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An emergent concept in immunology suggests that innate immune system is capable to

undergo non-specific long-term responses and to provide resistance by modifying the

reactivity to sequential pathogen challenge. This phenomenon, named innate memory,

involves epigenetic, and metabolic reprogramming of innate immune cells. Current

literature shows that the innate memory process has a mainly beneficial role in host

defense, but sometimes can exert detrimental effects, as common in many diseases.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by

cognitive decline and dementia. Accumulating findings demonstrate that inflammation

is involved in AD pathogenesis and progression and recent genetic and functional data

confirm the driving role of the innate immune component in the disease. Furthermore, AD

patients show high burden of the most relevant infectious agents and up-regulation of

inflammatory features in their innate immune cells, including an activated, or “primed”

status of myeloid phagocytic cells in both brain and periphery, resembling trained

immunity conditions. Thus, it is conceivable that AD innate cells may be firstly involved

in the attempt to resolve recurrent/persistent inflammation but then acquire a trained

phenotype mostly unable to maintain the immune regulation, leaving uncontrolled or

sometimes supporting the progression of neurodegeneration. The present review aims

to summarize evidence evoking innate immune memory mechanisms in AD, and to

interpret their potential role, either protective or harmful, in disease progression. A better

understanding of such mechanisms will provide a fertile ground for development of novel

diagnostic, and therapeutic pathways in AD cure.
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INTRODUCTION

Defense is a proper function of the organism that must protect itself from external or internal
noxious agents. In vertebrates, as well as in invertebrates and plants, the first protection mechanism
is orchestrated by the action of innate immune cells, which cooperate to eliminate hazardous
stimula (1). Innate cells are able to fight a broad range of pathogens, although with non-specific
responses. They were considered immediate mediators of host resistance and inflammation in
contrast with the adaptive lymphocyte–dependent immune response that is antigen specific, and
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capable to provide lifelong protection against re-infection.
Over time, it has been repeatedly observed that innate
responses induced by exposure to one pathogen or vaccine
could affect the following immune response to subsequent
encounter of the same pathogen or a different one (2–4).
So, the classical vision on innate immune system has been
switched into the notion that it also holds a memory (5).
Innate cells’ memory is not related to gene rearrangements
as in lymphocytes, but is a consequence of reprogramming
based on gene transcription changes, epigenetic processes, and
cellular metabolism (6) addressed to promote a protective
response by increasing resistance to reinfection. However, under
predisposing conditions, innate memory may endorse human
diseases characterized by excessive inflammation, even causing a
neuroinflammatory cycle in neuropathological conditions (7, 8).
Inflammation is a driving force in Alzheimer’s disease (AD), a
progressive neurodegenerative disease leading to dementia. In
particular, genomic studies have associated ADwith dysregulated
innate immune cells, and uncontrolled neuroinflammatory
processes appear critical contributors in AD pathogenesis (9–11).
Besides alterations in microglia -the brain resident innate
immune cells-, blood borne cells, and peripheral inflammatory
factors may play a pivotal role in AD pathogenesis and
progression (12). However, the exact mechanisms by which
innate cell response influences AD course is still elusive.
Regardless the recent evidence suggesting a role for the innate
memory status on neuroinflammation, and neurodegeneration
in AD mice (13), no studies are directly addressed to evaluate
innate memory pathways in clinical AD. Main goal of the
present mini-review is to recapitulate the features of AD innate
response consistent with a trained phenotype in patients, thus
providing insights to better decipher the role of inflammation in
the disease.

INNATE IMMUNE MEMORY: CELLS,
RECEPTORS AND MECHANISMS

Innate and adaptive immune responses are components of
the host defense integrated system. While innate immunity
is considered the first, fast, and non-specific line of defense,
adaptive immunity is slower, antigen-specific, and endowed
with a memory that makes future responses against the specific
antigen more efficient. Innate immune system is composed of
different cell types primarily including mononuclear phagocytes
as monocytes, macrophages and dendritic cells, but also natural
killers (NK), and innate lymphoid cells (ILCs); while B and
T lymphocytes are components of the adaptive system. The
primary innate immune cells of the brain are microglia,
mononuclear phagocytes that act as sentinel of injuries like
macrophages. In adult mice and humans, brain immune
cell population is a combination of the resident microglia
and other phagocytes, included infiltrated monocytes who
differentiate in microglia-like cells, especially during chronic
injuries. Microglia have different phenotypes: under normal
conditions, when resting have ramified morphology, M1
indicates classically activated, and M2 alternatively activated

microglia (14). Recently, a disease-associated microglia (DAM)
type has been identified (15).

Recent findings have shown that all cells of the immune system
are aware of the immunological experiences and stimuli they
are exposed to and have a memory, non-specific in innate and
specific in adaptive system. The concept of innate memory has
been validated in many innate immune cells with mechanisms
that involve epigenetic and metabolic cell remodeling, in contrast
to gene rearrangements as in lymphocytes. This phenomenon
called trained immunity is a specific immune program triggered
by pathogen-derived molecules or other danger stimuli which
confers to innate cells a memory. It is a long-lasting altered
inflammatory activation, making cells able to respond to
subsequent stimulations either more heavily or weakly. These
two opposite activities, which are generally balanced for the
well-being of the organism, are named trained immunity, and
tolerance or, as more recently suggested, trained potentiation and
trained tolerance (16).

Actually, memory mechanisms have been well-described for
monocytes-macrophages (6) and NK (17, 18). Similarly, blood
derived DC could be primed by infections, give protection
against subsequent challenges showing epigenetic marks (19, 20),
but their trained immunity features are not fully characterized.
Moreover, recent results have shown in mice that microglia are
also capable of being trained. In fact, peripherally administration
of inflammatory stimuli can alter long-term microglia function,
due to differential epigenetic reprogramming that persist during
the time influencing neuropathology later in life (13).

As mentioned, epigenetic, and metabolic reprogramming
characterize the immune training of innate cells. Changes
in histone marks and chromatin architecture are related to
an increased, or decreased metabolism and transcriptional
processing (21). These mechanisms may be also systemically
induced at the level of bone marrow progenitors, and maintained
in the daughter cells (22, 23), determining a specific status
of innate memory that in turn could influence the general
inflammatory response.

Cells of the monocyte-macrophage lineage undergo long-
term functional reprogramming following activation of pattern-
recognition receptors (PRRs), that detect infectious pathogen-
associated molecular patterns (PAMPs), but also non-infectious
damage-associated molecular patterns (DAMPs). Like PAMPs,
DAMPs might act as stimuli that activate cells of the innate
immune system (24). Exposure to certain PAMPs, as those that
bind to toll-like receptors (TLR), and Nod-like receptors (NLR),
can confer a type of immunological memory to mononuclear
phagocytes that depends on the type of pathogen and its
dosage. Thus, activation of NPLR3 inflammasome by PAMPs or
DAMPs, promoting the maturation and secretion of IL1β and
IL-18, appears as a key mediator in the potentiation process
of trained immunity induced by stimuli like BCG, β-glucan,
and Western-type diet (7, 23, 25). At variance, the bacterial
component lipopolysaccharide (LPS) binding to TLR-4, is known
to induce tolerance (26). Another study demonstrated that
trained potentiation and tolerance are two opposing functional
programs, depending on the nature, and concentration of
engaged PRRs. Hence, engagement of NLRs (NOD2 or NOD1
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receptors) induces trained potentiation, which can vanish
with smaller amounts of ligands, while the engagement of
TLRs with high inflammatory doses of PRR ligands induces
tolerance. Conversely, low concentrations of TLR ligands in
monocytes reverse tolerance to potentiation, heightening the
pro-inflammatory state (27).

At first stimulus, epigenetic reprogramming occurs and
involves methylation or acetylation on N-terminal histone tails,
like H3K4me, H3K9ac, and H3K27ac. For instance, after β-
glucan treatment, monocytes show enrichment of H3K4me3 in
promoters of genes encoding the pro-inflammatory cytokine
TNF-α, IL-6, and IL-18 (28–30). After stimulation, some
epigenetic marks are lost and cells maintain a low inflammatory
gene expression. However, some enhancers, called latent
enhancer, preserve a state of mono-methylation (H3K4me1)
increasing accessibility of chromatin leading to a stronger
response to subsequent stimuli (31). After a second stimulus,
trained cells show higher inflammatory gene expression and
acquire the epigenetic signature on their regulatory regions as
H3K4me3, H3K4me1, and H3K4ac. After multiple inflammatory
stimuli, cells could adopt a tolerance program consisting in
the lack of responsiveness, resulting in low expression of pro-
inflammatory cytokines, and acquiring epigenetic markers of
transcriptional silencing, as in naïve state (32).

Transcriptional changes also reflect primarily metabolic
activation. In monocytes, β-glucan-induced trained immunity
leads changes in cellular metabolism from oxidative
phosphorylation to aerobic glycolysis, increasing the ability
of innate immune cells to respond to subsequent stimuli (33). In
particular, the shift in metabolism leading to increased glycolysis
is dependent on the activation of mammalian target of rapamycin
(mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible
factor-1α) pathway. In addition, the epigenetic changes observed
in BCG-trainedmonocytes are dependent on the induction of the
metabolic pathways: if glycolysis or glutaminolysis is inhibited,
changes in H3K4me3, and H3K9me3 at promoter sites of IL-6
and TNF-α reverse, showing a link between these two regulatory
cellular processes (34). Metabolic changes influence chromatin
remodeling since epigenetic enzymes use small metabolic co-
factors to perform their functions, therefore metabolic shift can
cause altered epigenetic signature in immune cells (35). During
immune memory, immune-metabolism and gene expression are
linked by the epigenetic modifications.

ALZHEIMER’S DISEASE AND INNATE
IMMUNE CELLS

The sporadic form of Alzheimer’s disease (AD) is the most
common type of dementia diagnosed in elderly and its
cure or prevention still lacks effective treatments. Main AD
histopathologic hallmarks are intracellular neurofibrillary
tangles of hyper-phosphorylated tau protein and extracellular
aggregates (plaques) of the misfolded amyloid-β (Aβ) peptides
(36). Aβ plaques are surrounded by activated glial cells
releasing inflammatory mediators, hence the sustained
neuroinflammatory response has emerged as a third core

pathological feature of AD (37), with an acknowledged role in
disease pathogenesis and evolution (38, 39). Accumulation of
Aβ, resulting from its imbalanced production and/or clearance,
is widely considered a critical pathogenic event that induces
microglial activation prompting to a local inflammatory process
that in turn leads to amyloid plaque generation. Aβ production
may be also connected with antimicrobial response, further
strengthening the importance of immune system in AD (40).
Genome wide association studies and integrative genomic
analyses of brain transcriptomes confirm that myeloid cell-
specific immune genes encoding for inflammatory factors and
molecules involved in the clearance of misfolded proteins are
risk factors for sporadic AD (10, 41–44).

The exact role of microglia underlying AD onset and
progression is still unclear. Generally, microglia hold a protective
role as they can sense and clear misfolded proteins, but in
AD they may acquire a dysfunctional phenotype, secreting
neurotoxic cytokines, and instigating a persistent inflammatory
status (45, 46). It might occur in the earliest stages of the disease,
while later on microglia and brain-invading monocytes would
exert a prevalent beneficial function, triggering a resolution
phase, possibly perturbed (47, 48). Accordingly, the DAM
microglia, identified in the brain of AD mice and patients,
seems to have the potential to restrict neurodegeneration (15).
Overall, microglia reactions may be influenced by duration of
activation, localization, involvement of other cell types, genetic
susceptibility, aging, and disease progression (11), though a PET
study suggests that the extent and dynamics of beneficial or
detrimental microglia activation vary among patients, rather
than depending on disease stages (49). Such view, in addition
to explaining the trouble in decoding microglia role in AD,
appears in agreement with the potential effects of innate memory
response on microglia phenotype (13), which essentially depend
on the previous history of exposure to priming factors in
each individual.

Inflammation in both brain and periphery may be a
very early event in the AD pathogenic course (37, 50–52).
Microglia are able to sense inflammatory signaling molecules
originating outside the brain. Peripheral inflammation, as
well as activation of blood borne innate immune cells,
appears to hold relevant disease-modifying functions in AD
(50, 53, 54). As shown in animal models, blood-derived
myeloid cells affect AD-like neurodegeneration with protective,
causative, and/or reactive effects, apparently influenced by the
disease stage (55–57). Thus, when evaluating the innate cell
contribution to AD pathogenic pathways, both brain resident,
and circulating innate immune myeloid cells should be taken
into consideration. The latter could participate in the long-lasting
dysregulated AD immune response by acting either directly
when recruited to brain, or indirectly through the release of
soluble mediators.

The most studied blood borne innate cell populations in
AD are monocytes and macrophages, which enter the brain,
and modulate pathology, although with controversial roles (58–
60). Regarding other types of myeloid cells, an involvement in
AD neuroinflammation and neurodegeneration is proposed for
dendritic cells (DCs) (61, 62) and for neutrophils, which could
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cross into the brain parenchyma, and contribute to neuronal
damage and cognitive decline (63). Eventually, NK may have
some relevance in AD, but their contribution needs to be further
clarified (64, 65).

Given this scenario, wherein AD progression is likely driven
by an interplay of innate cell types, the memory status and
capability of these effector cells to respond to neurodegenerative
conditions by means of neuroinflammatory modulation is
of primary importance to delineate the neuroprotective or
damaging consequences of their activities.

EVIDENCE OF INNATE MEMORY
PATHWAYS IN AD

Systemic infections, aging and chronic inflammatory conditions
drive innate immune cells to undergo reshaping and they are all
well-recognized risk factors of AD. In particular, Herpes simplex
virus type 1, Cyto-megalovirus, Chlamydophila pneumoniae,
spirochetes, Helicobacter pylori, and periodontal pathogens have
been associated with AD, and cognitive decline (66–68). Some
of them have been found in AD patients’ brain, listed as
causative factors of AD inflammatory pathways and implicated
in disease pathogenesis (69–71). Emergent studies reported a
microbial dysbiosis in both AD animal models and patients,
which could affect Aβ amyloidosis and host innate immunity
mechanisms (72), leading to a peripheral inflammatory state
(73, 74). These results support the inflammatory-infectious
theory of AD (75, 76). Accordingly, elevated plasma levels
of LPS were previously described in AD patients (77) and
recently found to progressively accumulate in AD brain in
association with neuropathology, affecting gene expression (78).
As reported, infectious stimuli, including bacterial or fungal cells
and their components, as well as viruses, are considered potent
inducers of innate immune memory, thus the role played by
infectious agents in AD advocates for a reshaping of innate cell
response in patients. In addition, complex human diseases with
chronic inflammatory components in their etiologies, such as
atherosclerosis, arthritis, diabetes and obesity, are predisposing
factors for subsequent dementia (79), strengthening the link
between a persistent activation of innate response and AD.
Finally, aging, the most important risk factor for AD, causes
inflammaging (80), a low-grade inflammation characterized by
up-regulation of pro-inflammatory mediators and increased
response of innate cells, possibly contributing to the pathogenesis
of AD (81).

In keeping with a potentiated trained immunity status
of AD innate cells, several authors have reported elevated
levels of circulating pro-inflammatory cytokines and amplified
inflammatory response of blood cells in AD patients. Despite
some inconsistent results, meta-analysis studies confirm an
overall trend of increased pro-inflammatory cytokines in AD (82,
83), and higher levels of cytokines were observed in patients with
early or mild forms of AD (84, 85). Similarly, peripheral innate
cells of AD patients show a “primed” state and the percentage
of peripheral monocytes producing pro-inflammatory cytokines
increases early in AD (86). Furthermore, AD monocytes and

DCs show enhanced inflammatory phenotype in relation with
symptom severity (87–89). When the disease progresses to a
more severe condition, AD patients show a decrease in the
levels of inflammatory markers (90, 91). Thus, at variance with
the earliest phases, the depressed innate response observed in
late stages of AD might reflect a condition of innate tolerance
following repeated and unresolved innate stimulations.

AD microglia also show modifications that remind an
adaptive process mediated by trained immunity (92). In fact, in
the aging brain and more evidently in AD patients, microglia
appear primed: they are activated, produce increased amounts of
pro-inflammatory mediators and are more susceptible to central
damage after peripheral insults (93, 94). In addition, microglia
activation can be suppressed by epigenetic modulation and
epigenetic changes occurring during AD may prime microglia
for a later transition to the DAM phenotype (15, 95), suggesting
that epigenetic mechanisms are important in microglial priming.
This picture fits well with what described in an AD experimental
model, where after repeated systemic challenges mimicking
bacterial invasion, microglia are epigenetically reprogrammed
and, depending on the persistence of triggering, they undergo
either a potentiated trained immunity resulting in amplification
of pro-inflammatorymediator release or an acquisition of trained
tolerance characteristics, both shaping neuropathology (13).

Converging evidence point to PRR activation, histone
modifications and metabolic changes of innate cells in AD
progression. Specifically, misfolded proteins like Aβ are able to
bind PRRs expressed by microglia and other innate myeloid cells
and exert cell activation with resultant release of inflammatory
mediators, ultimately contributing to disease progression and
severity. Aβ, both in its soluble and fibrillary form, is able to
bind a variety of receptor molecules promoting inflammation,
including CD14, CD36, and TLRs (96, 97). It can also act as a
DAMP and activate the inflammasome NALP3 that leads to the
release of the active pro-inflammatory cytokines IL-1β and IL-18,
key components of the innate immune reaction observed in AD
mice brain (98). Consistently, NLRP3 inflammasome activation
occurs in the brains of AD patients, and contributes to pathology
in AD mice (99).

In addition to resulting activated through PRRs engagement,
AD innate cells show changes in cell transcription, epigenetic,
and metabolic modifications that are mostly consistent with
molecular mechanisms underlying trained immunity. Increased
immune activity during AD neurodegeneration appears linked
to aging and environmental-driven epigenomic alteration (100)
and early epigenetic changes have been described in AD patients
that may contribute to disease pathology (101). For instance, a
mis-localization of the epigenetic molecule H3K4me3 between
the cell nucleus and the cytoplasm has been reported in
early AD (102), though its functional role is still unclear. In
AD-mouse model of neurodegeneration, transcriptional and
epigenetic changes (including H3K4me3 and H3K27ac) have
emerged by profiling chromatin state across early and late AD
pathology. Changes in immune genes and regulatory regions
during AD-like neurodegeneration in mouse have been found,
with strong human-mouse conservation of gene expression,
and epigenomic signatures, especially in innate immune cells
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(103). Finally, AD innate cells are likely to undergo a raise of
aerobic glycolysis, the metabolic driver of trained immunity. In
fact, mTOR signaling is early increased in AD animal models
(104), while TREM2-deficient mice with AD-like pathology
show defective mTOR signaling, which affects ATP levels and
biosynthetic pathways (105). Finally, in AD mouse model,
mTOR activation and HIF-1α signaling, possibly mediated
by Aβ-induced epigenetic microglial reprogramming, appear
unfavorable to AD pathology (13).

POTENTIAL ROLE OF INNATE MEMORY IN
AD AND CONCLUDING REMARKS

Memory status of innate immune cells is governed by the
type and concentration of ligand encountered and largely
depends on the personal history of exposure to damaging
agents during life. Although innate memory’s role is mainly
protective, it may in some cases influence the course of
diseases, especially in those pathological conditions having
chronic inflammation as hallmark, like AD. Likely due to
many different circumstances, as enhanced infectious burden,
microbial dysbiosis and persistence of endogenous misfolded
proteins, AD patients show evidence of innate immunity chronic
activation that could lead to maladaptive responses, mainly
exacerbating damaging mechanisms in the brain.

Regardless no studies have been addressed yet at evaluating
innate memory responses in clinical AD, features of innate
immune response in patients and animal models suggest that
AD innate cells, including microglia, monocytes and DCs, may
undergo a long-term functional reprogramming characterized by
both potentiated and tolerant responses, possibly contributing to
disease development. Under this view, we elaborated a schematic
representation (Figure 1) according to which peripheral and
cerebral innate cells of AD patients hold a memory of past
stimulations that alters brain immune responses to Aβ, which
in turn accumulates, contributing to the central propagation
of pathological changes, and progressive clinical symptoms
of AD. Since individuals are exposed to a multiplicity of
different threatening and pathogenic agents during their life,
a large heterogeneity in innate memory response is expected,
in agreement with the high variation of microglia features,
and dissimilarities in disease severity and progression among
patients. Specifically, trained immunity could have potentiation
features at pre-symptomatic and early times of AD progression,
being characterized by enhanced release of pro-inflammatory
cytokines, increased Aβ production and damaging consequences
on affected brain. In contrast, at AD later stages, high
concentration of persistent stimulus (e.g., Aβ) could switch
the immune response toward trained tolerance. The prolonged
exposure to stimulus could bring to desensitization with
reduced production of inflammatory cytokines, shifting toward

FIGURE 1 | The cartoon recapitulates our view of the potential role in AD of innate memory processes occurring during disease progression. A detailed explanation of

the drawing is reported in the text.
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maintenance, and repair activities, though possibly inefficacious
because of the maladaptive nature of the response.

Future studies should investigate the innate memory status
and its specific molecular mechanisms in in vitro models
of both peripheral and brain innate cells of AD patients,
especially in relation to disease progression. Accordingly,
considering the availability of inhibitors of immune-metabolic
and epigenetic pathways leading to trained immunity (7),
potential new strategies for AD treatment could be envisaged.
Overall, a better knowledge of innate memory processes in AD
could help in deciphering patients’ inflammatory mechanisms
underlying pathophysiology and thus facilitating the design of
personalized treatments.
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