due to accumulation of both T and B

memory cells (44, 45).

It is suggested that naïve T and B cells become dysfunctional

with aging. In contrast, the function of memory T and B cells is

relatively maintained (46–48). This can be explained by intrinsic

dysfunctions in which T and B cells accumulate over time. When

naïve T lymphocytes collected from elderly individuals are

stimulated in vitro, they show slower and fainted activation

than those obtained from younger individuals (49, 50). The

decline in T lymphocyte activation with age may be partially

explained by impaired immune synapse construction (51),

weakening of the signal transduced into the cytoplasm (52),

dysregulation of cytoskeletal function (53), modification in the

glycosylation pattern of molecules considered essential for the

activation of T cells (54) and insufficient production of IL-2

following T-cell activation (55).

The B cell response in the elderly has intrinsic age-

dependent dysfunction. Investigations of vaccine trials suggest

that the diversity of the B cell repertoire decreases over time,

particularly in frail patients (19, 20). Elderly individuals are

deficient in class switch recombination, an immunological

phenomenon in which B cells secrete specific antibodies with

different effector functions from different classes (21). Class

switching is well characterized in the germinal centers of

lymph nodes and spleen and can be facilitated by both T-
FIGURE 2

The effect of chronic infection by cytomegalovirus at the remodeling of the immune response with age. The CMV infection can dramatically
decrease the T cell repertoire, narrowing the range of new pathogenic bioagents that can be recognized by the immune response. Furthermore,
the presence of CMV DNA in peripheral blood monocytes was longitudinally associated with higher serum levels of IL-6, suggesting shift in
favor of the Th1 immune response. Each cycle of viral reactivation generates a subset of CMV-specific CD8+ T cells. It causes these terminally
differentiated lymphocytes to be overrepresented in immune system (memory inflation). It is also possible that T cells chronically infected with
CMV have shortened telomeres, which limits the lifetime these cells are available for an immune response.
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dependent and T-independent stimuli (21, 56). Activation-

induced cytidine deaminase is known to induce class switch

recombination and immunoglobulin somatic hypermutation

(57). Activated old murine B cells also have less activation-

induced cytidine deaminase and fewer antibodies exchanged,

reinforcing that the effectiveness of humoral immunity is

impaired with aging (58, 59).
Functional assessment of
immunosenescence

The functional assessment of the aging of the immune

system may be of clinical relevance. In fact, some elderly

experience some clinical symptoms and signs that suggest a

mild impairment of the immune response. Clinicians must be

aware of certain patterns such as recurrent infections, chronic

diarrhea, malabsorption and coexistence of infection,

autoimmunity and malignancy (60). The management of

elderly people with possible deficiency in the immune

response must include the distinction between a primary and a

secondary immunodeficiency (61). Secondary causes (eg,

poorly-controlled medical conditions, malnutrition,

malignancy, drug induced immunossupression, metabolic

diseases, HIV) are more common among older adults (62).

After the initial tests for common clinical conditions, the

immune response may be assessed by laboratory techniques

such as serum immunoglobulins measurement and lymphocyte

subsets via flow cytometry (63). In addition, there is some future

perspective on the assessment of cytokine production assays that

may reveal specific immune defects among adults suspect for

immunodeficiency (64).

The functional assessment of the immunosenescence is

relevant at a research level. The physiological process leading

to immunosenescence essentially begins at the molecular and

cellular levels. Many of the alterations responsible for the

remodeling of the immune system can be scrutinized through

methods that could indirectly reflect the aging of the immune

cells. Naturally, none of these methods is flawless, and it is

up to the scientist to discern which cellular aspect of

immunosenescence is better represented by a specific method.

Table 2 lists the main pathways used to assess immune function

with age.

Neutrophils are the most prevalent cells among white blood

cells. Neutrophils are indispensable cells of the innate immune

response, as they act as a fierce trigger of various immune

effector mechanisms. One of these mechanisms is the

formation of the extracellular neutrophil trap (NET),

previously described as the extracellular release of granular

proteins linked to a decondensed chromatin mesh that favors

the elimination of microbes and parasites (81, 82). As a potent

effector mechanism, it must be strictly regulated by the immune
Frontiers in Immunology 05
system (83). When disturbed, NET formation could result in

vascular damage and tissue insult characteristic of autoimmunity

(84, 85).

The microbicidal potential of neutrophils is reduced with age

(17, 18). A decline in NET generation, degranulation and

phagocytosis over time (69, 70) has been documented in both

animal models (86) and humans (18). Hazeldine et al.

were the first to assess NET formation in the context of

immunosenescence. They observed that older adults had a

lower ability to generate NET as significantly lower amounts

of extracellular DNA were extruded by neutrophils treated with

IL-8 or LPS, probably due to impaired signal transduction

following IL-8 and LPS stimulation (18).

Reactive oxygen species (ROS) are free radicals fundamental

for the microbicidal function of innate immune cells (87). ROS

not only directly contributes to bacterial elimination, but can

also trigger NET formation (88, 89). The production of free

radicals by polymorphonuclear leukocytes has been investigated,

and most studies found that the production of free radicals by

properly stimulated polymorphonuclear leukocytes was

decreased in the elderly (71, 72).

The assessment of immunosenescence at the cellular level

has been widely available through the characterization of animal

models of premature immunosenescence. Mice with the earlier

immunosenescence phenotype (66), when longitudinally

investigated, have a shorter life span than control mice. Their

peritoneal leukocytes exhibit lower proliferative response to

stimuli, a decline in NK activity and increased TNF alpha

production compared to control mice (66). In addition,

macrophages of premature models are less functional, with a

marked loss of antimicrobial capacity (90).

New improved models of immunosenescence have

been developed (67, 68). They allowed us to observe

that immunosenescence is accompanied by complex

neuroimmunoendocrine reshaping that is expressed by

neuropsychological deficits, poor neuromuscular coordination,

and worse sensorimotor abilities (66, 68, 90). The key

phenomenon that seems to be central is oxidative and

inflammatory stress, which, not without reason, are associated

with several chronic non-communicable diseases prevalent in

the elderly (40, 67, 91). Indeed, immune cells harvested from the

spleen and thymus of immunosensitive preterm mouse models

had lower values of antioxidant defenses and higher values of

oxidants and pro-inflammatory cytokines than cells from

controls (67). Interestingly, the antioxidant versus oxidant

balance of immunosenescent preterm mice was similar to that

of cells from aged animals, suggesting a causal relationship

between this imbalance and the remodeling of the immune

response observed with aging (67, 92).

T-cell function declines with aging, as described above (3). It

is noteworthy that the T cell dysfunction observed in the elderly

is not the same concept as the dysfunction reported as T cell

exhaustion. Indeed, T cell exhaustion is the least responsive state
frontiersin.org
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mediated by conditions such as chronic viral infection and

cancer (73), as exemplified in Figure 1. Constant antigenic

stimulation progressively depletes the T cell, which gradually

loses its proliferative and responsive capabilities. Chronic viral

infection is an example of chronic stimulation. Persistent

exposure to viral particles leads to upregulation of co-

inhibitory (93). The co-inhibitory molecules downregulate the

TCR-stimulated intracellular signal and T cells become anergic

(94). Interestingly, while different in concept, the T-cell

dysfunction observed in immunosenescence shares many

mechanisms with T-cell exhaustion.

Investigations using a mouse model suggest that there is an

accumulation of T cells with an exhausted phenotype over time

(52, 74–77). In fact, Shimada et al. demonstrated that both the

mRNA and protein expression levels of PD-1 and CTLA-4 are

higher in cells from old mice than in cells from young controls

(74). The majority of PD-1-positive cells were not activated and

had an effector memory phenotype (74). When challenged with

anti-CD3 and anti-CD28 antibodies, these PD-1+ T cells failed

to proliferate, suggesting that this subset of cells from old mice

was hypo responsive (74). Investigations focused on chronic
Frontiers in Immunology 06
viral infections revealed that Tim-3 is another coinhibitory

receptor marker of exhausted T cells (95, 96). Tim-3 interacts

with Galectin-9 and leads to T-cell death (97). Lee et al. also

investigated T-cell exhaustion in old mice and reported an

accumulation of both Tim-3-positive and PD-1-positive T cells

with aging (76). The proliferative capacity of both Tim-3-

negative PD-1-positive and Tim-3-positive PD-1-positive CD8

T cells was impaired, reinforcing that these immunosenescent

and exhausted cells display an anergic phenotype (76).

Interestingly, the age-related exhaustion observed by Lee was

not exactly the same as that classically reported in chronic

infection-induced exhaustion, in which abundant CD160

expression was noted (98). The authors also noted that age-

associated Tim-3-positive PD-1-positive CD8 T cells secrete

high levels of IL-10 and have the potential to stimulate the

expression of IL-10 in normal CD8 T cells, contributing to the

increased systemic levels of IL-10 (76). According to Lee´s

results, it is reasonable to consider that exhausted and

immunosenescent T cells are generated by exposure to many

different antigens over a lifespan, rather than by a single specific

viral infection (76). This concept is consistent with the previous
TABLE 2 The assessment of the immune response with aging.

Methods of
assessment of
immune
response

Description of the function and remodeling with aging Clinical impact or
potential to clinic

Reference

Immunephenotype
by flow cytometry

Assess the number of immune cells, phenotypic diversity, the immune repertoire and
biomarkers of immune activation.

Allow the description of the pool
of different population of
immune cell.

(65)

Mice model of
premature
immunosenescence

Guayerbas et al. described a model of premature immunosenescence in mice, based on the
demonstration of premature decline in both immune parameters and the behavioral tests in
Swiss outbred mice. The mice model of premature immunosenescence was refined and new
other models was developed as well.

Mice model allow the
investigations of mechanisms of
immunesenesence. In addition, it
allow preclinical test with
molecules that may target
immunesenesence mechanisms.

(66–68)

Assess the
neutrophil
extracellular trap
(NET)

NET is the extracellular release of granule proteins bound to a decondensed chromatin
meshwork to eliminate pathogen. NET formation can be assessed by immunefluorescence. NET
formation is impaired with aging.

Impaired NET formation may
increase susceptibility to bacterial
infection.

(18, 26, 69,
70)

Dosage of reactive
oxygen species

Free radicals by polymorphonuclear leucocyte of older adults was decreased under appropriate
stimulation.

Impaired free radical formation
may decrease of microbicidal
potential of innate immune cells.

(71, 72)

T cell exhaustion The constant antigen stimulation progressively exhausts the T-cell, which gradually loss his
proliferative and responsiveness capacities. Exhausted and immunosenescent T-cells are
generated by exposure to many different antigens over a lifespan, such as CMV

The hallmarks of T cell
exhaustion may be potential
target to immunetherapy

(52, 73–77)

Single-cell network
profiling

Uses multiparameter flow cytometry and it monitors phospho-protein responses to molecular
stimuli at the single cell level. Major of age-associated immune signaling nodes occurred within
naïve cells, which functionality has been reported to be remodeled over time

Allow to monitor the
functionality of the immune
response with aging. Potential
target for reverting T helper cell
immunosenescence

(22, 55, 78,
79)

Stimulated
cytokine signaling,
production and
secretion

The method allow the phospho-protein analysis of cytokine signaling, cytokine production and
gene expression from stimulated PBMC in a stimulation-response way. It analyses the immune
response through different paths, integrating cellular, protein and genomic data in a population
level. Phospho-proteins assessment was strongly dependent of CMV status. Stimulated cytokine
secretion was associated with age and phenotype of immune cells was associated with both
CMV status and age.

It allow the mitigation of the idea
that one single analyte of
immune system could solely
enclose the immune age likewise
an “immune clock”

(80)
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thought that conceive CMV is one of the triggers of the

immunosenescent phenotype.

Song et al. described that immunosenescent T cells from old

adults are enriched with TIGIT-positive CD8 T cells (77). T-cell

immunoglobulin and immunoreceptor tyrosine-based

inhibitory motif (ITIM) domain (TIGIT) are coinhibitory

receptors expressed on activated T cells and compete with

their costimulatory counterpart CD226 for the same ligands

(CD155 and CD112) (99, 100). This close interaction leads to

immune suppression in models of tumors and chronic infections

(99, 100). Older adults may accumulate TIGIT-positive T cells,

which exhibit a terminally differentiated, depleted phenotype

(77). TIGIT-positive CD8 T cells from elderly individuals have

been shown to retain their proliferative capacity while TNF-

alpha, IFN-gamma, and IL-2 are poorly produced when

compared to TIGIT-negative CD8 T cells (77). In addition to

this dysfunctional feature, exhausted and immunosenescent

TIGIT-positive CD8 T cells obtained from the elderly are

more susceptible to cell death (77), suggesting that although T

cell exhaustion and immunosenescence are different

phenomena, they may be different points on the same

spectrum of remodeling immunity.
Assessment of immunosenescence
at the population level

If investigating immunosenescence at the cellular level is

already a difficult task, considering the population level is much

more complex. However, by studying immunosenescence at the

population level, we can extract valuable results with viable

applications. The inference of an immunological age, for

example, is only possible by studying human populations.

While studies with animal models allow scientists to deepen

knowledge of immunosenescence mechanisms, studying large

populations can bring practical innovations to medicine and the

health care system. It is no wonder that many researchers and

funders have devoted themselves to producing methods for the

assessment of immunosenescence on a large scale.

Immunogerontological studies have expanded over the last

three decades, mainly after the publication of the SENIEUR

protocol. The SENIEUR protocol was developed by Ligthart

et al. in a working party in the framework of the EURAGE

Concerted Action Programme on Aging of the European

Community and was designed to provide a reference

measurement of immunosenescence in the healthy aged

population (101). It consists of the establishment of strict

admission criteria for immunogerontological studies, intending

to avoid selection bias. This made it possible to conduct

investigations that identified that a loss of T-cell homeostasis

takes place as the age goes on (102). It was reflected by a decrease

in the number of CD4 cells, an increase in the CD8 subset in
Frontiers in Immunology 07
individuals with an inverted CD4:CD8 ratio, and proliferation of

terminally differentiated effector memory T cells (102, 103). In

addition, CMV DNA in peripheral monocytes was

longitudinally associated with serum IL-6 levels (104). In fact,

CMV-dependent T-cell immunosenescence affects healthy aging

and may be related to frailty, loss of functionality, morbidity and

mortality (105–108). This finding reinforces the idea that

immunological age is determined not only by endogenous but

also by exogenous factors.

To perform a more real-world characterization of

immunosenescence, Nilsson et al. used a SENIEUR-modified

protocol to include elderly individuals in the investigation of

immune parameters (109). The design of the study allowed

them to compare different subgroups defined according to

health status (very healthy, moderately healthy, and frail

groups). Comparison between the elderly and middle-aged

groups suggested an increase in the subset of cells with the

immune risk phenotype in the elderly, characterized by both a

high CD8 and low CD4 proportion and poor T-cell

proliferation in peripheral blood lymphocytes. Interestingly,

this difference was independent of the health status, suggesting

that phenotypic characterization alone fails to predict

healthy aging.

To skew the reductionist approach in the analysis of

individual components of the immune system, Longo et al.

described a new technology known as single-cell network

profiling (SCNP) (78). Single-cell network profiling uses

multiparameter flow cytometry and monitors phospho-

protein responses to molecular stimuli at the single cell level.

By exposing immune cell signaling networks to different inputs,

SCNP can discern unique immune cell responses, assessing the

signal produced by a phospho-protein mediator. The SCNP

requires the definition of the “signaling node” to refer to a

specific protein readout in the presence of a given stimulus.

Then, the response to IL-4 stimulation can be assessed using p-

STAT5 as a readout. Since each signaling pathway is measured in

each cell subset, the cell subset is noted as follows, e.g., “IL-4 !
p-STAT5 | T helper lymphocytes”. The authors observed the

impact of age on the immune signaling responses of four nodes

(negative correlation for IFN-a ! p-STAT5 | CD45RA+

cytotoxic T cells; negative correlation for IL-27 ! p-STAT5 |

CD45RA+ cytotoxic T cells; negative correlation for IL-4 ! p-

STAT6 | CD45RA+ cytotoxic T cells; and positive correlation for

IL-2 ! p-STAT5 | CD45RA+ Th cells). Interestingly, all age-

associated immune signaling nodes occurred within CD45RA+

T (naïve) cells, whose functionality has been reported to be

remodeled over time (22). The authors raised an important

consideration by noting that only a single age-dependent node

involved CD45RA+ helper T cells, which was an increased

activation of Stat 5 induced by IL-2. This signaling is necessary

for lymphocyte activation and decreases with aging, suggesting

that it could be a potential target to reverse helper T-cell

immunosenescence (55). It is noteworthy that few elderly
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people were included in the study, which may make it difficult to

extrapolate these results as a model of immunosenescence.

The same group performed the functional analysis of

immune cells in an independent cohort and obtained blood

samples from 174 healthy individuals (144 over 65 years and 30

between 25 and 40 years) (79). They used a similar approach to

the SCNP technique and compared the signaling produced by

elderly versus young people. Twenty-four signaling nodes were

measured in 12 cell subsets. They confirmed the previous finding

of a close association between immune signaling response and

age in subsets of CD45RA+ T cells. Fifty-seven nodes showed a

pattern of age association, with 51 showing lower responsiveness

and 6 showing higher responsiveness in the elderly. Higher

responsiveness was observed mostly in B cells, probably in the

memory compartment. The authors observed an age association

among monocytes, T cells and NK cells, suggesting that the

remodeling of immune function virtually splits out throughout

all immune cells.

Whiting et al. expanded the measurement of functional

immune status by investigating 243 healthy donors aged 40 to

97 years old (80). They described phospho-protein analysis of

cytokine signaling, cytokine production, and gene expression

from stimulated PBMCs in a stimulation-response manner. This

system allowed them to create a public open access platform,

encouraging scientists around the world to mine most of the

data. The major contribution of this investigation was the

evaluation of the functionality of the immune system through

different ways, integrating cellular, protein and genomic data at

the population level. Age, sex and CMV status may influence

immune assays results. For example, phosphoprotein assessment

was strongly correlated with CMV status, stimulated cytokine

secretion was associated with age, and immune cell phenotype

was associated with CMV status and age. Whiting et al.

undermined the idea that a single immune system analyte

could span immune age, similar to an “immune clock”. They

noted a multiple significant association between pairs of

analytes. Thereafter, the authors used elastic net regression to

establish a model that could predict age. The regression finally

listed 14 analytes chosen by the model, including 6 clinical

laboratory or morphometric tests, 3 immunophenotyping,

cytokines, sex, and CMV status. The model predicted age but

overestimated the age of younger participants and

underestimated the age of older subjects (80).

Unfortunately, an ideal statistical model that meticulously

describes immune system remodeling with age is far from

available. Instead, the immune response appears to be best

defined as a group of continuous variables closely correlated

with each other. Kaczorowski et al. evaluated the immunological

phenotype and the functional immune response of 398

individuals and observed that the individuals’ immunotypes

are continuously distributed in several healthy individuals

(110). Elderly people exhibited greater heterogeneity in their

immunotypes than younger people. This finding is consistent
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with the idea that age alone cannot predict the immune

response. How the immune system is remodeled with age

depends on an individual’s immunotype.

Even though the previously mentioned studies are endowed

with genius, all of them are cross-sectional-based investigations.

This imposes severe statistical limitations, as longitudinality

becomes an extrapolation. To circumvent this problem,

Alpert et al. performed longitudinal screening of various

immunological parameters (cellular phenotype, cytokine-

stimulation assays and whole blood gene expression) of 135

healthy subjects over 9 years (111). This allowed the authors to

follow the cellular and molecular changes that took place in the

participants’ immune system year after year to infer a

mathematical model that could predict the immune trajectory.

They endorsed many previous ratified pieces of confirmed

knowledge, for example, that naive CD8 T cells decline with

age and the impact of CMV infection on immunosenescence.

Interestingly, the data suggested that immune cell phenotype

dynamics can be classified into three stages according to

convergence at a high-dimensional attractor point. According

to the authors, as the immune system ages, the cell dynamics

move toward a stable subset´s level, in a steady-state manner.

This dynamic could be “slow linear” (e.g. CD85j+ CD8+ T cells),

“asymptotic” (e.g. naïve CD4+ T cells) or “fluctuating” (e.g.,

monocytes), and the cells land to the homeostatic point

sequentially. Interestingly, the authors observed that the

cytokine response correlated negatively with the immune

trajectory model obtained from the collected data. Bringing all

these concepts together, the authors defined an IMM-AGE score,

which can be valuable in predicting overall survival (111).
Conclusion

The immune response is under continuous and complex

adaptation over time, leading to functional and phenotypic

changes in the immune response. The consequence of immune

remodeling can be recognized in many clinical features that

characterize the older subpopulation. In this context, the

evaluation of immunosenescence allows scientists to

understand how the immune system ages. It may elucidate

new mechanisms by which diseases are established in the

elderly. By tracking these mechanisms, potential new targets

for aging-related disorders may be revealed. As chronological

age does not seem to perfectly reflect the set of molecular and

cellular changes that occur with aging, population-level

investigations of immune system remodeling allow clinicians

to estimate the “immune age” parameter.

The description of immunological age emerges as a new tool

to identify the subset of subjects in which unhealthy aging is a

matter of time, helping to better individualize clinical

management and sort out patients who may benefit from

early interventions.
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