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Purpose: To develop an algorithm to detect and quantify hyperreflective dots (HRDs) on

optical coherence tomography (OCT) in patients with diabetic macular edema (DME).

Materials and Methods: Twenty OCTs (each OCT contains 128 b scans) from 20

patients diagnosed with DME were included in this study. Two types of HRDs, hard

exudates and small HRDs (hypothesized to be activated microglia), were identified

and labeled independently by two raters. An algorithm using deep learning technology

was developed based on input (in total 2,560 OCT b scans) of manual labeling and

differentiation of HRDs from rater 1. 4-fold cross-validation was used to train and validate

the algorithm. Dice coefficient, intraclass coefficient (ICC), correlation coefficient, and

Bland–Altman plot were used to evaluate agreement of the output parameters between

two methods (either between two raters or between one rater and proposed algorithm).

Results: The Dice coefficients of total HRDs, hard exudates, and small HRDs area of the

algorithm were 0.70± 0.10, 0.72± 0.11, and 0.46± 0.06, respectively. The correlations

between rater 1 and proposed algorithm (range: 0.95–0.99, all p < 0.001) were stronger

than the correlations between the two raters (range: 0.84–0.96, all p < 0.001) for all

parameters. The ICCs were higher for all the parameters between rater 1 and proposed

algorithm (range: 0.972–0.997) than those between the two raters (range: 0.860–0.953).

Conclusions: Our proposed algorithm is a good tool to detect and quantify HRDs and

can provide objective and repeatable information of OCT for DME patients in clinical

practice and studies.

Keywords: diabetic macular edema, diabetic retinopathy, optical coherence tomography, deep learning algorithm,

hyperreflective dots
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INTRODUCTION

The global prevalence of diabetes was 415 million in 2015,
and this number is estimated to increase to 642 million by
2040 (1). About one third of diabetic patients will develop
diabetic retinopathy, which is the major cause of blindness in
the working-age population in the world (2, 3). Diabetic macular
edema (DME) is one of the primary causes of vision loss in
patients with diabetic retinopathy (4).

DME is characterized by an excessive accumulation of
intraretinal or subretinal fluid in the macula and can best be
detected by optical coherence tomography (OCT) (4). High-
resolution OCT images give information on the severity of
DME (4) and on accompanying morphological changes, such as
intraretinal cysts, subretinal fluid, disorganization of retinal inner
layers, and hard exudates (5, 6). Hard exudates are lipid deposits
that can be seen on fundus photographs and give hyperreflective
signals on OCT (7). Recently, small hyperreflective dots (HRDs)
unseen on fundus photographs but visible on OCT have been
reported in diabetic eyes and were hypothesized to be activated
microglia (5, 6, 8). A recent study indicated that these small HRDs
can best be distinguished from hard exudates by their diameter,
reflectivity, and back shadowing status (8). Both hard exudates
and activatedmicroglia are probably involved in the pathogenesis
of diabetic retinopathy development but playing different roles,
and are related to treatment responsiveness in DME patients (9–
12). However, current clinical studies investigated HRDs with
manual calculation on selected OCT sections (10, 13, 14), which
may be time consuming and induce subjective bias for analysis.

Artificial intelligence is a branch of computer science that
aims to perform tasks by simulating intelligent human behavior
(15, 16). Machine learning is a subfield of artificial intelligence
that uses statistical techniques to enable computers to learn
on their own without being explicitly programmed (17). Deep
learning is the newest component of machine learning and
is widely adopted in image recognition in ophthalmology
(15). Methods for automatic quantification of HRDs on OCT
using artificial intelligence were published recently (18–20).
In these papers, HRDs were selected without consideration of
differentiation between hard exudates and smaller hyperreflective
dots hypothesized to be activated microglia.

Thus, we plan to develop a deep learning algorithm to quantify
HRDs on OCT in DME patients and differentiate them into hard
exudates and small HRDs, and to investigate the consistency of
automatic and manual calculation of HRDs on OCT.

MATERIALS AND METHODS

Data Collection
Twenty OCTs from 20 DME patients diagnosed at Joint Shantou
International Eye Center (JSIEC) of Shantou University and the
Chinese University of Hong Kong were included in this study.
DME was defined as average central retinal thickness >300µm
within the 6-mm ETDRS circle on the OCT report (21, 22) and
without other retinal diseases that may cause macular edema.
OCT files with poor quality evaluated by Topcon OCT built-in
software with a score of TopQ Image Quality<30 were excluded.

All patients underwent examination with the Topcon 3D OCT-
2000 device (Topcon, Tokyo, Japan) using the macula mode. The
OCT scanning area was 6 × 6 × 2 mm3 centered on the fovea,
corresponding to 128 × 512 × 885 pixels. This study adhered to
the tenets of Declaration of Helsinki and was approved by the
Institutional Review Board of JSIEC of Shantou University and
the Chinese University of Hong Kong (No. 19-006). Informed
consents are waived due to the retrospective nature of the study.

Algorithm Development
Famicom Disk System data were exported anonymously from
the Topcon 3D OCT-2000 device and transformed to ITK
MetaImage Header files.

Manual labeling of HRDs on 2560 OCT b scans (20
OCTs, each containing 128 b scans) was performed by two
ophthalmologists (rater 1: H.H. and rater 2: T.L.) using itk-
SNAP software (23). Two types of HRDs, hard exudates and
small HRDs, were identified and labeled separately with different
colors (Figure 1). Hard exudates were defined as particles larger
than 40µm with back shadowing and reflectivity similar to
the retinal pigment epithelium–Bruch complex (8). Small HRDs
were defined as particles 20 to 40µm in diameter (10, 24)
with similar reflectivity to the nerve fiber layer without back
shadowing on OCT within the neurosensory retina (8). Signals
smaller than 20µm were regarded as noise and excluded.

The algorithm flow mainly includes two steps:
automatic segmentation of HRDs and classification of the
segmentation results.

In the first step, an improved U-shaped convolutional neural
network (CNN), inspired by U-Net (25), was developed to
segment HRDs on retinal OCT images, as is shown in Figure 2A.
The original structure of U-Net consists of four downsampling
and upsampling steps. Considering the size of HRDs, the number
of downsampling and upsampling steps was reduced to three
in our improved CNN. To deal with the variable size of HRDs,
multi-scale convolution modules (MSCM) were proposed and
inserted into the encoder path, which can help the network
to achieve adaptive receptive fields. The MSCM is based on
three parallel convolutions with dilation rates of 1, 2, and 3 so
that multi-scale receptive fields can be obtained and network
parameters can be reduced effectively. In addition to the MSCM,
a channel attention module (CAM) was also designed to discard
redundant information and guide the model to focus on the
useful channel information. The CAM is constituted by a global
average-pooling layer and a fully connected layer. It is an
“end-to-end” structure and can be easily inserted in the CNN.
Experiments show that CAM has a better effect on high-level
semantic information, so two CAMs were inserted in the bottom
two encoders. With these two innovative structures, automatic
segmentation of HRDs was improved.

In the second step, a connected domain extraction algorithm
was used to mark each HRD. Connected domain generally refers
to the area on an image composed of adjacent pixels with the
same pixel value. Connected domain extraction is the process
of recognizing each connected area on an image. Based on
different spatial adjacent morphological characteristics of hard
exudates and small HRDs, an edge extraction network was
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FIGURE 1 | Illustration of manual labeling of HRDs on OCT b scans in DME patients: (A) fundus photograph of a patient with DME; (B) one OCT b scan of the same

eye with different HRDs; (C) manual label of HRDs of the OCT b scan shown in (B), hard exudates with diameter larger than 40µm, presence of back shadowing and

reflectivity similar to RPE–Brush complex are labeled with yellow color; small HRDs with diameter between 20 and 40µm and similar reflectivity to nerve fiber layer

without back shadowing are labeled with red color; (D) output of manual label by rater 1; (E) output of label by proposed algorithm.

developed, which contains edge guide branches to segment the
back shadowing on retinal OCT images. For segmentation of
small lesions, this network extracts the edge of the gold standard
area marked by rater 1 as an auxiliary condition training model,
which can improve the accuracy of the network segmentation of
the lesion.

After segmentation of back shadowing, automatic
classification of the HRDs segmentation results in the first
step was achieved by the following strategy: (1) HRDs larger than
40µm with back shadowing are classified as hard exudates. (2)
HRDs smaller than 20µmare regarded as noise and excluded. (3)
HRDs which are neither hard exudates nor noise are recognized
as small HRDs.

The whole experiment is computed under the environment of
python and pytorch framework. The flowchart of the algorithm
development is shown in Figure 2B.

This algorithm uses a 4-fold cross-validation method. The
data set is equally divided into four parts and marked as f1, f2,
f3, and f4. Three parts are used as training set to get a convergent
model and the last part is used as test set to test the accuracy
of the model. This method was repeated four times, each time
using a different test set, i.e., f1, f2, f3, and f4, respectively. The
average of the accuracy of each model was calculated as the final
output. Compared with an independent training, validation, and
test set, all data in cross-validation have undergone training and
validation. If the overall data are unevenly distributed, cross-
validation can produce an unbiased result and can be more
universally used.

To improve the generalization of the network, we adopted
online augmentation strategies including left and right flipping,
up and down flipping, random rotation, and additive Gaussian
noise addition. For each round of training, two to four of
these augmentation methods are used. In the training process,
the stochastic gradient descent (SGD) algorithm with an initial
learning rate of 0.01, momentum of 0.9, and weight decay of
0.0001 is used to optimize the network. The batch size is set to
2 and the number of epochs is 60.

Statistical Analysis
The sample size of this study was based on a previously
published algorithm focusing on a similar topic (19). The output
of proposed algorithm includes the area and number of total
HRDs, hard exudates, and small HRDs, respectively, within 6, 3,
and 1mm diameters centered on the fovea. All the parameters
were evaluated with histograms for distribution patterns. Mean
and SD were applied to describe normally distributed data,
while median and interquartile ranges (IQRs) were used
to describe non-normally distributed data. Repeatability of
the aforementioned parameters between two methods (either
between two raters or between one rater and proposed algorithm)
was evaluated with Dice coefficients and intraclass correlation
coefficients (ICCs). A Dice coefficient is a metric used to evaluate
the overlapping of the same target labeled by two methods. It
ranges from 0 to 1. The higher the Dice coefficient, the better
the two methods are overlapping. The correlation between Dice
coefficient and area of total HRDs was evaluated by a correlation
coefficient. Correlation and agreement of the parameters between
two methods was analyzed with linear regression and Bland–
Altman plots. SPSS 23.0 software was used for all statistical
analyses. P-values <0.05 were considered statistically significant.

RESULTS

Twenty OCTs from 20 DME patients were included in this study
(12 right and eight left eyes). If one patient had DME in both
eyes, one eye was selected at random. Fifteen patients were
treatment-naïve, four patients received macular laser, and one
patient had anti-VEGF injections before inclusion. Eleven eyes
were diagnosed with non-proliferative diabetic retinopathy and
nine eyes had proliferative diabetic retinopathy. Themean central
retinal thickness within 6mm diameter of the ETDRS circle was
334µm (IQR 314–390µm) and the mean volume of the 6mm
ETDRS circle was 9.45 mm3 (IQR 8.88–11.04 mm3). The mean
score of the TopQ ImageQuality was 38± 5. The descriptive data
of HRD parameters of rater 1, rater 2, and proposed algorithm of
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FIGURE 2 | (A) The framework of the improved U-shaped convolutional neural network. Improved multi-scale convolution modules (MSCM), which are inserted into

the encoder path of the network. Two channel attention modules (CAM), which are added to two max-pooling layers at the bottom. (B) Flowchart of proposed

algorithm development.

6× 6mm area, within 1mm and 3mmdiameters centered on the
fovea, are presented in Table 1.

Table 2 shows the Dice coefficients and correlations of all
parameters between two methods. The mean Dice coefficient of
total HRD area between the two raters was 0.59± 0.14, while the
Dice coefficients of hard exudate area and small HRD area were
0.58 ± 0.12 and 0.38 ± 0.10, respectively. The Dice coefficient
between rater 1 and proposed algorithm of total HRD area was
0.70 ± 0.10, and the Dice coefficients of hard exudate area and

small HRD area were 0.72 ± 0.11 and 0.46 ± 0.06, respectively.
The Dice coefficient of total HRD area between rater 1 and
proposed algorithm was correlated with total HRD area labeled
by rater 1 (r = 0.48, p = 0.03) and by proposed algorithm (r =
0.52, p= 0.02).

ICCs of all HRD parameters between the two raters ranged
from 0.860 (95% CI: 0.546–0.950, hard exudate area) to 0.953
(95% CI: 0.881–0.981, small HRD area), and ICCs of the
parameters between rater 1 and proposed algorithm ranged from
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TABLE 1 | Descriptive data of HRD parameters of rater 1, rater 2, and proposed algorithm of 6*6mm area, within 1 and 3mm diameters centered on fovea.

Rater 1 Rater 2 Proposed algorithm

6 m*6mm area centered on fovea

Total HRD area (mm2 ) 0.61 (IQR: 0.43–1.45) 0.46 (IQR: 0.31–1.41) 0.62 (IQR: 0.33–1.46)

Total HRD number 468 (IQR: 294–800) 518 (IQR: 358–872) 554 (IQR: 306–795)

Hard exudate area (mm2 ) 0.35 (IQR: 0.08–0.83) 0.15 (IQR: 0.05–0.73) 0.38 (IQR: 0.13–0.89)

Hard exudate number 88 (IQR: 29–213) 45 (IQR: 17–200) 85 (IQR: 40–231)

Small HRD area (mm2 ) 0.32 (IQR: 0.22–0.53) 0.29 (IQR: 0.25–0.54) 0.29 (IQR: 0.18–0.45)

Small HRD number 368 (IQR: 258–606) 471 (IQR: 347–690) 440 (IQR: 250–646)

Within 3mm diameters centered on fovea

Total HRD area (mm2 ) 0.19 (IQR: 0.11–0.38) 0.15 (IQR: 0.08–0.37) 0.14 (IQR: 0.09–0.43)

Total HRD number 142 (IQR: 80–316) 179 (IQR: 97–275) 119 (IQR: 88–316)

Hard exudate area (mm2 ) 0.09 (IQR: 0.03–0.24) 0.11 (IQR: 0.04–0.29) 0.08 (IQR: 0.03–0.14)

Hard exudate number 33 (IQR: 9–114) 75 (IQR: 32–189) 23 (IQR: 11–84)

Small HRD area (mm2 ) 0.10 (IQR: 0.05–0.16) 0.04 (IQR: 0.01–0.06) 0.07 (IQR: 0.05–0.16)

Small HRD number 105 (IQR: 62–149) 50 (IQR: 24–110) 95 (IQR: 62–236)

Within 1mm diameters centered on fovea

Total HRD area (mm2 ) 0.010 (IQR: 0.004–0.048) 0.011 (IQR: 0.003–0.029) 0.011 (IQR: 0.003–0.033)

Total HRD number 11 (IQR: 5–34) 18 (IQR: 5–26) 12 (IQR: 4–41)

Hard exudate area (mm2 ) 0.015 (IQR: 0–0.097) 0.004 (IQR: 0.001–0.018) 0.003 (IQR: 0–0.017)

Hard exudate number 1 (IQR: 0–9) 5 (IQR: 1–16) 1 (IQR: 0–6)

Small HRD area (mm2 ) 0.006 (IQR: 0.003–0.018) 0.004 (IQR: 0.001–0.008) 0.004 (IQR: 0.001–0.017)

Small HRD number 9 (IQR: 4–23) 7 (IQR: 1–11) 8 (IQR: 3–28)

TABLE 2 | Reliability and correlation of HRD parameters of 6*6mm area centered on fovea between two methods.

Parameters Total HRD area Hard exudate area Small HRD area Total HRD number Hard exudate number Small HRD number

Dice coefficient (SD)

Between 2 raters 0.593 (0.136) 0.580 (0.116) 0.375 (0.102) NA NA NA

Between rater 1 and

algorithm

0.695 (0.103) 0.724 (0.106) 0.460 (0.056) NA NA NA

ICC (95% CI)

Between 2 raters 0.930

(0.822–0.972)

0.860

(0.546–0.950)

0.953

(0.881–0.981)

0.950

(0.873–0.980)

0.917

(0.642–0.973)

0.906

(0.764–0.963)

Between rater 1 and

algorithm

0.997

(0.993–0.999)

0.997

(0.993–0.999)

0.972

(0.843–0.991)

0.986

(0.965–0.995)

0.996

(0.990–0.998)

0.977

(0.942–0.991)

Between rater 2 and

algorithm

0.927

(0.816–0.971)

0.886

(0.712–0.955)

0.943

(0.857–0.978)

0.942

(0.853–0.977)

0.948

(0.870–0.980)

0.898

(0.742–0.960)

Correlation coefficient (all p < 0.001)

Between 2 raters 0.962 0.946 0.906 0.906 0.951 0.842

Between rater 1 and

algorithm

0.995 0.996 0.971 0.973 0.992 0.953

Between rater 2 and

algorithm

0.965 0.954 0.901 0.892 0.961 0.819

HRD, hyperreflective dots; SD, standard deviation; NA, not applicable; ICC, intraclass correlation coefficient; CI, confidence interval.

0.972 (95% CI: 0.843–0.991, hard exudate area) to 0.997 (95%
CI: 0.993–0.999, small HRD area) (Figures 3–5). The correlations
between rater 1 and proposed algorithm (range: 0.953–0.996, all
p < 0.001) were stronger than the ones between the two raters
(range: 0.842–0.962, all p < 0.001) for all parameters (Figures 3–
8). As the algorithm was trained with data from rater 1, ICCs
and correlations between rater 1 and the algorithm were stronger

than those between rater 2 and the algorithm. However, ICCs and
correlations between rater 2 and the algorithm were similar to
those between the two raters.

Bland–Altman plots demonstrated that the 95% limits of
agreement (LOA) of the total HRD area between rater 1 and
proposed algorithm (range from −0.21 to 0.24) were much
smaller compared with the 95% LOA of two measurements
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FIGURE 3 | Linear regression and Bland–Altman analysis for correlation of total HRD area (A) between 2 raters, (B) between rater 1 and proposed algorithm, and (C)

between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, and (F) between rater 2

and proposed algorithm.

FIGURE 4 | Linear regression and Bland–Altman analysis for correlation of hard exudate area (A) between 2 raters, (B) between rater 1 and proposed algorithm, and

(C) between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, and (F) between rater 2

and proposed algorithm.
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FIGURE 5 | Linear regression and Bland–Altman analysis for correlation of small HRD area (A) between 2 raters, (B) between rater 1 and proposed algorithm, and (C)

between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, and (F) between rater 2

and proposed algorithm.

FIGURE 6 | Linear regression and Bland–Altman analysis for correlation of total HRD number (A) between 2 raters, (B) between rater 1 and proposed algorithm, and

(C) between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, and (F) between rater 2

and proposed algorithm.
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FIGURE 7 | Linear regression and Bland–Altman analysis for correlation of hard exudate number (A) between 2 raters, (B) between rater 1 and proposed algorithm,

and (C) between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, (F) between rater 2

and proposed algorithm.

FIGURE 8 | Linear regression and Bland–Altman analysis for correlation of small HRD number (A) between 2 raters, (B) between rater 1 and proposed algorithm, and

(C) between rater 2 and proposed algorithm; agreement of total HRD area (D) between 2 raters, (E) between rater 1 and proposed algorithm, and (F) between rater 2

and proposed algorithm.
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TABLE 3 | Intraclass correlation coefficient of HRD parameters within 1 and 3mm diameters centered on fovea between 2 raters and between rater 1 and proposed

algorithm of parameters.

ICC (95% CI) Total HRD area Hard exudate area Small HRD area Total HRD number Hard exudate number Small HRD number

Within 1mm diameters centered on fovea

Between 2 raters 0.914

(0.783–0.966)

0.919

(0.796–0.968)

0.610

(0.014–0.846)

0.923

(0.807–0.970)

0.905

(0.761–0.963)

0.600

(−0.10–0.842)

Between rater 1 and

algorithm

0.992

(0.981–0.997)

0.994

(0.985–0.998)

0.819

(0.543–0.928)

0.894

(0.733–0.958)

0.965

(0.912–0.986)

0.830

(0.571–0.933)

Between rater 2 and

algorithm

0.915

(0.785–0.966)

0.927

(0.816–0.971)

0.470*

(−0.340–0.790)

0.893

(0.730–0.958)

0.861

(0.650–0.945)

0.425*

(−0.453–0.772)

Within 3mm diameters centered on fovea

Between 2 raters 0.913

(0.780–0.966)

0.931

(0.827–0.973)

0.347

(−0.649–0.742)

0.937

(0.840–0.975)

0.985

(0.961–0.994)

0.295

(−0.780–0.721)

Between rater 1 and

algorithm

0.989

(0.971–0.995)

0.988

(0.970–0.995)

0.713

(0.274–0.886)

0.958

(0.895–0.983)

0.981

(0.952–0.993)

0.752

(0.374–0.902)

Between rater 2 and

algorithm

0.921

(0.801–0.969)

0.949

(0.872–0.980)

−0.130*

(−1.854–0.553)

0.930

(0.824–0.972)

0.956

(0.890–0.983)

−0.081*

(−1.731–0.572)

*P–value > 0.05; HRD, hyperreflective dots; ICC, intraclass correlation coefficient; CI, confidence interval.

between the two raters (range from −0.64 to 1.23) (Figure 3).
Similar differences were observed for the hard exudate area
(Figure 4) and the small HRD area (Figure 5).

The 95% LOA of the total HRD number between rater 1 and
proposed algorithm (range from −219 to 182) were also smaller
compared with the 95% LOA of two measurements between
the two raters (range from −384 to 346) (Figure 6). Similar
differences are illustrated in Figure 7 for the numbers of hard
exudates and in Figure 8 for the number of small HRDs.

The parameters within a 1mm diameter and 3mm diameter
circle centered on the fovea also showed good reliability and
correlation between rater 1 and proposed algorithm (Table 3).
For the parameters measured within a 1mm diameter circle
centered on the fovea, ICCs of all HRD parameters between
rater 1 and proposed algorithm ranged from 0.819 (small
HRD area) to 0.994 (hard exudate area) (Table 3), while the
correlation coefficient ranged from 0.694 (small HRD area) to
0.988 (hard exudate area). For the parameters measured within
a 3mm diameter circle centered on the fovea, ICCs of all HRD
parameters between rater 1 and proposed algorithm ranged from
0.713 (small HRD area) to 0.989 (total HRD area) (Table 3), and
the correlation coefficient ranged from 0.597 (small HRD area)
to 0.979 (hard exudate area). The results within a 1 and 3mm
diameter area centered on the fovea were weaker than those
within a 6 × 6mm area, thus using the 6 × 6mm area would
be preferable for future clinical studies.

DISCUSSION

In the current study, a new algorithm for quantifying and
differentiating HRDs on OCT in DME patients is introduced.
All the parameters, including area and number of total HRDs,
hard exudates, and small HRDs, show good correlation and
agreement between the two raters and between the rater and
proposed algorithm.

HRDs only visible on OCT in DME patients were first
reported by Bolz in 2009 and hypothesized to be extravasated

lipoproteins (7). However, more recent studies indicate that these
structures represent microglia. Microglia are immunocompetent
cells of retina (26) and are activated at different stages of human
diabetic retinopathy (27). A recent study showed that these
HRDs are strongly correlated with soluble CD 14 in aqueous
humor, a cytokine released by microglia and macrophages, in
DME patients (13). Moreover, these HRDs were also present in
diabetic patients without manifest diabetic retinopathy and the
number of HRDs increases as diabetic retinopathy progresses
(28). Therefore, these HRDs on OCT are more likely to be
activated microglia in DME patients.

For the proper development of an algorithm, the definitions of
hard exudates and small HRDs must be rigorous and their OCT
characteristics should not or only minimally overlap. We based
our definition of hard exudates and small HRDs on previous
studies. Definitions of HRDs representing activated microglia in
the literature vary, and sizes ranging from 20 to 50µm have
been given (8, 10, 13, 24). However, a solid foundation of such
definition is lacking. The reason could be that it is difficult
to measure microglia in human retina by histology, especially
the size of the entire microglial cells (cell body and dendrite
ramifications). In contrast, it is possible tomeasure the cell bodies
of the microglia (personal comment by M.O.M. Tso). The cell
body of normal or quiescent microglia in human retina has a long
axis of 16.4–20.4µm and a short axis of 6–7.6µm (29, 30). With
inflammation such as DME, microglia will be activated and the
size of cell body will enlarge, presenting as amoeboidmorphology
(26). By estimating the cell body of human activated microglia
from histology pictures published by Zeng et al. (27), we defined
small HRDs as structures of 20–40µm length, which means a
doubling of the size compared with quiescent microglial cells.

In previous studies, different algorithms for quantifyingHRDs
onOCTwere developed. Our proposed algorithm showed similar
Dice coefficients of total HRDs (0.695 ± 0.103) compared
with published ones (0.638 and 0.713) (19, 20). The published
algorithms did not differentiate HRDs into different types (18–
20), which would provide ambient information for clinical
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analysis. Moreover, all the published algorithms quantified
HRDs with conventional machine learning techniques, while
our proposed algorithm uses deep learning technology, which
provides further possibility for analysis using transfer learning
on other OCT machines and in other retinal diseases, which can
shorten the learning process compared with a new algorithm. For
each new situation, i.e., for each different OCTmachine and each
retinal disease, the algorithm should be adapted based on a series
of manually labeled OCT scans.

The present study found a better Dice coefficient of hard
exudates (0.724 ± 0.106) compared with that of small HRDs
(0.460 ± 0.056). Hard exudates showed larger signals (>40µm)
compared with small HRDs (20–40µm), as defined earlier. We
also reported a positive correlation between the Dice coefficient
of total HRDs between rater 1 and the algorithm and total
HRD area. Such a result is predictable as the smaller the labeled
target, the more difficult to get a perfect output by the algorithm.
Even if the Dice coefficient of small HRDs is not very high, the
correlation and agreement between rater 1 and the algorithm are
very good. No published algorithm has identified and quantified
such a small target, so we could not evaluate it by comparison.
Thus, we think the output of this algorithm is acceptable.

As shown in the Bland–Altman plot, the mean of the total
number of HRDs is more consistent in all methods than the
numbers of hard exudates and small HRDs separately. This is
because it can be difficult to differentiate hard exudates from
small HRDs by our definition. Some small hyperreflective signals
presented unclear back shadowing, which contributes to different
classifications of HRDs by raters, and probably by the algorithm.
Another reason would be that some HRDs are too close to each
other and were recognized as one rather than several by different
raters and the algorithm.

We acknowledge several limitations, such as a relatively low
dice coefficient of small HRDs and minor deviations of HRD
number counting, as explained explicitly earlier. The distribution
of HRDs on OCT in DME patients is currently unknown and
could be variable among different populations, whichmay induce
potential selection bias of the algorithm. We also would like
to highlight that this study is the first to develop an algorithm

to differentiate HRDs into hard exudates and small HRDs
and quantify these signals in numbers and area on OCT in
DME patients using deep learning technology. To summarize,
the present study introduces a newly developed algorithm to
quantify and differentiate HRDs on OCT for DME patients.
Standardizing HRDs with automatic calculation will provide
more objective and repeatable data for further investigation of
DME and related diseases.
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