
ABSTRACT

Direct-to-consumer genetic testing (DTC-GT) provides a means for consumers to gain 
insights into their genetic background and how it relates to their health without the 
involvement of medical institutions. In Korea, DTC-GT was introduced in 2016 in accordance 
with the legislation on Paragraph (3) 2 of Article 50 of the Bioethics and Safety Act. Only 12 
genetic test items involving 46 genes were approved at first, but the approved items were 
expanded to 70 in November 2020. However, the genetic test items of DTC-GT services in 
Korea are still restricted to the wellness area, and access to disease risk related information 
is only permitted to medical institutions. Further, studies revealing the relationship between 
genotype differences and responses to nutrients, food components, or nutritional status are 
increasing, and this association appears to be robust for some genes. This strong association 
between genetic variations and nutrition suggests that DTC-GT can be used as an important 
tool by clinical nutritionists to gain insights into an individual's genetic susceptibilities 
and provide guidance on nutritional counseling and meal planning based on the patient's 
genetic information. This review summarized the history and current status of DTC-GT and 
investigated the relationship between genetic variations with associated phenotypic traits to 
clarify further the importance of DTC-GT in the field of clinical nutrition.

Keywords: Direct-to consumer screening and testing; Genetic variation; Nutrigenomics; 
Nutritionists; Clinical decision-making

INTRODUCTION

Direct-to-consumer genetic testing (DTC-GT) provides insights into the potential health 
effects of genetic variants without the involvement of a medical institution [1]. In parallel 
with the advancements in genomic medicine, DTC-GT became commercially available in the 
early 2000s [1-3]. In Korea, the public use of DTC-GT was legally approved in 2016 with the 
enactment of Paragraph (3) 2 of Article 50 of the Bioethics and Safety Act. DTC-GT services 
are allowed to provide a wide variety of information to consumers in countries such as the 
United States, Canada, and Japan, including their genetic risks for chronic disease and 
cancers, personal traits related to wellness, and ancestry information [1]. However, these 
services can exclusively provide wellness-associated information in Korea. The wellness 
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components of DTC-GT include personal traits related to health or appearance such as body 
mass index, blood glucose, caffeine metabolism, and hair loss, among others.

There are approximately 7 million common single nucleotide polymorphisms (SNPs) with a 
minor allele frequency of at least 5% across the human population [4]. Among these SNPs, 
50% occur in noncoding regions, 25% lead to missense mutations, and the remaining 
25% are silent mutations (nonsynonymous SNPs) [5]. Many of these genetic variations are 
still under investigation to elucidate their specific functions. However, recent studies have 
identified strong associations between some genetic variations and nutrition-associated 
phenotypes such as dietary intake/requirements or nutritional status. Therefore, based on 
these robust gene-diet interactions, DTC-GT could be utilized in the field of clinical nutrition 
to provide personalized dietary counseling or meal planning based on the individual's 
genetic background.

Therefore, this review summarized the history and current status of DTC-GT in Korea as 
well as in other countries and investigated the associations between genetic variations and 
responses to nutrients or dietary factors to assess the applicability of genetic testing services 
in the field of clinical nutrition.

DTC-GT: DEFINITION, BACKGROUND, AND MARKETS

Definition of DTC-GT
DTC-GT is marketed directly to consumers without the involvement of a health care provider 
[6]. According to the Ministry of Health and Welfare Notice of Korea No. 2020-35, DTC-
GT is defined as “a test that can be performed by a genetic testing institution other than a 
medical institution by collecting samples, testing, analyzing test results, and delivering test 
results directly to the consumers” [7]. DTC-GT services are generally utilized for three main 
reasons: 1) to provide insights into the consumer's identity (e.g., ancestry or paternity), 2) 
gain a gene-level assessment of disease risk to complement health care, or 3) curiosity-driven 
testing to achieve a better lifestyle [8].

Introduction to DTC-GT
Since the completion of the human genome sequencing project in 2003, many companies 
offering genetic testing services have been established [9]. The emergence of DTC-GT was 
influenced by changes in the medical paradigm and the reduction of costs due to advances in 
genetic analysis technology. Based on the data collected from the National Human Genome 
Research Institute (NHGRI), the estimated cost of sequencing a whole human genome 
reached up to $150 million. However, this price had fallen below $1,500 by the end of 2015 
and has more recently decreased to less than $1,000 in 2020 [10]. Accordingly, DTC-GT is 
now available at prices as low as approximately $100 [11]. In Korea, the primary legislation 
for the use of genomics in health is based on the Paragraph (3) 2 of Article 50 of the Bioethics 
and Safety Act, which was amended in 2015 to introduce the regulation of genetic treatment 
research. In 2016, the Ministry of Health and Welfare announced a plan to establish a 
large-scale biobank, a key infrastructure for precision medicine, and to allow non-medical 
institutions to directly conduct genetic testing for disease prevention [12].
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DTC-GT markets
According to the report by Global Market Insights, the global DTC-GT market size was valued 
at over $220 million in 2019 and is expected to exceed $3.4 billion by 2028 [13]. However, 
accurate statistics on the size of the domestic DTC-GT service market in Korea are not 
available. Both the DTC-GT market and industry have not been fully activated in Korea due to 
government regulations and policies [14].

CURRENT STATUS OF DTC-GT

Development of DTC-GT in Korea
According to the Notice Notification 2016-9 of the Ministry of Health and Welfare, which was 
enacted on June 30, 2016, DTC-GT was allowed to provide information regarding 12 items 
represented by 46 genes, including blood sugar, blood pressure, hair loss, and vitamin C 
metabolism (Table 1).

The Korean government is implementing cautious and stepwise approaches to allow a greater 
number of tests by establishing the DTC-GT service certification systems and regulatory 
sandbox. In February 2019, the Ministry of Health and Welfare promoted the DTC-GT 
service certification system to evaluate the accuracy and reliability of DTC-GT services 
and to use them as a basis for determining whether to expand the scope of the services in 
the future. The DTC-GT service certification system evaluates and certifies the quality and 
the appropriateness of DTC-GT services provided by DTC-GT companies by assessing 100 
evaluation items. The first DTC-GT service certification was conducted from February 2019 
to February 2020. Among the 12 items and 46 genes that were previously approved, the skin 
elasticity item was removed from the list due to a lack of scientific evidence. The Genetic 
Committee under the National Bioethics Review Committee reviewed scientific evidence that 
sufficiently verified and expanded the available test items from 11 to 56 in total (Table 2). The 
number of genetic test items was limited to 56 items, but the types of genes and SNPs for 
each item could be selected autonomously by the company [15]. The second DTC-GT service 
certification was conducted from March 2020 to February 2021. Through this initiative, the 
genetic test items that could be directly evaluated by genetic testing institutions other than 
medical institutions were expanded from 56 to up to 70 items (Table 2), and 8 recognized 
genetic testing institutions (Labgenomics, Macrogen, TeragenEtex, DNAlink, Medizen 
Humancare, Geninus, SCLHealthcare, and NGeneBio) were allowed to test up to 70 gene 
items. Additionally, it was specified that the provision of explanations and information 
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Table 1. Genetic test items that were approved for DTC-GT in 2016 (12 test items and 46 genes)
# Test items (number of genes) Genes
1 BMI (3) FTO, MC4R, BDNF
2 Triglycerides concentration (8) GCKR, DOCK7, ANGPTL3, BAZ1B, TBL2, MLXIPL, LOC105375745, TRIB1
3 Cholesterol (8) CELSR2, SORT1, HMGCR, ABO, ABCA1, MYL2, LIPG, CETP
4 Blood sugar (8) CDKN2A/B, G6PC2, GCK, GCKR, GLIS3, MTNR1B, DGKB-TMEM195, SLC30A8
5 Blood pressure (8) NPR3, ATP2B1, NT5C2, CSK, HECTD4, GUCY1A3, CYP17A1, FGF5
6 Pigmentation (2) OCA2, MC1R
7 Hair loss (3) chr20p11 (rs1160312, rs2180439), IL2RA, HLA-DQB1
8 Hair thickness (1) EDAR
9 Skin aging (1) AGER
10 Skin elasticity (1) MMP1
11 Vitamin C concentration (1) SLC23A1 (SVCT1)
12 Caffeine metabolism (2) AHR, CYP1A1, CYP1A2
DTC-GT, direct-to-consumer genetic testing; BMI, body mass index.

https://e-cnr.org


were under the responsibility of the genetic testing agency, in addition to sample collection, 
analysis of samples, interpretation of data, and delivery of test results. Through the 
introduction of this certification system, the reliability and accountability of DTC-GT services 
can be strengthened. The third pilot project for the DTC-GT service certification system was 
started in April 2021 and is still underway.

Genetic information on disease susceptibility can be provided only through medical 
institutions in Korea. In February 2019, the Ministry of Health and Welfare introduced a 
regulatory sandbox into the DTC-GT. A regulatory sandbox is a system that allows innovative 
technologies in their early stages of development to be implemented without regulations. 
Four companies selected as regulatory sandbox operators were allowed to conduct DTC-
GT for research purposes. Specifically, these companies were allowed to examine genetic 
variants associated with 13 diseases (e.g., chronic diseases, stroke, and cancers) and wellness 
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Table 2. Genetic test items allowed for DTC-GT that were added after the 1st and 2nd DTC-GT certification systems
Classification First approved items (‘16.6) (12 items) Items added after the 1st DTC-GT certification 

system (‘20.2) (56 items in total)
Items added after the 2nd DTC-GT certification 

system (‘20.11) (70 items in total)
Nutrients Vitamin C concentration Vitamin D concentration

Coenzyme Q10 concentration
Magnesium concentration
Zinc concentration
Iron storage and concentration
Calcium concentration
Potassium concentration
Arginine concentration
Fatty acid concentration

Vitamin A concentration
Vitamin B6 concentration
Vitamin B12 concentration
Vitamin E concentration
Vitamin K concentration
Tyrosine concentration
Betaine concentration
Selenium concentration
Lutein & Zeaxanthin concentration

Exercise Muscle fitness
Muscle development ability
Grip force
Suitability for aerobic exercise
Ability for short-distance running
Ability to recover after exercise
Suitability for endurance exercise
Risk of ankle injury

Skin/Hair Pigmentation
Hair thickness
Skin aging
Skin elasticity (Removed through  
the first certification project)
Hair loss

Freckles
Acne
Tanning after sun exposure
Skin inflammation
Stretch mark/keratin
Alopecia areata

Dietary habits Appetite
Satiety
Sensitivity for salty taste
Sensitivity for bitter taste
Sensitivity for sweet taste

Personal traits Caffeine metabolism Alcohol metabolism
Wine preference
Alcohol dependence
Nicotine metabolism
Caffeine dependence
Morning or night person
Sleep habits/time
Alcohol flush
Insomnia
Pain sensitivity

Healthcare Triglyceride concentration
Cholesterol
BMI
Blood pressure
Blood sugar

Susceptibility to degenerative arthritis
Motion sickness
Obesity
Uric acid
Percentage of body fat

Bone mass
Abdominal obesity (hip-waist ratio)
Weight loss effect after exercise
Possibility of weight recovery after weight loss

Lineage Ancestry
DTC-GT, direct-to-consumer genetic testing; BMI, body mass index.
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for two years after deliberation by the Bioethics Committee (Table 3). Although the pilot 
studies conducted by the companies are still in progress, DTC-GT can be utilized for overall 
health management if the study results prove that DTC-GT can contribute to the prevention 
and diagnosis of diseases, as well as the identification of personal traits.

Current status and limitations of DTC-GT in Korea
In Korea, DTC-GT services are confined to health and beauty care products, and the number 
of DTC-GT services is relatively limited. Approximately 52 companies are currently providing 
DTC-GT services in Korea, but the total number of DTC-GT services reported to the Ministry 
of Health and Welfare was less than 10,000 in 2018, whereas in 2020 more than 10 million 
services were provided by 23andMe, a popular US-based DTC-GT service [16]. Table 4 
summarizes the currently available DTC-GT service products developed and used in Korea.

Despite the usefulness and popularity of DTC-GT, consumers should be aware of the potential 
risks and limitations of DTC-GT [17]. The genetic variations included in DTC-GT may 
facilitate the estimation of phenotypic traits; however, many conditions are affected by the 
interplay of various factors including genetic, lifestyle, and environmental factors. Therefore, 
the results predicted in the test may differ from the individual's current conditions. Results 
from DTC-GT should not be the sole basis of any type of medical decision-making and should 
always be discussed with health professionals for an appropriate interpretation of the results 
[18]. Furthermore, although the number of genetic test items for DTC-GT is limited, there 
are no regulations on the type of genes and genetic variations that can be used for each item. 
Therefore, the results of genetic testing are bound to depend on the technical expertise and 
know-how of the company. The number and type of genes being analyzed, interpretation 
method (algorithm), and reference database of the analyzed genotypes differ from company to 
company, and therefore the results may vary among different service providers. However, this 
information is often not transparently disclosed to the consumers.
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Table 3. Outline of regulatory sandbox projects regarding DTC-GT conducted by four companies
Company (approval date) Project name and additional allowed test items Region/period/subject
Macrogen (2019.2) App-based customized health promotion service through DTC genome analysis, 13 additional diseases 

were allowed.
Incheon Economic Free 

Zone/2 years/2,000 
adults•  Diseases (8): coronary artery disease, hypertension, atrial fibrillation, stroke, type-2 diabetes, 

osteoarthritis, macular degeneration, and Parkinson's disease
•  Cancer (5): prostate cancer, colorectal cancer, stomach cancer, lung cancer, and liver cancer

TheragenEtex (2019.9) Management service for obesity and nutrition based on DTC-GT, 24 additional items were allowed. Seoul/18 months/1,200 
adults•  Obesity management (6): appetite control, fat metabolism, inflammation, sugar metabolism, 

energy consumption, stress
•  Nutrition management (18): Coenzyme Q10, magnesium, zinc, calcium, iron, selenium, vitamins A, 

B, D, E, and K, lutein, L-carnitine, tyrosine, betaine, omega-3 and 6, and phytoestrogen
Medizen Humancare (2019.9) Prediction of exercise performance based on DTC-GT, 13 additional items were allowed. Metropolitan area/2 

years/3,000 adults•  Exercise performance (13): muscle development, grip force, endurance, heart rate resilience, 
fracture risk, injury risk, weight control (obesity), stress sensitivity, agility, athletic activity, 
biorhythm, multifunctional performance, and motor sensitivity

DNAlink (2019.9) Validation of usefulness and risk of DTC-GT, 32 additional items were allowed. Gwangju/2 years/2,000 
adults•  Cancers (6): colorectal cancer, lung cancer, stomach cancer, liver cancer, thyroid cancer, and 

prostate cancer
•  Diseases (14): coronary artery disease, arterial fibrillation, stroke, intracranial aneurysm, type 2 

diabetes, Parkinson's disease, macular degeneration, chronic kidney disease, nonalcoholic fatty 
liver, hypertension, esophageal reflux, chronic obstructive pulmonary disease, osteoarthritis, and 
hyperlipidemia

•  Wellness (12): antioxidant capacity, inflammatory system, vitamin A, B, D, E, fatty acids, 
magnesium, exercise effect, weight control, nicotine dependence, and alcohol dependence

DTC-GT, direct-to-consumer genetic testing.
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Current status of DTC-GT in other countries
Although many companies provide DTC-GT services in the United States, 23andMe is 
the leading and by far the most popular individual genome analysis service and DTC-GT 
provider [19]. Since its establishment in 2006, 23andMe has grown rapidly, lowering the 
cost of genetic testing from $1,000 at the time of its establishment to $99 in 2013. Further, 
23andMe analyzes 254 items related to disease risk, drug sensitivity, wellness, and ancestry 
[1,20]. However, in November of 2013, 23andMe received an order from the US Food and 
Drug Administration (FDA) to suspend its service because its accuracy and safety were not 
verified [21]. Eventually, 23andMe announced that only ancestry analysis services would be 
provided, but the company continued to develop DTC-based services even after receiving the 
suspension order from the FDA. As a result, 36 genetic diseases including cystic fibrosis and 
sickle cell anemia were approved for testing in February 2015, and 10 additional diseases such 
as Parkinson's disease and Alzheimer's dementia were approved in April 2017 [22].

There are no legal regulations on DTC-GT in many other countries including the UK, 
Canada, and Japan. Many tests advertised and sold via the internet in these countries have not 
undergone clinical evaluation. In Japan, for example, diverse services are provided through 
various companies without strict legal regulations on DTC-GT analysis [23]. A total of 112 
organizations in Japan reportedly provide analysis services for more than 360 test items 
including disease risk, health management, and personal traits. Further, there is no need to 
request approval from the Japanese government when establishing a genetic testing company, 
and various test items provided to consumers are independently selected by the company.
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Table 4. DTC-GT services provided by companies in Korea
Company Services Available test items

Product name Test items (number of items)
TheragenEtex GeneStyle GeneStyle Wellness 70+ •  Nutrients (21), healthcare (16), skin/hair (13), exercise (8), dietary habits 

(12), personal traits (7)
GeneStyle Health Nutrition 41 <Health>: healthcare (15), dietary habits/sleep habits (5)

<Nutrition>: nutrients (21)
GeneStyle Beauty Fitness 32 <Beauty>: skin/hair (13)

<Fitness>: healthcare (6), dietary habits/sleep habits (5), exercise (8)
GeneStyle Diet 29 <Diet>: healthcare (14), dietary habits/sleep habits (5), personal traits 

(2), exercise (8)
GeneStyle Me • Lineage (Ancestry)
GeneStyle Inner Healthcare + Outfit Beautycare • Healthcare (5), personal traits (1), skin/hair (4), nutrients (1)
GeneStyle Inner Healthcare • Healthcare (5), personal traits (1)
GeneStyle Outfit Beautycare • Skin/hair (4), nutrients (1)

Macrogen My Genomestory My Genomestory •  Nutrients (20), exercise (8), skin/hair (11), dietary habits (5), personal 
traits (12), healthcare (14)The Plus

Medizen 
Humancare

MELEHY MELTHY Balance 3 • Healthcare (3)
MELTHY Balance 5 • Healthcare (4), personal traits (1)
MELTHY Skin 4 • Nutrients (1), skin (3)
MELTHY Skin 6 • Nutrients (1), skin/hair (5)
MELTHY Full 12 • Nutrients (1), skin/hair (5), healthcare (5), personal traits (1)

Eone Diagnomics gene2me i-Happy • Healthcare (4), nutrients (1), personal traits (1)
e-Happy • Healthcare (1), skin/hair (5)

DNAlink DNA GPS myDNA •  Nutrients (12), exercise (8), skin (9), personal traits (15), obesity (8), 
metabolism (6)

myDNA Beauty • Nutrients (1), skin (5)
myDNA Health • Nutrients (1), obesity (1), metabolism (4), personal traits (1)
myDNA Beauty & Health • Nutrients (1), obesity (1), metabolism (4), skin (5), personal traits (1)

DTC-GT, direct-to-consumer genetic testing.
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APPLICATION OF DTC-GT FOR CLINICAL NUTRITION

Genetic variations associated with nutrient intake responses or dietary factors
Nutrigenetics is defined as the study of the differential response to specific nutrients 
based on genetic variations [24-28]. Several genes and alleles have been found to affect 
the absorption, utilization, and intake of nutrients or dietary components [25,29]. 
Table 5 summarizes genetic variations that are known to affect the response to various 
macronutrients, vitamins, and minerals. The FTO gene is known to play an important role in 
metabolism and is linked to body weight and body mass index (BMI) [29-31]. Some nutrients 
such as protein, saturated fatty acids (SFAs), and polyunsaturated fatty acids (PUFAs) may 
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Table 5. Genetic variations associated with responses to nutrient intake
Gene (rs number) Variants Function Dietary factor Phenotypic traits
FTO gene  
(rs1558902/rs9939609)

T;A Plays a key role in metabolism and is 
linked to weight and BMI

Protein/SFA:PUFA Individuals with an A allele of the FTO gene (gene variant 
rs1558902) who consumed a high-protein diet were more 
likely to have a higher BMI and an increased risk of obesity 
compared to TT allele carriers [32-34]. Additionally, 
people carrying an A allele of the FTO gene had a higher 
risk of obesity compared to TT homozygotes when SFA 
intake was high and PUFA intake was low [35].

BCMO1 gene (rs11645428) G;A Encodes a gene that is a key enzyme 
in the conversion of beta-carotene to 
vitamin A

Vitamin A Individuals carrying the GG genotype do not efficiently 
convert dietary provitamin A carotenoids into the active 
forms of vitamin A and may have a higher risk of vitamin A 
deficiency [38].

CYP2R1 gene (rs10741657) A;G Encodes the enzyme 25-hydroxylase 
related with vitamin D activation and 
is associated with vitamin D binding 
and transport to tissues

Vitamin D Participants with the GG or GA genotype of CYP2R1 
(rs10741657) have an increased risk of low levels of 25(OH)
D3 [39-41].

GSTT1 gene Ins/Del Involved in vitamin C utilization 
through glutathione S-transferase 
enzymes

Vitamin C Individuals with the GSTT1 Del/Del genotype are at higher 
risk of serum ascorbic acid deficiency when consuming 
less than the RDA of vitamin C compared to those with 
the Ins allele [37].

FUT2 gene (rs602662) G;A Involved in vitamin B12 cell transport 
and absorption

Vitamin B12 Carriers of the G alleles possess a higher risk of low 
vitamin B12 serum levels when they consumed diets with 
low bioavailable sources of vitamin B12 compared to AA 
genotype carriers [42].

GC gene (rs7041 and rs4588) A;C and G;T Encodes a protein that binds to 
vitamin D and transports it to target 
tissues

Calcium Individuals homozygous for the G allele of rs7041 and 
the C allele of rs4588 have an increased fracture risk 
compared to other genotypes when they consumed a 
low-calcium diet (< 1.09 g/day) [43].

MTHFR gene (rs1801133) C677T Produces the enzyme 
methylenetetrahydrofolate 
reductase (MTHFR), which is 
involved in the conversion of 5, 
10-methylenetetrahydrofolate to 
5-methyltetrahydrofolate

Folate Individuals carrying the T allele have a higher risk of low 
serum folate levels due to a lower MTHFR enzymatic 
activity [44]. MTHFR gene mutations are associated 
with neural tube defects, vascular disease, and 
hyperhomocysteinemia [45,46].

HFE gene (rs1800562) G;A Encodes a membrane protein that is 
similar to MHC class-I protein and is 
associated with beta2-microglobulin, 
which in turn are associated with iron 
absorption regulation by modulating 
the interaction between transferrin 
receptor and transferrin

Iron Individuals with the AA genotype of the HFE gene 
rs1800562 are associated with a higher risk of 
hemochromatosis compared to those with the G allele [47].

TMPRSS6 gene (rs4820268), 
TF gene (rs7385804), and 
TFR2 gene (rs3811647)

G;A, C;A, 
and G;C

Involved in the regulation of the 
expression of hepcidin, a peptide 
hormone that modulates iron 
absorption

Iron Individuals carrying the GG genotype in the TMPRSS6 
gene have an increased risk of low hemoglobin and 
transferrin saturation compared to those with the A 
allele [48-50]. Individuals with the AA genotype of the TF 
gene tended to have a higher risk of elevated transferrin 
and low ferritin compared to those carrying the C allele 
[50,51]. Polymorphisms in the TFR2 gene can affect red 
blood cell count, hematocrit, and mean corpuscular 
volume, and individuals homozygous for the CC genotype 
have a higher risk of low serum levels [50].

BMI, body mass index; SFA, saturated fatty acid; PUFA, polyunsaturated fatty acid; RDA, recommended dietary allowance.
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also alleviate genetic predispositions associated with a higher BMI and body weight [32-
35]. The A allele of the FTO gene (gene variant rs9939609) has been linked to an increased 
risk of obesity and higher BMI when individuals consume high-protein diets compared to 
individuals exhibiting the TT genotype [32-34]. Further, people with the A allele of the FTO 
gene had a higher obesity risk compared to the TT homozygotes when saturated fatty acid 
intake was high and polyunsaturated fatty acid intake was low [35]. Moreover, the GSTT1 gene 
polymorphism is a well-known genetic variation associated with serum vitamin C levels. The 
GSTT1 gene is involved in the utilization of vitamin C via the glutathione S-transferase enzyme 
[36]. Individuals with the GSTT1 Del/Del genotype are at increased risk of vitamin C deficiency 
when they consume less than the recommended dietary allowance (RDA) of vitamin C, 
whereas those with the Ins allele do not exhibit these risks [37].

Table 6 summarizes genetic variations known to impact the response to food components. 
Caffeine is the active compound in coffee, one of the most widely consumed beverages 
worldwide. This compound has been investigated in numerous studies to elucidate its effect 
on the association between CYP1A2 gene variants and phenotypic traits. Individuals with the 
C allele of the GYP1A2 gene (gene variant rs762551) are considered slow metabolizers and tend 
to have an increased risk of hypertension, myocardial infarction, and elevated blood pressure 
when they consume more than 200 mg of caffeine per day, whereas AA homozygotes do not 
have these risks [52-55].

Significance of DTC-GT in clinical nutrition
DTC-GT can motivate consumers to participate more actively in overall health management 
and may play an important role in the implementation of personalized clinical nutrition 
[60,61]. Clinical dietitians can use DTC-GT to provide nutritional counseling and meal 
planning based on the genetic background of their patients. This information can provide 
the clinician with important insights regarding the individual's genetic susceptibilities and 
dietary factors that can increase the risk of disease.

Nevertheless, extensive research on gene-diet interactions is still required. Further, to avoid 
misuse and protect the public, nutrigenetic advice should be grounded in clear evidence 
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Table 6. Genetic variations associated with responses to food components
Gene (rs number) Variants Function Dietary factor Phenotypic traits
CYP1A2 gene (rs762551) C;A Encodes the CYP1A2 liver enzyme, which is a 

member of the cytochrome P450 superfamily 
that catalyzes various reactions associated 
with drug metabolism and synthesis of 
cholesterol, steroids, and other lipids; 
metabolizes caffeine; serves as a biomarker 
of fast or slow metabolism

Caffeine Individuals carrying the C allele of the CYP1A2 gene 
(rs762551), who are considered slow metabolizers, have 
an increased risk of hypertension, myocardial infarction, 
elevated blood pressure, and pre-diabetes when they 
consume more than 200 mg of caffeine per day, whereas 
people possessing the AA genotype (fast metabolizers) do 
not carry these risks [52-55].

TAS1R2 gene Ile19Val Encodes the sweet taste receptor 2 protein 
subunits, T1R2, which is specifically required 
to perceive sweet tastes

Sugar Val carriers of the TAS1R2 gene tended to consume fewer 
sugars in comparison with those homozygous for the Ile 
allele [56].

ACE gene Ins/Del Encodes an enzyme that catalyzes the 
conversion of angiotensin I to angiotensin 
II, a potent vasopressor and aldosterone-
stimulating peptide that controls fluid-
electrolyte balance and blood pressure

Sodium Individuals with ID and DD genotypes of the ACE gene are 
associated with a higher blood pressure during a high-Na+ 
diet compared to those with II genotype [57,58]

LCT gene (rs4988235) G;A Encodes enzymes that belong to the glycosyl 
hydrolase 1 family, which has lactase activity; 
polymorphisms in the LCT gene are related to 
lactase persistence

Lactose Individuals carrying the C allele are associated with an 
increased risk of suboptimal plasma 25(OH)D concentration 
compared to those with the TT genotype. Particularly, 
carriers with the CC genotype are prone to lactose 
intolerance, which is associated with a low plasma 25(OH)D 
concentration [59].
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based on a cautious and valid assessment resulting from the outcomes of many nutrigenetic 
studies [44]. Additionally, dietitians and healthcare professionals should be qualified and 
skilled in this rapidly evolving field [62].

CONCLUSIONS

This study reviewed the history and current status of DTC-GT in Korea and discussed the 
relationship between genotype differences and associated phenotypic traits, particularly 
those linked to dietary intake. Several studies that evaluated gene-diet interactions have 
revealed that the associations between genotype differences and responses to nutrients 
and dietary factors are robust for some genes. This suggests that genetic testing can be 
implemented in clinical nutrition, thus providing dietitians with crucial insights on genetic 
susceptibility and allowing them to provide personalized counseling and meal planning 
based on this genetic information. Nevertheless, more studies on gene-diet interactions are 
needed to accumulate comprehensive scientific evidence and promote the use of DTC-GT in 
the field of personalized clinical nutrition.
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