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Abstract: This work describes the synthesis of PLA-grafted M-alginate (g-M-alginate; M: Ca2+, Co2+,
Ni2+, Cu2+) aerogels. DL-lactide (LA) was attached on the surface of preformed M-alginate beads and
was polymerized, using stannous octoate as catalyst and the –OH groups of the alginate backbone as
initiators/points of attachment. The material properties of g-M-alginate aerogels were not affected
much by grafting, because the linear PLA chains grew on the M-alginate framework like a brush and
did not bridge their points of attachment as in polyurea-crosslinked M-alginate aerogels. Thus, all
g-M-alginate aerogels retained the fibrous morphology of their parent M-alginate aerogels, and they
were lightweight (bulk densities up to 0.24 g cm−3), macroporous/mesoporous materials with high
porosities (up to 96% v/v). The BET surface areas were in the range of 154–542 m2 g−1, depending on
the metal, the nature of the alginate framework and the PLA content. The latter was found at about
15% w/w for Ca- and Ni-based materials and at about 29% w/w for Co- and Cu-based materials.
Overall, we have demonstrated a new methodology for the functionalization of alginate aerogels
that opens the way to the synthesis of polylactide-crosslinked alginate aerogels with the use of
multifunctional monomers.

Keywords: aerogels; alginate; polylactide; polylactide-g-alginate

1. Introduction

Aerogels are the lightest known solid materials, consisting of solid colloidal or poly-
meric networks expanded throughout their entire volume by a gas, like air, hence the
name “aerogel” [1,2]. The first aerogels were based on inorganic oxides, biopolymers
and proteins [3–5], but among them silica aerogels stood out and were more extensively
studied and exploited commercially. In later years, the development of aerogels expanded
to most classes of chemical compounds, e.g., inorganic materials (oxides, carbides, ceramics,
chalcogenides and metals), organic polymers or biopolymers, hybrid organic-inorganic
aerogel composites and carbon-based aerogels [6].

Among biopolymer-based aerogels, those based on alginates are particularly attractive
because they provide metal-doped aerogels that can be easily synthesized from inexpensive
and environmentally non-hazardous starting materials [7–13], and because they are also
carbonizable [14]. Their synthesis involves gelation of sodium alginate with divalent
(e.g., Ca2+, Ba2+, Co2+, Ni2+, Cu2+ or Zn2+) or trivalent (e.g., Fe3+ or Al3+) cations, which
bind to the carboxylate groups of different polymer chains, with the entire process taking
place in aqueous solutions [11,15,16].

Biomedical applications, including wound dressings, drug delivery and antimicrobial
activity, and environmental applications, including water decontamination and gas sorp-
tion, are major application fields for alginate and alginate-based aerogels, not only because
of their biocompatibility and easy gelation but also because of the vast range of ions that can
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be used for gelation [17–19]. A drawback is their limited stability in physiological/natural
conditions, first because they are mechanically weak materials collapsing in water, and
second because they can exchange gelation cations with monovalent cations (e.g., Na+)
present in the surrounding media and, therefore, dissolve [20,21]. In order to address
these issues and improve the properties/applications of alginate aerogels, several types of
composite materials have been reported in the literature.

One approach in this direction is through the polymer-crosslinking technology, which
was initially developed for inorganic aerogels [22–26]. In this technology, a multifunctional
isocyanate is allowed to diffuse in the pores of a preformed alginate wet gel, where it
reacts with the –OH groups on the surface of the alginate network and the water molecules
adsorbed on it, yielding a polyurea/polyurethane-crosslinked alginate (X-alginate) aero-
gel [27–30]. Coating the alginate framework with polyurea makes X-alginate aerogels
mechanically strong and extremely stable in water (including seawater). These properties
have resulted in applications in environmental remediation, for example, by removing
heavy metals, including lead and uranium, from various waters [20,31] and in biomedicine,
for example, as medical implants [32].

Another approach for the modification of polysaccharides is by using their functional
(e.g., –OH) groups as grafting sites for biocompatible polymers (e.g., polyesters). This
technology has mainly been employed on cellulose, although it has been reported for other
polysaccharides as well [33–39]. Polylactide (PLA) grafting on cellulose mainly increases
its hydrophobicity [35] and produces amphiphilic materials suitable for drug delivery [36]
or for carrying essential oil aromas [37]. PLA grafting on cellulose substrates can also
produce materials with tunable thermal properties [38] or increase cellulose compatibility
with polymer matrices in composite materials [39]. When it comes to alginate, although
there are examples of alginate/PLA composite materials [40–43], no graft copolymers have
been reported.

With an eye on new biocompatible aerogels, here we explore a strategy for the modi-
fication of the alginate network by reacting DL-lactide (LA) with pre-formed M-alginate
(M = Ca2+, Co2+, Ni2+, Cu2+) gels towards the synthesis of polylactide- (PLA-) grafted
materials. The selection of the gelation metal ions was made on the basis of their potential
biomedical and/or environmental applications.

2. Materials and Methods

Two different sodium alginate sources were used. The two types of sodium alginate
differed in their guluronate (G) content, which was determined with circular dichroism [44].
Sodium alginate purchased from ACROS (Geel, Belgium) had a 41% G content and will be
referred to as G41, while sodium alginate purchased from Duchefa Biochemie (Haarlem,
The Netherlands) had a 56% G content and will be referred to as G56. CaCl2·2H2O,
CoCl2·6H2O, Ni(NO3)2·6H2O and CuCl2·2H2O were purchased from Sigma (Saint Louis,
MO, USA). DL-lactide was purchased from Tokyo Chemical Industry (Tokyo, Japan), and
it was recrystallized twice from acetone and dried under vacuum for 24 h prior to use.
Stannous octoate (tin (II) 2-ethylhexanoate) was purchased from Alfa Aesar (Karlsruhe,
Germany). MeCN (HPLC grade) was purchased from Fisher (Loughborough, UK), and
it was distilled over CaH2 and degassed by three freeze–pump–thaw cycles prior to use.
Acetone was purchased from Fisher (Loughborough, UK) and was used as received.

Drying was carried out in an autoclave (E3100, Quorum Technologies, East Sussex,
UK). Wet gels were placed in the autoclave at 12 ◦C and were covered with acetone. Liquid
CO2 was allowed in the autoclave; acetone was drained out as it was being displaced by
liquid CO2 (5×; 1 per 30 min). Afterward, the temperature of the autoclave was raised
to 45 ◦C and was maintained for 1 h. Finally, pressure was gradually released, allowing
supercritical fluid (SCF) CO2 to escape as a gas, leaving dry gels (aerogels).

13C Cross-Polarization Magic Angle Spinning (CPMAS) NMR spectra were obtained
with a 600 MHz Varian spectrometer (Varian, Palo Alto, CA, USA) operating at 150.80 MHz
for 13C. For 13C ramped CPMAS spectra, the spinning rate used was 5 KHz, and the tem-
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perature was set at 25 ◦C. ATR-FTIR spectra were obtained with a Perkin Elmer Spectrum
100 Spectrometer.

Thermogravimetric analysis (TGA) was performed using a Q50 TGA model from TA
instruments (TA Instruments-Waters LLC, New Castle, DE, USA). Samples were placed in
platinum crucibles. An empty platinum crucible was used as a reference. Samples were
heated from ambient temperatures to 800 ◦C in a 60 mL/min flow of N2 at a heating rate of
10 ◦C/min.

The glass transition temperatures were obtained by differential scanning calorimetry
(DSC) using a 2910 modulated DSC model from TA instruments. The samples were heated
or cooled at a rate of 10 ◦C/min from ~25 to 500 ◦C. The samples were annealed at 200 ◦C
for 10 min and the second heating results were obtained in all cases.

N2-sorption and CO2-adsorption measurements were made on a Micromeritics Tristar
II 3020 surface area and porosity analyzer (Micromeritics, Norcross, GA, USA). Skeletal
densities (ρs) were determined by He pycnometry, using a Micromeritics AccuPyc II
1340 pycnometer (Micromeritics, Norcross, GA, USA). Bulk densities (ρb) of the samples
were calculated from their weight and natural dimensions.

Scanning electron microscopy (SEM, JEOL Akishima, Tokyo, Japan) characterization
was conducted with Pt-coated samples adhered onto a conductive double-sided adhesive
carbon tape, using a high resolution FESEM JEOL JSM 7401f.

Synthesis of PLA-Grafted M-Alginate (g-M-Alginate) Aerogels

A solution of sodium alginate (G41 or G56) in H2O (2% w/w) was prepared by
dissolving sodium alginate (2.00 g) in H2O (98.00 g) at 25 ◦C. The solution (5 mL; containing
102 mg of sodium alginate, 1.17 mmol of –OH groups) was added dropwise, using a
25-mL burette, to 20 mL of a 0.2 M solution of a metal salt (CaCl2·2H2O, CoCl2·6H2O,
Ni(NO3)2·6H2O or CuCl2·2H2O) under mild magnetic stirring. Spherical M-alginate
(M: Ca2+, Co2+, Ni2+, Cu2+) hydrogel beads were formed instantly and were left to age
for 24 h. Afterward, they were stepwise solvent-exchanged with MeCN/H2O mixtures
(30, 60, 90% v/v) and then with dry acetonitrile (4×). A given amount of DL-lactide (LA)
(e.g., 3.36 g, 23.3 mmol for LA/–OH molar ratio equal to 20) was dissolved in 20 mL dry
MeCN, 162 µL Sn(oct)2 were added and the mixture was degassed. M-alginate beads were
immersed in the solution containing the monomer and the catalyst, left for 18 h for the
solution to diffuse inside the beads and then the mixture was refluxed for 18 h under inert
atmosphere. After the end of the reaction, the beads were solvent-exchanged with acetone
(4×, 3 h each, the volume of the solvent was equal to 4× the volume of the beads) and
were dried from SCF CO2 to provide the corresponding PLA-grafted M-alginate (referred
to as g-M-alginate; g: PLA-grafted, M: Ca2+, Co2+, Ni2+, Cu2+) aerogels. The corresponding
native M-alginate aerogels were also prepared for comparison purposes.

3. Results and Discussion
3.1. Preparation and Chemistry of PLA-Grafted M-Alginate (g-M-Alginate) Aerogels

g-M-alginate beads (M: Ca2+, Co2+, Ni2+, Cu2+) were studied for two different types
of sodium alginate and gelled by the corresponding M2+ ions, which substitute Na+ ions
almost quantitatively (the sodium residue has been found lower than 0.1% w/w) [29]. The
two types of sodium alginate differed in the G/M ratio, which was calculated using circular
dichroism data [44], and it was found to be equal to 0.69 (G41), and 1.27 (G56), respectively.

Ca-alginate (G41) beads were reacted with different amounts of DL-lactide (LA),
corresponding to different LA/–OH molar ratios (i.e., 10, 20, 30, 40 and 100) in order to
study PLA formation in the final aerogel materials as a function of the amount of LA initially
used. Co-, Ni- and Cu-alginate beads were studied by setting the LA/–OH molar ratio equal
to 20, and in a few cases equal to 40. As it will be discussed below, the addition of higher
amounts of LA does not change the chemical composition, or the material properties of
the resulting grafted aerogels. The samples are referred to as g-M-alg-YY (GXX), where XX
refers to the percent G content (41 or 56) and YY refers to the LA/–OH molar ratio. Grafting
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was not studied for Ni-alginate (G41) because the corresponding wet-gels suffered severe
shrinkage in acetonitrile, which was the solvent for the reaction. This observation comes in
agreement with our previous work [29] in which high shrinkage of low-G Ni-alginate was
also observed.

Grafting of M-alginate gels with PLA was achieved via ring opening polymerization
(ROP) of LA with stannous octoate (Sn(oct)2) as the catalyst by employing “grafting from”
procedures [45–47]. The –OH groups of the alginate polymer chain were used as ROP
initiators, as shown in Scheme 1. DL-lactide was used instead of the other lactide isomers,
since an amorphous polymer is obtained in this case with a glass transition temperature
close to 57 ◦C for high molecular weight materials [48]. The grafting reaction took place
under reflux for 18 h. Optical photographs of the samples are shown in Figure 1 and size
distributions on Figures S1–S4.
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showing the gelation induced by M2+ ions (potential interactions with groups other than the car-
boxylates have not been included). (b) The reaction of grafting M-alginate gels with polylactide
(PLA).
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Figure 1. Optical photographs of M-alginate and g-M-alginate aerogels, as indicated.

3.2. Chemical Characterization of PLA-Grafted M-Alginate (g-M-Alginate) Aerogels

ATR-FTIR spectra of both M-alginate and g-M-alginate aerogels show the characteristic
vibrations of M-alginates (Figure 2). Specifically, the symmetric and asymmetric stretching
vibrations of the carboxylate groups coordinated to M2+ ions appear at 1600 cm−1 and
1420 cm−1, respectively, while the corresponding stretching vibrations of the sugar ring
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C–O–C groups appear at 1080 cm−1 and 1030 cm−1. Additionally, g-M-alginate aerogels
show a characteristic peak at 1734 cm−1, which corresponds to the C=O stretching of the
PLA carbonyl groups [49].

Table 1. PLA content of g-M-alginate aerogels.

Sample PLA Content
(%)

g-Ca-alg-10 (G41) 12
g-Ca-alg-20 (G41) 17
g-Ca-alg-30 (G41) 13
g-Ca-alg-40 (G41) 18
g-Ca-alg-100 (G41) 17
g-Ca-alg-20 (G56) 13
g-Ca-alg-40 (G56) 14
g-Co-alg-20 (G41) 2
g-Co-alg-40 (G41) 29
g-Co-alg-20 (G56) 2
g-Ni-alg-20 (G56) 2
g-Ni-alg-40 (G56) 14
g-Cu-alg-20 (G41) 15
g-Cu-alg-40 (G41) 29
g-Cu-alg-20 (G56) 6

PLA content calculated according to formula: %PLA (w/w) = [(ρs PLA/ρs g-M-alg) × (ρs M-alg − ρs g-M-alg)/(ρs M-alg
− ρs PLA)] × 100 [27–29]. Values for ρs M-alg and ρs g-M-alg were taken from Table 2, and the value for ρs PLA was
measured equal to 1.26 g cm−3.
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aerogels was in the range of 14–29% w/w (see Table 1).



Polymers 2022, 14, 1254 6 of 14

Table 2. Selected material properties of M-alginate and g-M-alginate aerogel beads.

Sample a Bulk Density
ρb (g cm−3)

Skeletal
Density

ρs (g cm−3)
Porosity b

Π (% v/v)

BET Surf. Area
σ (m2 g−1)
(Micropore

Surf. Area) c

VTotal
d

(V1.7–300nm) e

(cm3 g−1)

Av. Pore
Diam. f

(4VTotal/σ)
(nm)

Ca-alg (G41) 0.076 ± 0.006 1.97 ± 0.03 96 340 (53) 13 (2.0) 23 (149)
g-Ca-alg-10 (G41) 0.12 ± 0.01 1.85 ± 0.02 94 377 (8) 8.1 (2.0) 21 (86)
g-Ca-alg-20 (G41) 0.104 ± 0.006 1.80 ± 0.02 94 433 9.1 (1.2) 12 (84)
g-Ca-alg-30 (G41) 0.10 ± 0.01 1.84 ± 0.02 94 425 9.2 (1.2) 13 (86)
g-Ca-alg-40 (G41) 0.11 ± 0.01 1.79 ± 0.02 94 390 8.5 (1.5) 16 (88)
g-Ca-alg-100 (G41) 0.12 ± 0.01 1.80 ± 0.01 93 398 7.8 (1.5) 16 (78)

Ca-alg (G56) 0.068 ± 0.006 1.95 ± 0.02 97 472 (88) 14 (1.6) 15 (120)
g-Ca-alg-20 (G56) 0.08 ± 0.02 1.82 ± 0.02 96 438 (17) 12 (1.4) 14 (109)
g-Ca-alg-40 (G56) 0.061 ± 0.005 1.81 ± 0.01 97 422 (12) 16 (1.1) 11 (150)

Co-alg (G41) 0.18 ± 0.02 1.93 ± 0.01 91 286 (49) 5.0 (2.1) 29 (70)
g-Co-alg-20 (G41) 0.18 ± 0.01 1.91 ± 0.02 91 250 (18) 5.0 (1.4) 23 (80)
g-Co-alg-40 (G41) 0.24 ± 0.04 1.67 ± 0.01 86 160 3.6 (1.3) 32 (89)

Co-alg (G56) 0.14 ± 0.01 2.05 ± 0.02 93 289 (54) 6.6 (1.1) 15 (92)
g-Co-alg-20 (G56) 0.17 ± 0.03 2.04 ± 0.04 92 229 5.4 (0.6) 12 (94)

Ni-alg (G56) 0.14 ± 0.01 1.93 ± 0.01 93 275 (45) 6.6 (0.9) 15 (96)
g-Ni-alg-20 (G56) 0.12 ± 0.02 1.91 ± 0.02 94 254 (21) 7.8 (0.7) 12 (123)
g-Ni-alg-40 (G56) 0.12 ± 0.04 1.80 ± 0.01 93 154 (12) 7.8 (0.8) 22 (202)

Cu-alg (G41) 0.068 ± 0.006 2.06 ± 0.02 97 568 (84) 14 (3.7) 27 (100)
g-Cu-alg-20 (G41) 0.08 ± 0.01 1.88 ± 0.02 96 542 (63) 12 (3.8) 28 (88)
g-Cu-alg-40 (G41) 0.09 ± 0.02 1.74 ± 0.06 95 510 (19) 11 (3.2) 25 (83)

Cu-alg (G56) 0.056 ± 0.006 2.12 ± 0.06 97 584 (109) 17 (2.6) 19 (119)
g-Cu-alg-20 (G56) 0.09 ± 0.01 2.03 ± 0.02 96 494 11 (2.9) 24 (86)

a The concentration of the sodium alginate solution was 2% w/w. The two different alginates used in this study
are denoted in parentheses. b Porosity was calculated according to formula (ρs − ρb)/ρs, where ρs is the skeletal
density and ρb is the bulk density. c Micropore surface area via t-plot analysis, according to the Harkins and
Jura model. d Total pore volume calculated according to formula: 1/ρb − 1/ρs. e Cumulative volume of pores
between 1.7 and 300 nm from N2-sorption data and the BJH desorption method. f Calculated by the 4 V/σ method;
V was set equal to the maximum volume of N2 adsorbed along the isotherm as P/Po → 1.0. For the number in
parentheses, V was set equal to VTotal from the previous column.

The 13C CPMAS NMR spectra of Ca-alginate and g-Ca-alginate aerogels (Figure 3)
also show all the characteristic peaks expected for Ca-alginate [28,29]. The peak of the
acetate carbonyls appears at 175.4 ppm. The peaks of the acetal carbons –C–O–C–O– on
the alginate rings appear at 100.8 ppm, while the peaks corresponding to the alginate ring
carbons attached to oxygen (–OH or ether) appear at 72.0 ppm, in agreement with previous
observations [28,29]. In the spectrum of g-Ca-alginate, the ratio of the carbonyl peak to
the two peaks of the ring carbons was larger compared to the same ratio in the spectrum
of Ca-alginate alone. This finding and a new peak at 18.8 ppm, which is attributed to the
methyl carbons of PLA [50], confirm the presence of PLA in the material.

The PLA content of g-M-alginate aerogels (Table 1) was calculated from their skeletal
densities and those of the corresponding native M-alginate aerogels (reported in Table 2).
For either g-Ca-alginate (G41) or (G56) aerogels that were prepared using different amounts
of LA, corresponding to different LA/–OH molar ratios (i.e., 10, 20, 30, 40 and 100), the
amount of PLA in the corresponding aerogels was very similar, in the range of 12 to 18%
w/w, and it was not dependent on the LA/–OH molar ratio.

Regarding the other metals, it seems that not only the LA/–OH molar ratio but also
the metal and the nature of the alginate are important for the PLA formation on the material
(Table 1). Molar ratios higher than 40 were not studied in order to avoid the complication
of transesterification side reactions [51–53]. In the case of g-Ni-alginate aerogels, the
maximum PLA content was 14% w/w. In the cases of g-Co-alginate and g-Cu-alginate
aerogels, better results were obtained with the G41 alginate and the maximum PLA content
was 29% w/w, the highest among all materials prepared in this study. It is expected
that, due to steric constraints, the polymerization of LA on the solid pre-formed alginate
network is not kinetically favored. Another reason for the rather low grafting efficiency
is transesterification side reactions, which result in soluble PLA chains. These chains are
readily removed from the solution.
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The thermal stability of all aerogels was studied with thermogravimetric analysis
(TGA) and differential thermogravimetry (DTG). For Ca-containing samples (Figure 4),
all decomposition curves were similar. The samples exhibited a weight loss of 9–14%
up to 100 ◦C, attributed to the moisture of the samples, and a total loss of 15–20% up to
200 ◦C. The main decomposition process started after 200 ◦C and consisted of three steps
(as shown also from the DTG curves). At 800 ◦C, the residue was between 12 and 19%
for all samples and corresponds to the residue of the alginate component. DTG showed
the main decomposition peak at approximately 250 ◦C and a smaller and much broader
peak at approximately 400 ◦C for all samples, while the third decomposition peak was
between 692 and 786 ◦C. The results show the small contribution of PLA to the thermal
decomposition of g-M-alginate aerogels. However, since PLA is known to be a relatively
thermally sensitive polymer, the presence of the PLA chains is expected to slightly reduce
the thermal stability of the aerogels. The mechanism of thermal decomposition of PLA is
rather complex, initially involving the random chain scission to smaller chains, without
leading to appreciable weight loss, followed by the main decomposition effect due to zipper-
like depolymerization reactions and intermolecular and intramolecular transesterification
reactions resulting in the formation of monomer and oligomers [54,55]. The decomposition
process is greatly affected by remaining amounts of catalyst, metal ions and the nature of
the polymer end groups [56,57]. In any case, the main thermal degradation takes place at
the temperature range of 200–325 ◦C, which is similar to the range of decomposition of the
alginates [58].

For alginate aerogels gelled with Co, Ni and Cu (Figure 5), TGA and DTG data
were in agreement with the literature [29]. The decomposition curves for each pair of
M-alginate/g-M-alginate had only small differences, reflecting the small contribution of the
PLA component to the thermal properties of g-M-alginate aerogels, as was discussed above.
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The thermal properties of all Ca-containing samples were also studied with differential
scanning calorimetry (DSC; Figure S5). Similar DSC traces were obtained for all grafted
samples and the original Ca-alginate aerogel, which is in agreement with the results coming
from the TGA analysis. This result was rather expected, since it has been shown for similar
materials (i.e., PLA-grafted cellulose) that Tg depends on the PLA content [38], and for
all g-Ca-alginate aerogels the PLA content is almost the same (Table 1). The Tg of PLA is
expected to be at 57 ◦C for high molecular weight samples. This transition is very weak
and can be hardly observed for samples g-Ca-alg-40 and g-Ca-alg-100. This is due to the
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rather low PLA content of the aerogels and the evaporation of humidity of the samples,
which is completed at temperatures slightly higher than 100 ◦C The main decomposition
event is then observed starting around 200 ◦C, as also shown by TGA.

3.3. Selected Material Properties of PLA-Grafted M-Alginate (g-M-Alginate) Aerogels

Material properties of all aerogels are summarized in Table 2. As has been discussed
before, in order to study PLA formation in the final aerogel materials as a function of
the amount of LA initially used, Ca-alginate (G41) beads were reacted with different
amounts of LA, corresponding to different LA/–OH molar ratios (i.e., 10, 20, 30, 40 and
100). All resulting grafted materials had very similar properties, as expected from their
very similar chemical composition (Table 1); they had low bulk densities (0.10–0.12 g cm−3)
and high porosities (93–94% v/v), and they were all mostly macroporous materials (VTotal
> V1.7–300 nm). Compared to the parent Ca-alginate aerogels, they have a bit higher bulk
density and lower porosity, and no or little microporosity. Analogous observations can
be made for g-Ca-alginate (G56) aerogels. These trends have been also observed in our
previous studies for the crosslinking of M-alginates with polyurea [27,28].

For the other M-alginate materials, the LA/–OH molar ratios of 20 and 40 were studied.
All resulting grafted aerogels had low bulk densities (0.08–0.24 g cm−3) and high porosities
(86–96% v/v), and they were all mostly macroporous materials (VTotal > V1.7–300 nm), with
some mesoporosity and little or no microporosity. In general, BET surface areas and average
pore sizes did not change significantly after grafting. As also described above, grafting
with PLA has little effect on the material properties of the g-M-alginate aerogels, which
properties are mostly determined by the corresponding parent M-alginate aerogels.

In all cases, N2-sorption isotherms (Figures S6–S9) showed narrow hysteresis loops
and did not reach saturation, as expected for macroporous materials with only a small
amount of mesoporosity. The Barrett–Joyner–Halenda (BJH) curves (Figures S6–S9, insets),
for pores in the range of 1.7–300 nm, were quite broad and showed maxima at 33–34 nm
for all materials, except for Cu-alginate (G57) (maximum at 27 nm).

The fact that grafting does not affect the material properties significantly is attributed
not only to the low content of PLA but also to the fact that the PLA chains (linear polymer)
that have grown on the M-alginate framework extend in the pores of g-M-alginates, but
they do not coat the solid framework, as is the case with polyurea-crosslinked M-alginate
aerogels [27–30]. The same has been observed previously with poly(methyl methacrylate)-
grafted polydicyclopentadiene aerogels [59,60].

Representative SEM images (Figure 6) showed that all samples were fibrous, with
denser structures on the surface of the beads than in their interior, in agreement with
previous observations [28,29,61]. Grafting with PLA did not affect morphology, and M-
alginate and g-M-alginate aerogels had very similar morphologies. This is a feature also
observed with polyurea-crosslinked alginate aerogels [27–29]; in all cases, the morphology
was determined primarily by the M-alginate framework. SEM images also confirm the
presence of macropores in both M-alginate and g-M-alginate aerogels, which is in agreement
with the N2-sorption data (Table 2).
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4. Conclusions

The synthesis and material properties of PLA-grafted M-alginate (g-M-alginate; M:
Ca2+, Co2+, Ni2+, Cu2+) aerogels are presented in this work. DL-lactide (LA) was attached
on the surface of pre-formed M-alginate beads and was polymerized, using stannous
octoate as the catalyst and the –OH groups of the alginate backbone as initiators/points of
attachment. g-M-alginate aerogels are lightweight (bulk densities in the range 0.08–0.24 g
cm−3), macroporous/mesoporous materials with high porosities (86–96% v/v) and BET
surface areas in the range 154–542 m2 g−1, depending on the metal, the nature of the
alginate framework and the PLA content. The latter was found at about 15% w/w for
Ca- and Ni-based materials, and around 29% w/w for Co- and Cu-based materials. The
morphology was fibrous in all cases. The major thermal degradation of g-M-alginate
aerogels took place in the range of 200–400 ◦C, where both components (PLA and alginate)
decompose, and the PLA chains had a small effect on the decomposition process of grafted
versus native aerogels. In general, the material properties of g-M-alginate aerogels were not
affected much by grafting, but they remained similar to those of the M-alginate component.
This is attributed to the fact that the PLA chains consist of a linear polymer that does
not keep on accumulating on itself and does not bridge its points of attachment on the
g-M-alginate framework as in the case of polyurea-crosslinked M-alginate aerogels; instead,
PLA forms a monolayer on the skeletal framework, the most significant effect of which is
to block access to the micropores (notice that both the skeletal density and the micropore
surface area decrease). Overall, this work has demonstrated a new methodology for the
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functionalization of alginate aerogels that opens the way to the synthesis of polylactide-
crosslinked alginate aerogels with the use of multifunctional monomers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061254/s1, Figure S1: Size distributions of Ca-alginate
and g-Ca-alginate (G41) aerogels with different LA/–OH molar ratios, as indicated (diameters
measured with ImageJ; histograms were calculated using OriginPro 9.0). Mean diameter and sample
size (N) are shown on the Figure; Figure S2: Size distributions of Ca-alginate and g-Ca-alginate
(G56) aerogels with different LA/–OH molar ratios, as indicated (diameters measured with ImageJ;
histograms were calculated using OriginPro 9.0). Mean diameter and sample size (N) are shown on
the Figure; Figure S3: Size distributions of M-alginate and g-M-alginate (G41) aerogels with different
LA/–OH molar ratios, as indicated (diameters measured with ImageJ; histograms were calculated
using OriginPro 9.0). Mean diameter and sample size (N) are shown on the Figure; Figure S4: Size
distributions of M-alginate and g-M-alginate (G56) aerogels with different LA/–OH molar ratios,
as indicated (diameters measured with ImageJ; histograms were calculated using OriginPro 9.0).
Mean diameter and sample size (N) are shown on the Figure; Figure S5: DSC thermograms for
Ca-alginate and g-Ca-alginate (G41) aerogels with different LA/–OH molar ratios, as indicated;
Figure S6: N2-sorption diagrams of Ca-alginate and g-Ca-alginate (G41) aerogels, as indicated. Insets
show pore size distributions by the BJH method; Figure S7: N2-sorption diagrams of Ca-alginate and
g-Ca-alginate (G56) aerogels, as indicated. Insets show pore size distributions by the BJH method;
Figure S8: N2-sorption diagrams of M-alginate and g-M-alginate (G41) aerogels, as indicated. Insets
show pore size distributions by the BJH method; Figure S9: N2-sorption diagrams of M-alginate and
g-M-alginate (G56) aerogels, as indicated. Insets show pore size distributions by the BJH method.
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