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In spite of the wide range of tumours successfully treated with 5-aminolevulinic acid mediated photodynamic therapy, the fact
that 5-aminolevulinic acid has low lipid solubility, limits its clinical application. More lipophilic 5-aminolevulinic acid prodrugs and
the use of liposomal carriers are two approaches aimed at improving 5-aminolevulinic acid transmembrane access. In this study
we used both 5-aminolevulinic acid and its hexyl ester in their free and encapsulated formulations to compare their
corresponding endogenous synthesis of porphyrins. Employing murine tumour cultures, we found that neither the use of hexyl
ester nor the entrappment of either 5-aminolevulinic acid or hexyl ester into liposomes increase the rate of tumour porphyrin
synthesis. By light and electronic microscopy it was demonstrated that exposure of tumour explants to either free or
liposomal 5-aminolevulinic acid and subsequent illumination induces the same type of subcellullar damage. Mitochondria,
endoplasmic reticulum and plasma membrane are the structures mostly injured in the early steps of photodynamic treatment.
In a later stage, cytoplasmic and nuclear disintegration are observed. By electronic microscopy the involvement of the
endocytic pathway in the incorporation of liposomal 5-aminolevulinic acid into the cells was shown.
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Photodynamic Therapy (PDT) of certain neoplasms has emerged as a
promising form of cancer treatment involving the administration of a
photosensitiser with subsequent application of light (Dougherty et al,
1978). The ensuing photodynamic reaction results in tumour
destruction. PDT has shown promising results for superficial, small
skin tumours and in internal hollow organs (Dougherty, 1993).

In a new modality of PDT, the endogenous production of the
photosensitiser Protoporphyrin IX (PpIX) is induced by the
prodrug 5-aminolevulinic acid (ALA) through the haem biosyn-
thetic pathway. An advantage of the use of PpIX relative to other
photosensitisers is the short half life of its photosensitising effects,
which do not last longer than 48 h (Kennedy et al, 1990; Fukuda et
al, 1993).

In spite of the wide range of tumours successfully treated with
ALA – PDT, the fact that ALA is a zwitterion at physiological pH
and therefore has low lipid solubility, limits its clinical application.
More lipophilic ALA prodrugs are expected to cross cell
membranes more easily than ALA. After entering the site of action,
the prodrug is enzymatically converted to ALA, which in turn is
converted into PpIX. Kloek and Beijersbergen van Henegouwen
(1996); Kloek et al (1998) and Gaullier et al (1997) found that long
chain ALA esters are taken up, hydrolysed to the free acid and
converted into PpIX with better efficiency than ALA, leading to
higher photosensitiser levels both in vivo and in vitro.

The use of the hexyl ester of ALA (He – ALA) proved to be
particularly better than ALA for the photosensitisation of rat

bladder cells (Cosserat-Gerardin et al, 2000) and murine mammary
adenocarcinoma cells (Casas et al, 2001) and for the photodetec-
tion of human bladder cancer (Lange et al, 1999). However, the
use of He – ALA for the treatment of skin cancer is still a matter
of discussion, due to the fact that He – ALA diffuses more slowly
across the stratum corneum than ALA (van den Akker et al, 2000).

Liposomes have been used as drug carriers to increase efficacy of
a variety of therapeutic agents, including antineoplastics, antibiotics
and immunomodulators (Lasic, 1993). We demonstrated that
intratumour and i.p. administration of liposome-entrapped ALA
to tumour bearing mice, resulted in both increased porphyrin
biosynthesis and higher tumour/normal tissue porphyrin ratio
(Fukuda et al, 1992).

The aim of the present study was to measure porphyrin generation
from ALA and its hexyl-ester derivative delivered in their free or lipo-
somal formulations to murine mammary adenocarcinoma organ
cultures. The existence of differential subcellular targets for PDT
employing either free or liposomal ALA formulations was determined
by means of electronic and light microscopy examination.

MATERIALS AND METHODS

Chemicals

ALA and phosphatidylcholine were purchased from Sigma Chemicals
Co. (St. Louis, MO, USA). All other chemicals were of analytical grade.

Hexyl – ALA synthesis

He – ALA was prepared according to the method of Takeya (1992)
by reacting ALA with hexanol in the presence of thionyl chloride,
yielding the product He – ALA as the hydrochloride salt (HCl).
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Preparation of liposomes

Large multilamellar liposomes (1 m size) containing ALA and He –
ALA were prepared according to Fukuda et al (1989) with the
neutral phospholipid phosphatidylcholine. The resulting liposomal
pellet was suspended in phosphate buffer saline (PBS). An encap-
sulation efficiency of 5% was determined measuring ALA and
He – ALA concentration in the Triton-lysated pellet and in the
supernatant by the Mauzerall and Granick (1956) method. The
liposomes were used immediately after preparation.

Animals

Male BALB/c mice 12 weeks old, weighing 20 – 25 g were used.
They were provided with food (Purina 3, Molinos Rı́o de la Plata)
and water ad libitum. Innocula of the mammary adenocarcinoma
M2, Instituto Roffo, Buenos Aires (Scolnik et al, 1984) were
injected subcutaneously under the axilla. After 15 days of tumour
growth, explants were excised from a unique tumour for each
experiment. Animals were treated in accordance with guidelines
established by the Animal Care and Use Committee of the Argen-
tine Association of Specialists in Laboratory Animals (AADEALC),
in full accord with the UK Guidelines for the Welfare of animals in
Experimental Neoplasia (UKCCCR, 1988).

Porphyrin determination

After ALA or He – ALA exposure, explants of 50 mg were homo-
genised in a 4 : 1 solution of ethyl acetate-glacial acetic acid
mixture. Conditions and explant size were determined in previous
work (Fukuda et al, 1989). The homogenates were centrifuged for
30 min at 3000 g and to the supernatants an equal volume of 5%
HCl was added (Falk, 1964). Extraction with HCl was repeated
until negative fluorescence in the organic layer. The aqueous frac-
tion was used for the fluorimetric determination of porphyrins
with excitation at 407 nm and emission at 604 nm. Calibration
was with PPIX standard (Porphyrin Products, Palo Alto, USA) in
5% HCl.

Tumour explant photodynamic treatment

Tumour tissue explants (4 – 5 mg) of non-necrotic, non-haemor-
rhagic tumour were floated in petri dishes in serum-free minimal
essential Eagle’s medium (MEM), supplemented with 2 mM L-
glutamine and gentamycin (40 mg ml71) and incubated at 378C
in presence of 0.6 mM ALA for 3 h. After irradiation with a fluence
rate of 190 J cm2, medium was replaced by FBS-containing
medium until fixation for microscopic examination. Appropriate
controls of non-irradiated explants incubated with ALA, and irra-
diated and non-irradiated explants incubated in the absence of
ALA were performed.
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Figure 1 Porphyrin synthesis from free and liposomal ALA and He –
ALA in tumour explants. Tumour explants were incubated 3 h in the pre-
sence of different concentrations of free or liposomal ALA (A) or He –
ALA (B) in FBS-free medium. Tissue porphyrins were extracted and deter-
mined fluorimetrically. The values are expressed as mg porphyrins g71

tissue.
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Figure 2 Porphyrin synthesis as a function of incubation time in the
presence of free and liposomal ALA and He – ALA in tumour explants.
Tumour explants were incubated during different time periods in the pre-
sence of free or liposomal ALA (A) or He – ALA (B) in FBS-free medium.
Tissue porphyrins were extracted and determined fluorimetrically. The
values are expressed as mg porphyrins g71 tissue.
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Laser irradiations

Irradiations were performed employing a rhodamine dye laser
(Model DL30, Oxford Lasers) pumped by a copper vapour laser
(CU15A, Oxford Lasers) tuned to 630 nm. The light was focused
into a 400-mm-diameter optical fibre coupled to a frontal light
distributor (Model FD2, Medlight, Ecublens, Switzerland) to
produce a treatment area of uniform intensity. The output power
from the fibre was measured with a power meter (Model LM-
100XL, Coherent, Auburn, CA, USA) before each illumination
and adjusted to the desired light dose.

Electron and light microscopy

Explants were fixed 6 h at 48C in 3% glutaraldehyde in Millioing
buffer (Sodium phosphate buffer 440 mOsm pH 7.3), post-fixed
in 2% osmium tetroxide in 0.1 mM sodium cacodylate buffer
pH 7.2, dehydrated in ethanol and embedded in epon 812 (epoxy
resin). Thin sections (750 – 900 Å) were cut in a ultramicrothome
Sorvall Portem-Blum MT2B model after staining with uranyl acet-
ate 2% Reynolds lead citrate and then observed in a Zeiss EM109
transmission electron microscope. Specimen stained with toluidine
blue were examined by light microscopy.

Statistics

Results are presented as the mean+standard deviation of three
duplicate experiments and comparisons between dose points were

made with the two-tailed t-test. Values of P50.05 were considered
significant.

RESULTS

Porphyrin accumulation from free and liposomal ALA and
He – ALA

Figure 1 depicts porphyrin synthesis in presence of different free or
liposomal ALA and He – ALA concentrations. We can observe a
saturation point at 1 mM free ALA (12.20+1.39 mg porphyrins
g71 tissue) and 1.4 mM liposomal ALA (10.83+1.64 mg g71).
Saturation points are also observed for free and liposomal He –
ALA: 10.88+0.68 mg g71 for 1 mM free He – ALA and 6.56+
0.14 mg g71 for 0.4 mM liposomal He – ALA.

At low concentrations of both pro-photosensitisers (up to
0.2 mM ALA and 0.4 mM He-ALA) there are no significative differ-
ences in the amount of porphyrins generated, independently of the
vehicle. However, at higher concentrations, values are impaired by
the use of the liposomal formulations from 10 up to 40% depend-
ing on the concentration employed. This pattern can be seen in
both ALA and He – ALA treated explants.

In Figure 2 we can observe the kinetics of intracellular porphyrin
accumulation. The cellular porphyrin content increases linearly
during the 24 h-period employing both ALA and He – ALA formu-
lations. When using the free compounds, a plateau is reached at
nearly 20 h of incubation. Porphyrin biosynthesis is always higher
employing ALA than He-ALA in both formulations and the
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Figure 3 Light micrograph of free ALA – PDT treated explant and non-
treated control. (A) Explant incubated 3 h in presence of 0.6 mM free ALA,
immediately irradiated with 190 J cm2, and fixed 4 h after. Vacuo-
lization and vesiculation of the cytoplasm can be observed. Nuclei remain
intact (61000). (B) Control explant incubated in the same conditions in
absence of ALA and non-irradiated (6630).

B

A

Figure 4 Transmission electron micrograph of control and ALA – PDT
treated explants. (A) Explant incubated 3 h in presence of 0.6 mM free
ALA, immediately irradiated with 190 J cm2, and fixed 4 h after. Mitochon-
drial and endoplasmic swelling can be observed. Loss of interstitial space
due to general cell enlargement (63000). (B) Control explant incubated
in the same conditions in absence of ALA and non-irradiated (63000).
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porphyrin accumulation ratios between the compounds increase
further from 5 h incubation onwards.

Porphyrins released to media are about 30 – 35% of the amount
retained intracellularly for all the concentrations of ALA and He –
ALA tested and for both formulations (data not shown).

Histological studies

Four hours after either free or liposomal ALA – PDT treatment,
some of the most common early alterations such as vacuolization
and vesiculation of the cytoplasm were observed by light micro-
scopy (Figure 3A). Severe mitochondrial and endoplasmic
swelling, membrane disruptions and invaginations, loss of intersti-
tial space due to general cell enlargement can be observed in
electronic micrographs (Figures 4 and 5). Instead nucleous
remained intact.

Employing the same light dose, 24 h after PDT, damage
progressed and extensive tumour cell death injury, death and
necrosis, cellular debris and nuclear remnants can be observed
(Figure 6A). These features of early and late damage stages are
identical in free and liposomal ALA – PDT treated explants.

Free ALA-treated and light-treated control explants, appeared
normal and identical to non-ALA non-light explants illustrated
in Figure 3B.

In explants treated with liposomal ALA and not irradiated,
phospholipid vesicles can be seen in the cytoplasm and some in
the intracellular space just about to be incorporated into the cell
(Figure 6B). When these explants are illuminated, some free lipo-

somes are still observed among cellular debris (Figure 6A).
Details of liposomes surrounded by cell membrane are shown in
an electronic micrograph (Figure 5B) and a huge lisosome contain-
ing a lot of liposomes is also observed (data not shown).

DISCUSSION

Entrappment of either ALA or He – ALA into liposomes does not
increase the rate of tumour porphyrin synthesis employing our
tissue explant culture model. Moreover, liposomal exposure of
the tumour cell line LM2 derived from this M2 mammary adeno-
carcinoma to either liposomal ALA or He – ALA produces less
PpIX as compared to their free formulations (Casas et al, unpub-
lished results). In contrast, in vivo administration of liposomal
ALA produced an increased porphyrin accumulation in the tumour
tissue (Fukuda et al, 1992). Differences between in vivo and in vitro
results may be ascribed to the lack of a functioning vascular system
and should be taken into account to assess the real performance of
PDT treatment.

The use of He – ALA does not improve porphyrin synthesis
either, which is instead significantly lower when compared with
ALA in most cases. In partial agreement with these results, in
previous work (Casas et al, 1999) we found employing rat skin
explants that porphyrin synthesis from He – ALA only surpass
synthesis from ALA at certain incubation times.

Employing the LM2 cell line (Casas et al, 2001) we had found
that the maximum amount of porphyrins was synthesised from
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Figure 5 Transmission electron micrograph of a ALA – PDT treated
explants. Explants were incubated 3 h in 0.6 mM ALA in free (A, C and
D) or liposome-encapsulated (D), and immediately irradiated with
190 J cm2, and fixed 4 h after. (A) Details of mitochondrial and endo-
plasmic swelling (67000). (B) Detail of ALA liposomes, surrounded by cell
membrane (arrows) (67000). (C) Membrane disruption (67000). (D)
Membrane invagination (67000).
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Figure 6 Light micrograph of liposomal ALA – PDT treated explant and
non-treated control. (A) Explant incubated 3 h in presence of 0.6 mM lipo-
somal ALA, immediately irradiated with 190 J cm2, and fixed 24 h after.
Loss of cellularity can be observed, cell debris and free nuclei (61000).
(B) Control explant incubated with liposomal ALA and non-irradiated. Li-
posomes can be seen in the cytoplasm (small arrow), and some in the in-
tracellular space just about to be either endocytosed or fused with the
plasma membrane (large arrow) (61000).
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0.6 mM ALA and that the same amount was produced by a
concentration 60-fold lower of He – ALA. We had also shown that
porphyrins formed from either ALA or ALA-esters equally sensitise
the cells to photoinactivation. These surprisingly huge differences
between results obtained with cell lines and parental tumours
may be ascribed to a large number of factors: (a) diminished ability
of He – ALA to cross vascular structures in the organ explants and
then reach tumoural cells; (b) retention of He – ALA in the inter-
stitial space and consequent limited availability to cell layers; (c)
differential expression and activity of esterase in the cell line as
compared to the parental tumour.

Despite these differences, alternative approaches can be designed
in order to determine the efficacy of PDT that can better reflect an
in vivo environment, such as controlling oxygen tension to mimic
the low pO2 present in the tumour.

It has been shown that liposomes are endocytosed and/or fused
with plasma membranes, thereby introducing their content into the
cytoplasm (Margolis et al, 1982). The presence of huge lisosomes
containing liposomes is an evidence at least of the participation
of the endocytic pathway in the release of the entrapped ALA into
the cell. Moreover, the presence of liposomes surrounded by cell
membrane accounts for the endocytic pathway of liposome incor-
poration.

We do not know yet the localisation of either ALA or He – ALA
within the liposome, but the hydrophobic nature of the ALA mole-
cule would indicate that it should very likely be retained in the
internal aqueous spaces between lipid layers in the core of the
multilamellar liposomes. Because He – ALA is more lipophilic than
ALA, it might be distributed between the aqueous and lipid phases
of the liposomes; therefore their respective release from liposomes
are expected to be different.

The permeability of liposomes to entrapped solutes increases
when they interact with cells, plasma or serum, as well as with
specific plasma proteins, especially lipoproteins. Lipids can
exchange between liposomes and liporoteins and in some cases
complete liposome breakdown can occur. In our case, the use of

FBS-free medium is minimising this effect. In addition, liposomes
composed of neutral phospholipids such as phosphatidylcholine,
are more stable, and only 24% of their components are lost in
7 h (Hunt, 1982).

There were no differences between the subcellular damage
induced by liposomal ALA – PDT when compared with free
ALA – PDT, indicating that induced mechanisms of cellular death
are the same. PpIX is generated in the mitochondria, re-distributed
over the cytoplasm and into membranes with consequent damage
of mitochondria and endoplasmic reticulum (ER). Direct mito-
chondrial damage has been addressed as the major target of
ALA – PDT (Iinuma et al, 1994). The ER and other membranous
structures might be damaged indirectly by reactive oxygen inter-
mediates coming from the lipophilic sensitiser PpIX without
direct targeting. The nucleous, however, remained unaffected in
the early steps of cell damage induced by either free or liposomal
ALA – PDT but later changes inducing necrotic cell death, include
nuclear structure disruption.

Further studies are still needed to determine whether attempts to
improve ALA – PDT treatment such as chemical modifications of
the ALA molecule and ALA delivery within liposomal carriers will
in fact be as useful as expected.
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