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The impact of methodology 
on the reproducibility and rigor 
of DNA methylation data
Detlev Boison1,10, Susan A. Masino2,10, Farah D. Lubin3,10, Kai Guo4,8, Theresa Lusardi5,6, 
Richard Sanchez3,9, David N. Ruskin2, Joyce Ohm7, Jonathan D. Geiger4 & Junguk Hur4*

Epigenetic modifications are crucial for normal development and implicated in disease pathogenesis. 
While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues 
related to data reproducibility across laboratories remain. Separating meaningful experimental 
changes from background variability is a challenge in epigenomic studies. Here we show that 
seemingly minor experimental variations, even under normal baseline conditions, can have a 
significant impact on epigenome outcome measures and data interpretation. We examined genome-
wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats 
housed in three independent laboratories using nearly identical conditions. Reduced-representation 
bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 
1075 differentially expressed genes between laboratories, even in the absence of experimental 
intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue 
extraction procedures produced quantifiable variations between wild-type animals across the three 
laboratories. Our study demonstrates that seemingly minor experimental variations, even under 
normal baseline conditions, can have a significant impact on epigenome outcome measures and data 
interpretation. This is particularly meaningful for neurological studies in animal models, in which 
baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, 
we conclude that strict adherence to protocols is necessary for the execution and interpretation of 
epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may 
confound experimental results.

Epigenetic mechanisms, including alterations in DNA methylation, histone covalent post-translational modifica-
tions, and non-coding  RNAs1, allow an organism to adapt to changes in environmental conditions. In particular, 
the epigenome of the central nervous system is responsive to dynamic changes in internal and external envi-
ronments, thereby providing a foundation for processes as varied as memory formation or behavior, and when 
disrupted, it leads to the development of pathologies including  epilepsy2–4. Indeed, epigenetic mechanisms such as 
DNA methylation have evolved to enable adaptive gene expression as well as contribute to the pathophysiology of 
disease initiation and progression. Significant and growing research efforts seek to identify key disease-associated 
epigenetic marks, based on the scientific premise that averting or reversing epigenetically driven pathological 
changes can prevent, diminish, or cure disease. Consequently, epigenetic therapeutic strategies are currently 
considered for clinical implementation in a wide variety of medical  conditions5,6, and epigenetic therapies have 
already been implemented for the treatment of  cancer7–9.
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Detailed epigenome analyses applied to translational disease models typically find dozens to thousands of 
potential epigenetic modifications at gene regions, and the process of identifying causal factors is unavoidably 
challenging and time-consuming. Adding further to this complexity are observations of major differences in 
epigenetic signatures among different models of the same disease. For example, a recent study examined genome-
wide DNA methylation levels without matching experimental protocols in three different animal models of 
epileptogenesis, each performed in a different laboratory, and found no meaningful common changes in DNA 
methylation associated across the three models, which led the authors to conclude that there was no mechanistic 
overlap among  models10. However, one protocol-related contributing factor that has not been adequately con-
sidered in epigenetic studies is the comparison of differences between control and experimental tissue within a 
laboratory or between laboratories.

To begin to address whether baseline experimental analysis of DNA methylation can be influenced by inter-
laboratory protocol-related confounds, we sought to compare DNA methylation marks in control wild-type 
tissue collected from three different laboratories. Hippocampal tissues were harvested and examined for DNA 
methylation and associated gene expression differences across the three laboratories (Fig. 1), minimizing protocol 
differences, and matching variables such as vendor, age, rat strain, and tissue processing method for analysis.

Results
Experimental and environmental factors. SAS-Sprague Dawley male rats were purchased from ven-
dors (Charles River and Envigo) nearest to our three project sites; Legacy Research Institute in Portland, Oregon 
(Site #1), Trinity College in Hartford, Connecticut (Site #2), and the University of Alabama at Birmingham in 
Birmingham (UAB), Alabama (Site #3). We identified factors that are typically easy to match, factors that may 
not always be considered, and factors that are challenging to match (Table 1). A total of 28 factors were collected 
in four major areas including “before-each-laboratory”, “at-each-laboratory”, “up-to-sacrifice”, and “dissection”. 
Three factors (10.7%; distance from breeding site, caging shape and size, and chow vendor) were all unique at 
each site, while 25 (89.2%) factors were shared by two or more sites. Based on the number of matched variables, 
Site #1 and Site #2 were the most similar to each other, sharing 22 (78.6%) factors, while Site #3 shared the least 
numbers of factors with Site #1 (14; 50.0%) and Site #2 (15; 53.6%).

Genome-wide profiling of DNA methylation and gene expression. Rats were 8.0 to 8.3 weeks of 
age at the time of arrival from the vendors. Entire hippocampi (from both hemispheres) were harvested from 
rats (n = 5–6) 18 to 27 days after arrival. The average body weights measured before animals were killed were 
328.0 ± 15.9 g (n = 5), 310.8 ± 16.6 g (n = 6), and 337.9 ± 15.0 g (n = 6) for Sites #1, #2, and #3, respectively. Overall, 

Figure 1.  The overall workflow of the study. Animals were bred at three project sites: Site #1: Legacy Research, 
Site #2: Trinity College, and Site #3: the University of Alabama at Birmingham (UAB). Hippocampus was 
harvested from each animal and sent to the University of North Dakota for sequencing analysis. RRBS: 
reduced representation bisulfite sequencing. The workflow was created using Adobe Illustrator with the rat 
and hippocampus images obtained from http:// en. wikim edia. org under the Creative Commons Attribution-
ShareAlike 3.0 license.

http://en.wikimedia.org
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these body weights were significantly different (ANOVA p value = 0.03), while only the pair of Site #2 and Site #3 
was statistically significant in a pairwise comparison (Bonferroni corrected p value = 0.04). Whole hippocampi 
from each animal were surgically dissected and processed for deep sequencing.

We obtained approximately 120 million 50-bp single-end reads per sample for DNA methylation profiling 
using reduced representation bisulfite sequencing (RRBS; Fig. 2A) and 66 million 50-bp paired-end reads per 
sample for gene expression profiling using RNA-Seq (Fig. 2B). The obtained sequencing reads were of high 
quality. A total of 8,779,630 CpG sites, corresponding to 38,185 genes, approximately 95% of 40,189 genes in 
the Rn6 rat genome annotation, were measured in at least one sample of the current RRBS dataset, and each 
sample included an average of 2,133,011 measured CpG sites (minimum 1,756,129 and maximum 2,646,863; 
Supplementary Table S1). A Principal Component Analysis (PCA) plot on the top 10% most variant CpGs 
(Fig. 2C) from the RRBS dataset illustrated that methylation profiles from Sites #1 and #2 were more similar, 
while samples from Site #3 were more divergent in terms of genome-wide methylation changes. Gene expression 
profiles (Fig. 2D) showed a higher congruence across all three sites.

Hippocampal markers and cell-type abundance. As differences in DNA methylation and gene 
expression across sites were observed, we decided to examine the possibility that the differences originated from 
individual variance in surgical procedures; the result being possible differences in regions of the hippocampus 

Table 1.  Experimental and environmental factors. Site #1: Legacy Research, Site #2: Trinity College, and Site 
#3: the University of Alabama at Birmingham; SD: Sprague Dawley rat; ✔: comparable across sites. Animal 
handling was approved by the Institutional Animal Care and Use Committee (IACUC) at each of the three 
sites.

Factors Site#1 (Legacy) Site#2 (Trinity) Site#3 (UAB)

Comparable sites

1 2 3

Before each laboratory

Animal vendor Charles River Charles River Harlan (Envigo) ✔ ✔

Vendor breeding site Kingston, NY Kingston, NY Frederick, MD ✔ ✔

Chow at breeding site Purina LabDiet 5L79 Purina LabDiet 5L79 Teklad Global 18% Protein 
Rodent Diet ✔ ✔

Distance from breeding site 4723 km 146 km 1173 km

Transit time 5 days in shipment (by 
truck) + 3 h time zone change 2 h 22 min

4 days (ordered placed 
5–29–15, arrived 6–2–15) + 1 h 
time zone change

✔ ✔

Strain SAS-SD (Sprague Dawley) SAS-SD (Sprague Dawley) SAS-SD (Sprague Dawley) ✔ ✔ ✔

Sex Male Male Male ✔ ✔ ✔

Ordered at weight 226–250 g 226–250 g 226–250 g ✔ ✔ ✔

At each laboratory

Age at arrival 8.3 weeks 8.3 weeks 8 weeks ✔ ✔ ✔

Single- or double-housed Single Single Double ✔ ✔

Caging: stand-alone cages or 
water & air piped in

Connected to individual 
ventilation Stand-alone Stand-alone ✔ ✔

Caging: shape and size Rectangular 
42.4Lx26.7Wx18.5D (cm)

Rectangular 
26.9Lx21.6Wx14.2D (cm)

Rectangular 
36.8Lx29.2Wx22.9D (cm)

Bedding type Paper Wood chip Wood chip ✔ ✔

12 h:12 h light cycle Yes Yes Yes ✔ ✔ ✔

Chow LabDiet 5001 LabDiet 5001 NIH open formula rat steriliz-
able diet ✔ ✔

Chow vendor Animal Specialties, Woodburn, 
OR WF Fisher & Son, NJ Teklad/Envigo, AL

Up to sacrifice

Days from arrival to start 
handling 3 days 3 days 3 days ✔ ✔ ✔

Days from arrival to sacrifice 18–19 days 18–19 days 27 days ✔ ✔

Handling details Gentle towel wrapping, 
stroking

Gentle towel wrapping, 
stroking

Gentle towel wrapping, 
stroking ✔ ✔ ✔

Daily handling Yes Yes Yes ✔ ✔ ✔

Rats weighed day of sacrifice 
or earlier One day prior One day prior On day of sacrifice ✔ ✔

Sacrifice method Rapid decapitation, no 
anesthesia

Rapid decapitation, no 
anesthesia

Rapid decapitation, no 
anesthesia ✔ ✔ ✔

Dissection

Whole hippocampus Yes Yes Yes ✔ ✔ ✔

Type of buffer 0.9% saline 0.9% saline Artificial cerebrospinal fluid ✔ ✔

Bubbled No No Yes (95%  O2 + 5%  CO2) ✔ ✔

pH checked or adjusted No No No ✔ ✔ ✔

How was buffer cooled Refrigerated, then on ice Refrigerated, then on ice Refrigerated, then on ice ✔ ✔ ✔

Was tissue weighed No No No ✔ ✔ ✔
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being studied. We collected 184 region-specific gene expression markers (Supplementary Table S2), covering 
CA1, CA2, CA4, dentate gyrus, dorsal, and ventral regions in the hippocampus, from the Hipposeq  database11 
to examine the expression profiles in our dataset. Figure 3 illustrates the gene expression patterns of these marker 
genes, where no outstanding association between hippocampal regions was identified across samples. We also 
examined the average expression levels of known cell-type-specific neuronal marker genes, which were very 
comparable across three experimental sites (Supplementary Table  S3). Cell-type abundance analysis using 
 CIBERSORT12 on the expression data revealed that the majority of the cells were neurons, astrocytes, and oli-
godendrocytes as shown in Supplementary Fig. 1, and their compositions were not significantly different across 
the three project sites (Kruskal–Wallis P value > 0.05 for each cell type; Supplementary Table S4). These results 
suggest that there were no systematic variances in surgical procedures between experimental sites and collected 
cell-type compositions.

Differential methylation and gene expression analysis. Both DNA methylation and gene expression 
data were analyzed in a pairwise fashion comparing samples from each site to both of the others. Differentially 
methylated CpGs (DMCs) were those with a methylation difference of > 25% and a false discovery rate adjusted 
p value < 0.01 by methylKit. Approximately 6.0% of DMCs were located in promoter regions, 34.6% in introns, 

Figure 2.  RRBS and RNA-Seq summary. The average number of sequencing reads, the average ratio of good 
quality reads, and the average unique mapping rates per sample are given for RRBS (A) and RNA-Seq (B). 
Principal component analysis (PCA) on RRBS (C) and RNA-Seq (D) was performed to examine the overall 
similarity among the samples. Differentially methylated genes (DMGs; [E]) and expressed genes (DEGs; [F]) 
were obtained between each pair of project sites and compared among the sets. Panel images were created using 
R (v4.0.3).
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9.1% in exons, and 50.4% in intergenic regions (Supplementary Fig. 2). Each DMC was mapped to a gene with 
the shortest distance from its transcript starting site and differentially methylated genes (DMG) were identified 
as having at least one mapped DMC. We also examined the correlation between the methylation levels of DMCs 
and body weight before animals were killed to assess the effect of different body weight on methylation. While 
the majority of the Pearson correlations were not significant, a large portion of the DMCs between Site #1 and 
Site #3 showed a statistically significant correlation with body weight (Supplementary Fig. 3).

Differentially expressed genes (DEGs) were identified using DESeq2 and genes with a Benjamini–Hochberg 
adjusted p value < 0.05. Based on the total number of DMGs and DEGs, the comparison between Site #1 and 
Site #2 had the smallest numbers of DMGs (n = 1,49) and DEGs (n = 58), suggesting that these two sites had the 
most similar DNA methylation and gene expression profiles among the three sites, which is also supported by the 
hierarchical clustering of samples (Supplementary Fig. 4). The comparison between Site #2 and Site #3 was the 

Figure 3.  Expression heatmap of region-specific hippocampal markers. A heatmap of row-scaled 164 
hippocampal markers was generated using Euclidean distance and complete linkage on the  log2-transformed 
Fragments Per Kilobase Million (FPKM) data. Site #1: Legacy Research, Site #2: Trinity College, and Site #3: the 
University of Alabama at Birmingham. Hippocampal regions: CA1, CA2, CA4, DG (dentate gyrus), dorsal, and 
ventral regions. The image was created using R (v4.0.3).
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most divergent with a total of 2366 DMG and 990 DEG identified. The comparison between Site #1 and Site #3 
had a similar number of DMGs (n = 2461) but fewer DEGs (n = 193) than that of Site#1 vs Site#2. The complete 
lists of DMGs and DEGs are available in Supplementary Tables S5-S10 and their overlaps are illustrated in Venn 
diagrams (Fig. 2E,F). We also performed an analysis of differentially methylation regions (DMRs) in addition to 
DMGs using methylKit, which identified 24–77 DMRs between sites (Supplementary Tables S11-S13).

Overlap between DEGs and DMGs. Genome-wide DNA methylation studies commonly report changes 
in DNA methylation in the absence of gene expression data. When combined with gene expression data, inves-
tigators often focus on the alterations in DNA methylation that can be inversely correlated with gene expres-
sion changes. To understand the relationship between epigenetic regulation and transcriptomic changes, we 
examined the overlap between DMGs and DEGs. Table 2 lists the overlaps at both gene and CpG site levels. The 
comparison between the two most similar sites (Site #1 Legacy and Site #2 Trinity) with the smallest numbers 
of DMGs (n = 1349) and DEGs (n = 58) includes no overlapping genes, while the other comparisons shared 1 
to 5% of DMGs with DEGs. Even the comparison with the biggest overlap (Site #2 Trinity and Site #3 UAB) 
was not statistically significant (hypergeometric test, p value = 0.171). Approximately 53 to 59% of differential 
CpG sites showed an inverse relationship between the direction of methylation and expression changes such as 
increased methylation with down-regulated gene expression or decreased methylation with up-regulated gene 
expression. This is reflective of the nuances associated with the position of DNA methylation changes in relation 
to gene expression and strongly suggests that even in the minority of instances where DMG show a change in 
gene expression, the directionality of that gene expression change cannot and should not be inferred based on 
whether DNA methylation is increased or decreased at a particular site.

Functional-level similarity. To infer the significance of DNA methylation changes in the absence of 
definitive overlap, we next identified and compared overrepresented biological functions; the purpose was to 
identify pathway-level functional changes that may be related to experimental variables of interest. To assess the 
functional-level similarity between DMGs and DEGs identified as divergent between study sites, and attempt 
to determine if these represented true epigenetic changes associated with experimental variables, enrichment 
analysis was performed using a hypergeometric test with our in-house R analysis package richR (http:// github. 
com/ hurlab/ richR) in terms of Gene Ontology (GO)  terms13,14 and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  pathways15. The complete lists of significant GO terms and KEGG pathways overrepresented in DMGs 
and DEGs are given in Supplementary Tables S14-S25. Supplementary Table S26 summarized the numbers of 
significant biological functions identified in each gene set. DMGs have over 400 significant GO terms with 
adjusted p < 0.05 but very few significant KEGG pathways.

Heatmaps were generated with top significant functions, where colored cells indicated significant enrichment 
within the corresponding dataset (Fig. 4). The top enriched GO terms were very similar across all three DMG sets 
(Fig. 4A), while very few GO terms were enriched partially due to the small numbers of DEGs. KEGG analysis 
revealed different sets of pathways were enriched in these gene sets. “Pathways in cancer” was identified in all 
three DMG sets, but no apparent theme was identified.

Discussion
Each of the four major categories of experimental/environmental factors used in the present study identified 
noticeable differences in the methylome and transcriptome. In the “before-each-laboratory” category, the animal 
vendors were different; Charles River Laboratory for Sites #1 and #2 and Harlan (Envigo) for Site #3. Although 
we purchased Sprague–Dawley rats from both vendors, there could be vendor-specific genetic differences. Stud-
ies have shown that many animal models of the same strains could have phenotypic as well as genetic variances 
according to the sources (vendors)16–18. In addition to possible genetic differences, these two vendors used dif-
ferent chows (Purina 5L79 at Charles River and Teklad Global 18% Protein Rodent Diet at Envigo). Although we 
did not examine specifically the possible impact of animal chow on the epigenome, other studies have reported 
differences in animal phenotypes resulting from changes in nutrition; DNA methylation was labile in response to 
nutritional  influence19,20. Sites #1 and #2 used the same animal vendor as well as the same branded chow (LabDiet 
5001) at their laboratories, while Site#3 used a different animal vendor and a different selection of chow (NIH 
open formula rat sterilizable diet). These differences are well aligned with the more outstanding differences in 
methylome and transcriptome between Site #3 and other sites.

Other noticeable factors include days-from-arrival-to-sacrifice in the “up-to-sacrifice” category and type-of-
buffer and the use of air bubbles in the “dissection” category. Rats were killed and hippocampi dissected 27 days 

Table 2.  Overlap between DMGs and DEGs. Site #1: Legacy Research, Site #2: Trinity College, and Site #3: the 
University of Alabama at Birmingham.

Comparison

Gene level CpG site level

DMGs Overlap DEGs
# CpG sites 
(Overlap) Same direction Opposite direction

Opposite direction 
(gene)

Site #1 vs Site #2 1349 0 58 0 0 0 0

Site #1 vs Site #3 2461 33 193 59 24 35 20

Site #2 vs Site #3 2366 127 990 195 92 103 68

http://github.com/hurlab/richR
http://github.com/hurlab/richR
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after arrival from the vendor in Site #3, while rats in Sites #1 and #2 were killed and hippocampi dissected 18 to 
19 days after arrival. Aging is known to be correlated with epigenetic changes, particularly DNA  methylation21,22. 
This difference may be associated with different body weights, which also showed significant differences across 
the project sites and correlated with different methylation levels of DMCs (Supplementary Fig. 3).

There is a possibility that the delay in sacrificing by 8 to 9 days along with changes in body weight affected the 
DNA methylome; however, it is not clear the degree to which the changes were attributable to delay. As for the 
different factors in the “dissection” category, Site #3 used artificial cerebrospinal fluid as their choice of a buffer 
solution with 95%  O2 and 5%  CO2 bubbled, while the other two sites used 0.9% saline. Although hyperoxia may 
result in genome-wide changes in DNA-methylation23, the effect of relatively short-term exposure during dis-
section on methylation change would not be expected to be substantial due to the time it generally takes to see 
methylation changes in culture.

Changes in methylation and gene expression can be either protocol-induced variations or could be consid-
ered epigenetic noise. Accordingly, we examined changes in pathways and biological functions using GO and 
KEGG analyses. No GO term changes related to DNA methylation were significantly enriched. However, one 
GO term that was changed was histone deacetylation; it was significantly enriched among the DEGs between Site 
#1 (Legacy) and Site #3 (UAB). Six DEGs, including Per1, Per2, Rbm14, Bcl6, Sfpq, and Prkd2, were included in 
this set, suggesting a potential difference in another epigenetic marker of histone deacetylation is taking place.

Nearly identical protocols (Sites #1 and #2) resulted in a close match of DNA methylation and RNA-seq pro-
files, whereas seemingly minor differences induced major changes in the DNA methylome and transcriptome. 
Although it is impossible to gauge the extent of their individual or combined effects on DNA methylation changes 
in this study, some of these factors have been implicated in modulating epigenetic  changes20.

We also examined the relationship between the significant changes in DNA methylation and significant 
expression change in the nearest gene, based on the assumed inverse correlation between methylation and gene 
expression. Little overlap was observed up to 5% of DMGs with DEGs, approximately 59% of them showed an 
inverse relationship (increased methylation with down-regulated gene expression or decreased methylation 
with up-regulated gene expression), suggesting that the directionality of gene expression change cannot and 
should not be inferred based solely on whether DNA methylation is increased or decreased at a particular site. 
Associating DNA methylation to gene expression is very challenging and DNA methylation often has a strong 
influence through most distal effects as at enhancer elements or CTCF binding  sites24,25; therefore, our current 
overlap analysis has room for improvement.

Figure 4.  Enriched biological functions in terms of GO terms and KEGG pathways. Functional enrichment 
analysis was performed using richR, our in-house R package, on each of the DMG and DEG sets to identify 
over-represented biological functions in terms of GO terms (A) and KEGG pathways (B). Top 10 most 
significant GO terms and all significant KEGG pathways were combined in heatmaps, in which the color 
corresponds to enrichment significance represented by −log10(Benjamini–Hochberg (BH)-adjusted P values). 
Panel images were created using R (v4.0.3).
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Bioinformatics approaches for addressing the batch differences in certain high-throughput data analysis are 
available by using either tools such as  ComBat26,  SVA27, and  removeBatchEffect28, or including the batch informa-
tion as a covariate. However, caution is needed when using batch correction methods as they may bias the data in 
unpredicted  ways29. Our study demonstrates that seemingly minor experimental variations, even under normal 
baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. 
This is particularly meaningful for neurological studies in animal models, in which baseline parameters between 
experimental groups are difficult to  control10. Therefore, strict guidelines for the execution and interpretation 
of epigenetic studies, possibly including additional controls in experimental design to adjust protocol-sensitive 
epigenetic, are needed to enhance scientific rigor, and these data identify protocol-sensitive epigenetic changes 
that may confound experimental results.

Methods
Animals. SAS Sprague Dawley (SD) male rats were purchased from the nearest vendors (Charles River and 
Envigo) from our three project sites, including Legacy Research (Site #1), Trinity College (Site #2), and the Uni-
versity of Alabama at Birmingham (Site #3). Animal handling was approved by the Institutional Animal Care 
and Use Committee (IACUC) at each of three sites and summarized as listed in Table 1. The investigation con-
formed to the National Research Council of the National Academies Guide for the Care and Use of Laboratory 
 Animals30 and complied with the ARRIVE guidelines.

RRBS and RNA-Seq. Whole hippocampi from each animal were surgically dissected and flash-frozen in 
liquid  N2 and stored at -80 °C before being shipped to the University of North Dakota (UND), where samples 
were collected, de-identified, and stored at -80 °C for deep sequencing analysis. Once collected, all samples were 
processed using Qiagen’s AllPrep DNA/RNA Mini Kit (Germantown, MD; Product ID: 80,204) to individually 
extract RNA and DNA from each flash-frozen sample. All RNA and DNA samples were stored at -80 °C before 
being sent frozen in dry ice to the University of Michigan Genomics and Epigenomics Core for deep sequencing.

The RRBS procedure was adapted as previously described and performed at the University of Michigan Epi-
genetics Core  facility31. Briefly, genomic DNA quantity was measured using a Qubit fluorometer (ThermoFisher 
Scientific, Waltham, MA) and the quality assessed using TapeStation (Agilent, Santa Clara, CA). Genomic DNA 
was digested with Msp1 restriction enzyme and purified using phenol:chloroform extraction and ethanol precipi-
tation. Following Msp1 digestion, genomic DNA underwent blunt-end digestion, phosphorylation, and ligation 
of adapters with methylated cytosines. Ligated fragments, processed for size selection using agarose gel electro-
phoresis, were bisulfite converted, amplified by PCR, then cleaned using AMPure XP beads (Beckman Coulter 
Life Sciences, Indianapolis, IN). Libraries were quantified using Qubit fluorometric quantification (ThermoFisher 
Scientific, Waltham, MA), analyzed using a TapeStation system (Agilent, Santa Clara, CA), then sequenced on 
an Illumina Hi-Seq 4000 platform (Illumina, San Diego, CA).

Total RNA isolated from individual microglia preparations was evaluated using a TapeStation system (Agilent, 
Santa Clara, CA). The NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA) 
was used to construct the sequencing library. Resultant cDNA was commercially sequenced with a paired-end 
read length of 50 bases using an Illumina Hi-Seq 4000 platform (Illumina, San Diego, CA).

RRBS and RNA-Seq data processing. Quality control assessment of RRBS data was completed using 
FastQC v0.11.532. Raw Sequencing reads were cleaned using Trim Galore v0.5.0, to remove reads with adapter 
contamination and reads with a Phred quality score less than  3033. Cleaned reads were mapped to an in silico 
bisulfite-converted rat reference genome rn6 using Bismark v0.20.0 and Bowtie2 v2.3.4.234,35. CpG sites on X 
and Y chromosomes were excluded. PCA was performed on the most variant 10% of the measured CpG sites. 
methylKit v1.8.136 was used to count uniquely mapped reads and assess changes in methylation between each 
site. Differentially methylated CpGs (DMCs) were defined as a 25% or greater difference in cytosine methylation 
levels between sites with an adjusted p value < 0.01, which were then aggregated into differentially methylated 
genes (DMGs) based on the unique gene identifiers. DMCs were annotated based on genes and CpG island fea-
tures using gene bodies and 2, 5, and 10 kb regions upstream from transcription start sites using the genomation 
R  package37. Annotation of murine CpG islands was obtained from the University of California, Santa Cruz, 
CA (UCSC, https:// genome. ucsc. edu/ cgi- bin/ hgGat eway? db= rn6). The gene annotation was obtained from 
Ensembl and NCBI gene  databases38.

Quality control assessment of RNA-Seq data was completed using the FastQC v0.11.532. Raw sequencing 
reads were cleaned using Trimmomatic39 to remove reads with adapters or poly-N sequences as well as reads with 
quality scores < 30. Cleaned reads were mapped to the rat reference genome rn6 using HISAT240. Genes with zero 
expression across samples were omitted from differential expression analysis. featureCounts was used to assign 
mapped reads to unique genomic  features41. PCA was performed to gain insights into the association between 
samples. Differentially expressed genes (DEGs) were identified using the DESeq2 R package with a significance 
cutoff of < 0.05 adjusted p  value42.

Hippocampus region-specific expression markers. To assess the possibility of imbalance in the dis-
sected hippocampal regions, which might have resulted in the observed methylation and expression differences, 
we examined the expression levels of region-specific hippocampal markers. We compiled 187 region-specific 
markers from the Hipposeq, a comprehensive RNA-Seq database of gene expression in hippocampal principal 
 neurons11. This list includes 10 CA1-enriched, 41 CA2-enriched, 61 CA4 enriched, 39 dentate gyrus-enriched, 
12 dorsal-enriched, and 24 ventral-enriched genes (Supplementary Table S2). A heatmap of expression levels of 
these marker genes was created based on the Fragments Per Kilobase Million (FPKM) values.

https://genome.ucsc.edu/cgi-bin/hgGateway?db=rn6
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Cell-type composition analysis. To assess the cell-type composition difference of the samples across 
three sites, the expression levels of selected known neuronal cell-type-specific markers for microglia, astrocytes, 
neurons, oligodendrocytes, as well as those are known to be expressed in various cell types. These marker genes 
were compiled in our recent  study43 on alpha-synuclein-associated differential methylation signatures in micro-
glia, which employed two high-throughput expression profiling studies in rodent  brains44,45. We also employed 
 CIBERSORT12 to infer the cell type abundance based on gene expression- and marker genes. Brain cell-type-
specific signatures of 903 genes were obtained from a study in human  brains46, which included astrocytes, 
endothelial, fetal quiescent, fetal replicating, microglia, neurons, oligodendrocytes, oligodendrocyte progenitor 
cells (OPC). These human gene signatures were mapped to rat genes based on the Ensembl Genes database v104 
annotation using the biomaRt Bioconductor  package47. CIBERSOFT function available in IOBR R package was 
used to estimate the abundances of the member cell type from the RNA-Seq data. Kruskal–Wallis test was used 
to examine the significant difference in the cell-type composition across the samples.

Functional enrichment analysis. To identify significantly over-represented biological functions, a func-
tional enrichment analysis of both DMGs and DEGs was conducted using our in-house enrichment analysis 
R package richR (http:// github. com/ hurlab/ richR). Gene Ontology (GO)48 and Kyoto Encyclopedia of Genes 
and Genomes (KEGG)49 were used as the target annotation sources of biological functions and pathways. A 
Benjamini–Hochberg adjusted p value of < 0.05 was used as the significance cutoff. VennDetail Bioconductor 
 package50 was used to examine the overlap at the biological functions/pathways as well as at the gene level (DEGs 
and DMGs).

Data availability
The raw sequencing data have been deposited into the NCBI Gene Expression Omnibus database (Accession 
ID: GSE164833). Analysis scripts used in the current study are freely available at our GitHub site (https:// github. 
com/ hurlab/ Proto colMa tters). All other data generated or analyzed during this study are included in this article 
and its supplementary materials.

Received: 8 May 2021; Accepted: 14 December 2021

References
 1. Garber, K. Epigenetics comes to RNA. Science 365, 16–17. https:// doi. org/ 10. 1126/ scien ce. 365. 6448. 16 (2019).
 2. Qureshi, I. A. & Mehler, M. F. Epigenetic mechanisms underlying nervous system diseases. Handb Clin Neurol 147, 43–58. https:// 

doi. org/ 10. 1016/ B978-0- 444- 63233-3. 00005-1 (2018).
 3. Williams-Karnesky, R. L. et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. 

Invest. 123, 3552–3563 (2013).
 4. Robinson, G. E. & Barron, A. B. Epigenetics and the evolution of instincts. Science 356, 26–27. https:// doi. org/ 10. 1126/ scien ce. 

aam61 42 (2017).
 5. O’Reilly, S. Epigenetic modulation as a therapy in systemic sclerosis. Rheumatology (Oxford) 58, 191–196. https:// doi. org/ 10. 1093/ 

rheum atolo gy/ key071 (2019).
 6. Younus, I. & Reddy, D. S. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacol. Ther. 177, 

108–122. https:// doi. org/ 10. 1016/j. pharm thera. 2017. 03. 002 (2017).
 7. Ahuja, N., Sharma, A. R. & Baylin, S. B. Epigenetic therapeutics: A new weapon in the war against cancer. Annu. Rev. Med. 67, 

73–89. https:// doi. org/ 10. 1146/ annur ev- med- 111314- 035900 (2016).
 8. Rezapour, S., Hosseinzadeh, E., Marofi, F. & Hassanzadeh, A. Epigenetic-based therapy for colorectal cancer: Prospect and involved 

mechanisms. J. Cell Physiol. 234, 19366–19383. https:// doi. org/ 10. 1002/ jcp. 28658 (2019).
 9. Zahnow, C. A. et al. Inhibitors of DNA methylation, histone deacetylation, and histone demethylation: A perfect combination for 

cancer therapy. Adv. Cancer Res. 130, 55–111. https:// doi. org/ 10. 1016/ bs. acr. 2016. 01. 007 (2016).
 10. Debski, K. J. et al. Etiology matters—Genomic DNA methylation patterns in three rat models of acquired epilepsy. Sci. Rep. 6, 

25668. https:// doi. org/ 10. 1038/ srep2 5668 (2016).
 11. Cembrowski, M. S., Wang, L., Sugino, K., Shields, B. C. & Spruston, N. Hipposeq: A comprehensive RNA-seq database of gene 

expression in hippocampal principal neurons. Elife 5, e14997. https:// doi. org/ 10. 7554/ eLife. 14997 (2016).
 12. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 

37, 773–782. https:// doi. org/ 10. 1038/ s41587- 019- 0114-2 (2019).
 13. Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet 25, 25–29. 

https:// doi. org/ 10. 1038/ 75556 (2000).
 14. Gene Ontology, C. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 49, D325–D334. https:// doi. org/ 10. 

1093/ nar/ gkaa1 113 (2021).
 15. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https:// doi. org/ 10. 1093/ 

nar/ 28.1. 27 (2000).
 16. Zhang-James, Y., Middleton, F. A. & Faraone, S. V. Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat 

substrains from different sources. Physiol. Genom. 45, 528–538. https:// doi. org/ 10. 1152/ physi olgen omics. 00002. 2013 (2013).
 17. Kiselycznyk, C. & Holmes, A. All (C57BL/6) mice are not created equal. Front. Neurosci. 5, 10. https:// doi. org/ 10. 3389/ fnins. 2011. 

00010 (2011).
 18. Oliff, H. S., Coyle, P. & Weber, E. Rat strain and vendor differences in collateral anastomoses. J. Cereb. Blood Flow Metab. 17, 

571–576. https:// doi. org/ 10. 1097/ 00004 647- 19970 5000- 00012 (1997).
 19. Kadayifci, F. Z., Zheng, S. & Pan, Y. X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. 

Sci. https:// doi. org/ 10. 3390/ ijms1 91240 55 (2018).
 20. Zhang, N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 1, 144–151 (2015).
 21. Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 195, 172–185. https:// doi. org/ 10. 

1016/j. pharm thera. 2018. 11. 001 (2019).
 22. Lowe, R. et al. DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats, Heterocephalus glaber. 

Aging (Albany NY) 12, 4394–4406. https:// doi. org/ 10. 18632/ aging. 102892 (2020).
 23. Chen, C. M., Liu, Y. C., Chen, Y. J. & Chou, H. C. Genome-wide analysis of DNA methylation in hyperoxia-exposed newborn rat 

lung. Lung 195, 661–669. https:// doi. org/ 10. 1007/ s00408- 017- 0036-z (2017).

http://github.com/hurlab/richR
https://github.com/hurlab/ProtocolMatters
https://github.com/hurlab/ProtocolMatters
https://doi.org/10.1126/science.365.6448.16
https://doi.org/10.1016/B978-0-444-63233-3.00005-1
https://doi.org/10.1016/B978-0-444-63233-3.00005-1
https://doi.org/10.1126/science.aam6142
https://doi.org/10.1126/science.aam6142
https://doi.org/10.1093/rheumatology/key071
https://doi.org/10.1093/rheumatology/key071
https://doi.org/10.1016/j.pharmthera.2017.03.002
https://doi.org/10.1146/annurev-med-111314-035900
https://doi.org/10.1002/jcp.28658
https://doi.org/10.1016/bs.acr.2016.01.007
https://doi.org/10.1038/srep25668
https://doi.org/10.7554/eLife.14997
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1152/physiolgenomics.00002.2013
https://doi.org/10.3389/fnins.2011.00010
https://doi.org/10.3389/fnins.2011.00010
https://doi.org/10.1097/00004647-199705000-00012
https://doi.org/10.3390/ijms19124055
https://doi.org/10.1016/j.pharmthera.2018.11.001
https://doi.org/10.1016/j.pharmthera.2018.11.001
https://doi.org/10.18632/aging.102892
https://doi.org/10.1007/s00408-017-0036-z


10

Vol:.(1234567890)

Scientific Reports |          (2022) 12:380  | https://doi.org/10.1038/s41598-021-04346-w

www.nature.com/scientificreports/

 24. Ordonez, R., Martinez-Calle, N., Agirre, X. & Prosper, F. DNA methylation of enhancer elements in myeloid neoplasms: Think 
outside the promoters?. Cancers (Basel) https:// doi. org/ 10. 3390/ cance rs111 01424 (2019).

 25. Heberle, E. & Bardet, A. F. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 63, 727–741. https:// doi. org/ 
10. 1042/ EBC20 190033 (2019).

 26. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. 
Biostatistics 8, 118–127. https:// doi. org/ 10. 1093/ biost atist ics/ kxj037 (2007).

 27. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics 28, 882–883. https:// doi. org/ 10. 1093/ bioin forma tics/ bts034 (2012).

 28. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47. https:// doi. org/ 10. 1093/ nar/ gkv007 (2015).

 29. Nygaard, V., Rodland, E. A. & Hovig, E. Methods that remove batch effects while retaining group differences may lead to exagger-
ated confidence in downstream analyses. Biostatistics 17, 29–39. https:// doi. org/ 10. 1093/ biost atist ics/ kxv027 (2016).

 30. Council, N. R. Guide for the Care and Use of Laboratory Animals. (National Academies Press, 2010).
 31. Garrett-Bakelman, F. E. et al. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base 

pair resolution. J Vis Exp. https:// doi. org/ 10. 3791/ 52246 (2015).
 32. Bioinformatics, B. FastQC: A quality control tool for high throughput sequence data. http:// www. bioin forma tics. babra ham. ac. uk/ 

proje cts/ fastqc/.
 33. Bioinformatics, B. Trim Galore! https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/
 34. Krueger, F. & Andrews, S. R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics (Oxford, 

England) 27, 1571–1572. https:// doi. org/ 10. 1093/ bioin forma tics/ btr167 (2011).
 35. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https:// doi. org/ 10. 1038/ 

nmeth. 1923 (2012).
 36. Akalin, A. et al. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 

13, R87. https:// doi. org/ 10. 1186/ gb- 2012- 13- 10- r87 (2012).
 37. Akalin, A., Franke, V., Vlahovicek, K., Mason, C. E. & Schubeler, D. Genomation: A toolkit to summarize, annotate and visualize 

genomic intervals. Bioinformatics 31, 1127–1129. https:// doi. org/ 10. 1093/ bioin forma tics/ btu775 (2015).
 38. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761. https:// doi. org/ 10. 1093/ nar/ gkx10 98 (2018).
 39. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 

https:// doi. org/ 10. 1093/ bioin forma tics/ btu170 (2014).
 40. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. 

https:// doi. org/ 10. 1038/ nmeth. 3317 (2015).
 41. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic 

features. Bioinformatics 30, 923–930. https:// doi. org/ 10. 1093/ bioin forma tics/ btt656 (2014).
 42. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome 

Biol. 15, 550. https:// doi. org/ 10. 1186/ s13059- 014- 0550-8 (2014).
 43. McGregor, B. A. et al. Alpha-synuclein-induced DNA methylation and gene expression in microglia. Neuroscience 468, 186–198. 

https:// doi. org/ 10. 1016/j. neuro scien ce. 2021. 05. 027 (2021).
 44. Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708. https:// doi. org/ 

10. 1038/ s41593- 019- 0491-3 (2019).
 45. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. 

J. Neurosci. 34, 11929–11947. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1860- 14. 2014 (2014).
 46. Yu, Q. & He, Z. Comprehensive investigation of temporal and autism-associated cell type composition-dependent and independent 

gene expression changes in human brains. Sci. Rep. 7, 4121. https:// doi. org/ 10. 1038/ s41598- 017- 04356-7 (2017).
 47. Durinck, S. et al. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioin-

formatics 21, 3439–3440. https:// doi. org/ 10. 1093/ bioin forma tics/ bti525 (2005).
 48. Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. 

https:// doi. org/ 10. 1038/ 75556 (2000).
 49. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and 

drugs. Nucleic Acids Res. 45, D353–D361. https:// doi. org/ 10. 1093/ nar/ gkw10 92 (2017).
 50. Guo, A., McGregor, B. A. & Hur, J. VennDetail: A package for visualization and extract details. https:// www. bioco nduct or. org/ packa 

ges/ relea se/ bioc/ html/ VennD etail. html (2021).

Author contributions
F.D.L., R.S., T.L., D.R. performed the experiments. K.G. and J.H. analyzed the data. D.B., S.A.M., F.D.L., K.G., 
J.O., J.D.G., J.H. interpreted the data. D.B., S.A.M., F.D.L., K.G., J.O., J.D.G., J.H. wrote the manuscript. D.B., 
S.A.M., J.D.G., J.H. supervised the project. All authors read and approved the final manuscript. These authors 
contributed equally: D.B., S.A.M., F.D.L., and K.G.

Funding
The research reported in this publication was supported by the National Institute of Health under award number 
2R01NS065957 (S.A.M., D.B., J.D.G.), award number R01NS103740 (D.B.), award numbers R56MH097909, 
R21NS090250, and R21NS116937 (F.D.L.), and award number P30GM103329 Pilot Grant (J.H.). D.B. was sup-
ported by Citizens United for Research in Epilepsy. K.G. was supported by the University of North Dakota 
Post-Doc Pilot Grant. The funders of the study had no role in study design, data collection, data analysis, data 
interpretation, or writing of the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 04346-w.

Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.3390/cancers11101424
https://doi.org/10.1042/EBC20190033
https://doi.org/10.1042/EBC20190033
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.3791/52246
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/gb-2012-13-10-r87
https://doi.org/10.1093/bioinformatics/btu775
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.neuroscience.2021.05.027
https://doi.org/10.1038/s41593-019-0491-3
https://doi.org/10.1038/s41593-019-0491-3
https://doi.org/10.1523/JNEUROSCI.1860-14.2014
https://doi.org/10.1038/s41598-017-04356-7
https://doi.org/10.1093/bioinformatics/bti525
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkw1092
https://www.bioconductor.org/packages/release/bioc/html/VennDetail.html
https://www.bioconductor.org/packages/release/bioc/html/VennDetail.html
https://doi.org/10.1038/s41598-021-04346-w
https://doi.org/10.1038/s41598-021-04346-w
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |          (2022) 12:380  | https://doi.org/10.1038/s41598-021-04346-w

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	The impact of methodology on the reproducibility and rigor of DNA methylation data
	Results
	Experimental and environmental factors. 
	Genome-wide profiling of DNA methylation and gene expression. 
	Hippocampal markers and cell-type abundance. 
	Differential methylation and gene expression analysis. 
	Overlap between DEGs and DMGs. 
	Functional-level similarity. 

	Discussion
	Methods
	Animals. 
	RRBS and RNA-Seq. 
	RRBS and RNA-Seq data processing. 
	Hippocampus region-specific expression markers. 
	Cell-type composition analysis. 
	Functional enrichment analysis. 

	References


