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Abstract: Lead poisoning is often considered a traditional disease; however, the specific mechanism
of toxicity remains unclear. The study of Pb-induced alterations in cellular metabolic pathways
is important to understand the biological response and disorders associated with environmental
exposure to lead. Metabolomics studies have recently been paid considerable attention to understand
in detail the biological response to lead exposure and the associated toxicity mechanisms. In the
present study, wild rodents collected from an area contaminated with lead (N = 18) and a control area
(N = 10) were investigated. This was the first ever experimental metabolomic study of wildlife exposed
to lead in the field. While the levels of plasma phenylalanine and isoleucine were significantly higher
in a lead-contaminated area versus the control area, hydroxybutyric acid was marginally significantly
higher in the contaminated area, suggesting the possibility of enhancement of lipid metabolism. In
the interregional least-absolute shrinkage and selection operator (lasso) regression model analysis,
phenylalanine and isoleucine were identified as possible biomarkers, which is in agreement with
the random forest model. In addition, in the random forest model, glutaric acid, glutamine, and
hydroxybutyric acid were selected. In agreement with previous studies, enrichment analysis showed
alterations in the urea cycle and ATP-binding cassette transporter pathways. Although regional
rodent species bias was observed in this study, and the relatively small sample size should be taken
into account, the present results are to some extent consistent with those of previous studies on
humans and laboratory animals.

Keywords: lead; metabolomics; wild rodent; mining; biomarker; biological pathway; lasso regression
model; random forest model

1. Introduction

Lead (Pb) has been and continues to be widely used in industrial activities, owing to
its favorable characteristics including ease of smelting and processing, etc. However, it
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is well established that Pb is a toxic metal that enters the body through the environment,
such as soil, dust, water, and food. Numerous previous studies have reported the toxicity
of Pb at cellular, tissue or organ levels, which results in biochemical and physiological
disorders [1,2]. Lead poisoning is often considered a traditional disease; however, the
specific mechanism of toxicity remains unclear. Moreover, Pb poisoning symptoms are non-
specific and latent at low exposure levels, without clear clinical signs. Neurodevelopmental
disorder is one of the common latent effects of Pb poisoning. Concerned about the potential
health effects of Pb at low levels, the Center for Disease Control and Prevention (CDC)
has lowered the reference level for blood lead levels in children to 3.5 µg/dL in 2021 [3].
Lead poisoning is considered to have a potentially significant impact on human health in
modern society, and careful consideration and regulation is required for industrial use.

The study of Pb-induced alterations in cellular metabolic pathways is important to
further understand the biological response and disorders associated with environmental
exposure to Pb [4]. Metabolomics represents the complete set of metabolites in a cell,
tissue, organ, or whole body. In recent years, it has been attracting more attention as
a powerful tool for exploring the alteration of small molecules. Metabolomics is also
applied to toxicology through the concept of “toxicometabolomics” [5,6]. Metabolome
analysis provides an instantaneous snapshot of the physiology and alterations of chemical
processes involving metabolites, small molecule substrates, intermediates, and products
of metabolism in response to exposure to environmental contaminants (e.g., metals) [7,8].
For Pb, some metabolomics studies have been conducted on humans using the serum of
smelter workers [9], urine of a population living near a Pb-containing battery recycling
plant [10], plasma of car commuters [11], and urine from children and elderly individuals
living in an industrial coking area [12]. Other studies investigated the metabolic alteration
in laboratory rat serum [13] and laboratory mouse feces [14]. However, there is no previous
report examining terrestrial field animals environmentally exposed to Pb. As such, there is
limited knowledge regarding the relationship between exposure to Pb and metabolomic
change. Therefore, further investigation using the metabolomics approach is warranted to
characterize the responses of organisms following exposure to Pb.

The town of Kabwe is the capital of the central province of the Republic of Zambia
with a long history of Pb and zinc mining, which operated for nearly a century until its
closure in 1994. Because of inadequate environmental pollution control during the period
of mining activity, high levels of Pb have been reported in the environment [15], wild
animals [16,17] including wild rodents [18,19], and humans [20,21]. In our recent study of
blood samples from the Kabwe population, we observed an elevation in the levels of Pb
in the blood, which was accompanied by alteration of some toxicological parameters [20].
Given this evidence, we considered Kabwe town as a good model area polluted with Pb for
our study. The objective of this investigation was to conduct metabolomics research in wild
animals by comparing the levels of exposure to Pb.

We aimed to elucidate the metabolic signatures in the affected biological systems
induced by exposure to Pb. For this purpose, we selected the well-studied terrestrial animal
model of wild rodents. This was the first study investigating the effect of exposure to Pb on
metabolomics using field animals.

2. Materials and Methods
2.1. Rodent Sample Collection

The sampling was performed with permission and strict adherence with the guidelines
from the Zambian Ministry of Fisheries and Livestock, as well as the Faculty of Veteri-
nary Medicine, Hokkaido University, Sapporo, Japan (approval number: Vet-17010). In
September 2020, wild rodents were captured in two areas of Kabwe District including
Mutwe Wansofu (N = 18) and Kang’omba (N = 10). The Mutwe Wansofu was considered
polluted because the sample collection point of Mutwe Wansofu is located immediately
south to the mine site (distance: ≤250 m). The Kang’omba area is located approximately
5 km from the mine site; therefore, it was included as the control site (Supplementary



Int. J. Environ. Res. Public Health 2022, 19, 541 3 of 14

Figure S1). Box-type cage traps with food as bait were used to capture live wild rodents.
Traps were set up in residential areas during the day and retrieved the following morning.
Since rodents are generally nocturnal, this method of sampling was efficient. The captured
rodents were euthanized by inhalation of carbon dioxide gas and dissected to collect the
liver, kidneys, and eyes, as well as whole blood from the postcava, using a heparinized
syringe and needle. Prior to the dissection, body weight and sex were determined. A
portion of whole blood samples was immediately centrifuged for 10 min at 1500× g. Subse-
quently, the supernatants of plasma samples, as well as the liver, kidney, and remaining
whole blood samples were stored at −20 ◦C. The samples were transported to Japan in
cooler boxes for laboratory analysis in the Laboratory of Toxicology, Faculty of Veterinary
Medicine, Hokkaido University (Sapporo, Japan), after an international sanitary certificate
was obtained from the Zambian Ministry of Fisheries and Livestock (No. 20599).

2.2. Identification of Rodent Species

Genomic DNA was extracted from liver samples using the Wizard® Genomic DNA
purification kit (Promega Corp., Madison, WI, USA) for species identification through the
cytochrome b (cyt-b, 762 bp) gene with accession number JX887164.1. The identification
method was slightly modified from the original method [22]. The used primers were
as follows: forward primer (5′-GGTGAAGGCTTCAACGCCAACCCTA-3′) and reverse
primer (5′-TAGAATATCAGCTTTGGGTGTTGATGG-3′). The thermal cycler LifeECO
(Nippon Genetics Co., Ltd., Tokyo, Japan) was used for polymerase chain reaction (PCR)
amplification. The reaction included a 2 min initial denaturing step at 94 ◦C followed by
35 cycles at 94 ◦C for 30 s, 57 ◦C for 30 s, and 72 ◦C for 60 s, and a final extension step at
72 ◦C for 5 min. The volume of PCR mix was 20 µL containing 50 ng of genomic DNA,
10 µL of EmeraldAmp® PCR master mix (Takara Bio Inc., Shiga, Japan) and 0.2 µM of each
primer. The purification of the PCR products was performed using the QIAquick® PCR
purification kit (Qiagen, Hilden, Germany) according to the instructions provided by the
manufacturer. Sequencing was performed by Fasmac Co., Ltd. (Kanagawa, Japan). The
rodent species were identified from the obtained sequences through blast analysis using
the National Center for Biotechnology Information website.

2.3. Estimation of the Age of Rodents

The ages of Rattus rattus (R. rattus) and Mastomys natalensis (M. natalensis) were esti-
mated based on the weight of the desiccated eye lens using a slightly modified version
of the methods originally described by Tanikawa [23] and Fichet-Calvet et al. [24]. After
the fixation of eyes in 10% neutral buffered formaldehyde solution at room temperature
for 4 weeks, the tissues around the lens were removed. The lenses were washed with
distilled water and dried at 60 ◦C for 3 days in an oven before weighing. Age estimation
was conducted using the following formulae [23,24]:

y = 10ˆ(1.02 + 0.023 x) (for R. rattus)

y = eˆ([10.4608 + x]/4.35076) (for M. natalensis)

where y is the age (in days), and x is the total weight of both lenses (in milligrams).

2.4. Extraction and Analysis of Pb

All laboratory materials and instruments used in the heavy metal analysis were
washed with 2% nitric acid (HNO3) and rinsed at least twice with distilled water. We
confirmed that there was no metal contamination through the analytical procedures using
the regent (digestion) blank measurement. Whole blood, liver, and kidney samples were
digested for metal analysis using a method described in a previous study [17,25] with
minor modifications. In brief, approximately 300 mg of each tissue sample was dried for
48 h in an oven at 50 ◦C. Whole blood (100 µL) and the dried tissue samples were digested
with 5 mL of nitric acid (atomic absorption spectrometry grade, 60%; Kanto Chemical
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Corp., Tokyo, Japan) diluted to 30% and 1 mL of 30% hydrogen peroxide (Cica reagent:
30%; Kanto Chemical Corp., Tokyo, Japan). This digestion process was performed using a
microwave digestion system (Speed Wave MWS-2; Berghof, Eningen, Germany) according
to the instructions provided by the manufacturer. After cooling, extracted solutions were
transferred into 15 mL plastic tubes and diluted to a final volume of 10 mL with bi-distilled
and deionized water (Milli-Q; Millipore, Bedford, MA, USA).

The concentration of Pb in the extracted solutions was determined by using an in-
ductively coupled plasma–mass spectrometer (ICP-MS 7700 series; Agilent Technologies
Inc., Tokyo, Japan), following the procedure previously described by Nakata et al. [25].
Analytical quality control (QC) was conducted using the certified reference materials of
DOLT-4 (dogfish liver; National Research Council of Canada) and SeronormTM Trace Ele-
ments Whole Blood L-2 (Sero, Billingstad, Norway). Replicate analysis of these reference
materials showed good accuracy (relative standard deviation was <3%) and recoveries
(95–105%). The instrument detection limit was 0.001 µg/L.

2.5. Metabolome Analysis

The imported plasma samples were transported to the Center for Preventive Med-
ical Sciences, Chiba University (Chiba, Japan) for the metabolome analysis. A solution
containing methanol, ultrapure water, and chloroform (5:2:2 in volume ratio) was pre-
pared. Methanol (99.7+%, for liquid chromatography) and chloroform (99.7+%, for high-
performance liquid chromatography) were purchased from Wako Pure Chemical Industries
(Osaka, Japan), while ultrapure water was obtained using an RDF280NC system (Advantec,
Dublin, CA, USA). Each plasma sample (10 µL) was mixed to prepare QC. Fifty microliters
of plasma samples and QC were mixed with 250 µL of the solution and then mixed with
10 µL of internal standard solution containing 0.2 mg/mL of adonitol (Sigma–Aldrich,
Tokyo, Japan) in methanol and centrifuged (14,000 rpm, 4 ◦C, 5 min). Subsequently, 200 µL
of Milli-Q water was added to 250 µL of supernatant. The samples were centrifuged
again (14,000 rpm, 4 ◦C, 5 min). To remove ethanol, the supernatants were placed in a
centrifugal evaporator (CVE-2100; Tokyo Rikakikai Co, Ltd., Tokyo, Japan) equipped with
a vacuum system (V-700; Shibata Scientific Technology Ltd., Saitama, Japan) for 2 h. Next,
the residues were placed in a pre-cooled (at −80 ◦C) glass tube for overnight freeze-drying
using FDS-1000 (Tokyo Rikakikai Co., Ltd.).

Methoxyamine hydrochloride (20 mg/mL, 80 µL) (GL Sciences Inc., Tokyo, Japan),
which was dissolved in pyridine (Wako Pure Chemical Industries) immediately prior to
use, was added to the freeze-dried samples for reconstitution. Subsequently, the recon-
stituted samples were incubated (1200 rpm, 30 ◦C, 90 min) for the first derivatization of
methoxylation. For the second derivatization of trimethylsilylation, 40 µL of N-methyl-
N-trimethylsilyl-trifluoroacetamide was added and centrifuged (14,000 rpm, room tem-
perature, 5 min) after incubation (1200 rpm, 37 ◦C, 30 min). Finally, the supernatant was
transferred to the gas chromatography–mass spectrometry (GC–MS) vial. Within 24 h after
the completion of derivatization, the metabolome analysis was demonstrated using JMS-Q
1500GC (Jeol Ltd., Tokyo, Japan) quadrupole mass spectrometer equipped with an Agilent
7890B gas chromatograph and a 7693 autosampler (Agilent Technologies Inc., Tokyo, Japan).
An Rxi®-5Sil MS column (30 m length × 0.25 mm I.D. × 0.25 µm film thickness; Shimadzu
GLC Ltd., Tokyo, Japan) was used for GC separation. For quality assurance, QC samples
were analyzed at the beginning of the sequence and every seven samples, as well as a
pyridine blank at the beginning. Additionally, a hydrocarbon mixture standard (C9–C40,
all even in n-Hexane) (GL Science Inc., Tokyo, Japan) was analyzed at the end of the se-
quence for the correction of retention time. Peak selection and annotation were performed
using MS-DIAL version 4.36 with GC–MS DB-Public-KovatsRI-VS3.msp library [26]. Peak
heights were normalized to those of the internal standard and a QC-sample-based, robust,
locally estimated scatterplot smoothing.
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2.6. Statistical Analysis

The t test, Mann–Whitney U test, and Shapiro–Wilk test were performed using the
IBM SPSS Statistics version 26.0 software (IBM Corporation, Armonk, NY, USA) to examine
the differences in animal characteristics and levels of Pb between groups, as well as the
data normality. The Shapiro–Wilk test revealed lack of data normality for the body weight,
estimated age, and levels of Pb in blood, liver, and kidney. Thus, the data were log-
transformed and subsequently confirmed for normal distribution using the Shapiro–Wilk
test, except for body weight. For this reason, the differences between groups for body
weight were examined using the Mann–Whitney U test without log-transformation, while
the t test was used for the other parameters after log-transformation. A p value of <0.05
denoted statistically significant differences.

The R packages in R.4.0.5 [27] were used for further statistical analysis. We conducted
principal component analysis (PCA) and constructed a correlation matrix by using the
data of the detected metabolites to determine metabolomic profiles. The Mann–Whitney U
test and Shapiro–Wilk test were used to investigate the differences in metabolites across
sampling sites. Metabolomes were modeled through “least absolute shrinkage and selection
operator” (lasso) [28] using the R package glmnet [29] and random forests [30] using the
R package ranger [31] involving metabolites detected in ≥50% of samples and with a
coefficient of variation <40% (25 metabolites). For the investigation of changes induced by
Pb exposure, animals collected from the polluted site (Mutwe Wansofu) were compared
with those collected from the control site (Kang’omba) by using logistic regression with the
L1 regularization lasso model [28] in the R package glmnet [29] and the random-forests
model [30] in the R package ranger [31]. Logistic regression with L1 regularization (lasso)
and random forests were used to predict the sampling location from metabolites and age
data. The number of variables sampled randomly as candidates in each split of the lasso
and random forest model was optimized using the R package caret [32]. In all cases, the
training sets consisted of 60% of samples from each site, while the remaining 40% were
used as external test sets, which generated random numbers in the R selected. Lasso
logistic regression and random-forest models were also assessed through repeated five-
fold cross-validation (10 replicates) using multivariate receiver operating characteristics
(ROC) and areas under the ROC curves (AUC) as measures of robustness. Likewise, R-
square (R2) was used to further assess the lasso linear regression models. Parameters
that optimized the R2 were determined numerically. Metabolites retained with variable
importance of >0 in the linear and logistic regression with L1 regularization models were
considered potential biomarkers. Furthermore, random-forest analysis for regression
analysis was performed to distinguish the sampling location based on the metabolome
profile and levels of Pb in blood, but the levels of Pb in the liver and kidney, species, and
sex were excluded. Metabolites with a p value of <0.05, calculated using the permutation
variable importance method [33] and showing significant differences between regions by
Mann–Whitney U test and also identified by the lasso logistic model, were identified as
potential biomarkers. Enrichment analysis of metabolic pathways was carried out using
MBROLE2 [34] to distinguish sampling location; p values were adjusted by controlling
the false discovery rate (FDR) [35]. A stringent FDR (q value) of <0.2 was used to identify
metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes [36], the
Human Metabolome Database [37], and the BioCyc Database [38] identifier to annotate five
candidates including two potential biomarkers and three other metabolites with a p value
of <0.05 in random forest analysis (hydroxybutyric acid, glutaric acid and glutamine).

3. Results
3.1. Characteristics and Pb Levels of Animals

Data on the identified species, estimated age, body weight, as well as Pb levels in
the blood, liver, and kidney, are summarized according to species and area in Table 1. In
this study, 18 rodents (17 R. rattus and one M. natalensis) collected from Mutwe Wansofu
and 10 rodents (two R. rattus, one R. tanezumi, and seven M. natalensis) collected from
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Kang’omba were used for further analysis; notably, there was a species bias across the areas.
The Mann–Whitney U test demonstrated the significantly greater body weight of rodents
collected from the polluted site versus the control site. In contrast, the t test showed that
the estimated age of animals was significantly higher in the control site versus the polluted
site. The measured levels of Pb in blood, liver, and kidney showed significant elevation in
the samples collected from the polluted site, confirming the pollution status.

Table 1. Identified species, characteristics, and tissue Pb levels of the target animals.

Species and
Sample Size

Sex (Male,
Female)

Body Weight *
(g)

Estimated Age **
(day)

Blood Pb **
(µg/dL)

Liver Pb **
(mg/kg, dw)

Kidney Pb ***
(mg/kg, dw)

Mutwe
Wansofu

(polluted site)
Total (N = 18) 14, 4 108 ± 44.3 139 ± 107 33.6 ± 25.4 5.15 ± 3.98 14.2 ± 12.2

R. rattus (N = 17) 14, 3 113 ± 40.5 190 ± 163 33.1 ± 26.0 4.36 ± 2.24 13.6 ± 12.3

M. natalensis
(N = 1) 0, 1 25.2 203 42.9 15.8 24.4

Kang’omba
(control site) Total (N = 9) 5, 4 49.5 ± 30.1 227 ± 136 5.62 ± 1.86 1.07 ± 0.542 4.26 ± 1.03

R. rattus (N = 2) 1, 1 91.3, 107 75.9, 234 5.57, 6.44 0.483, 0.624 2.85, 4.83

M. natalensis
(N = 7) 4, 3 35.3 ± 11.5 248 ± 142 5.50 ± 2.11 1.22 ± 0.524 4.37 ± 1.01

* p < 0.005, ** p < 0.0001, *** p < 0.05.

3.2. Metabolome Profiles and Pathway Enrichment Analysis

The GC–MS analysis detected a total of 25 target metabolites in >50% of plasma
samples (<40% coefficient of variation). The clustering pattern of samples was visualized
through PCA (Figure 1). The PCA results demonstrated that the first (PC1), second (PC2),
and third (PC3) principal components respectively accounted for 26.1%, 12.9%, and 11.1%
of the variation. There were no obvious regional clusters. All of the metabolites positively
determined PC1, while they were vectored in diverse directions in Figure 1C, which is a
combination of PC2 and PC3. There was no clear trend observed; however, for instance,
isoleucine and phenylalanine were positively related to PC1 and negatively related to PC2,
while D-glucose and lactic acid were positively associated with PC1, PC2, and PC3.
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Figure 1. Principal component analysis of metabolites. (A) First principal component (PC1) versus
second principal component (PC2). (B) PC1 versus third principal component (PC3). (C) PC2 versus
PC3. Red dots indicate animals from the polluted site (Mutwe Wansofu), and blue dots indicate
animals from the control site (Kang’omba).
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Figure 2 shows a comparison of the results of the metabolomics analysis according
to the area. The Mann–Whitney U test revealed significantly higher levels of plasma
isoleucine (p = 0.011) and phenylalanine (p = 0.031) in the polluted site versus the control
site. A marginally significant increase in the levels of hydroxybutyric acid (p = 0.099) in
the polluted site was also exhibited. The correlation matrix for the rodent characteristics
and concentrations of Pb is shown in Figure 3. Apart from the correlation across the
concentrations of Pb in blood, liver, and kidney, only two metabolites (i.e., plasma D-
glucose and lactic acid) showed a significant negative correlation with the levels of Pb in
the liver. Moreover, a marginally significant positive correlation was detected between the
concentration of Pb in the liver and the levels of isoleucine in plasma (p = 0.07).
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Figure 2. Comparison of the measured concentration (peak area) of plasma metabolites according
to area.

The lasso logistic regression model was moderately adequate on the basis of its AUC
values against a training data set in the five-fold cross-validation and an external test set (0.8
and 0.714, respectively). As a result, only two metabolites (isoleucine and phenylalanine)
were identified as important variables in the lasso for the regression model (Supplementary
Figure S2). In the random-forest model, the AUC was moderately good on the basis of its
AUCs against a training data set after optimization by five-fold cross validation and an
external test set (0.727 and 0.714, respectively). Of the 25 used variables, five variables (i.e.,
phenylalanine, isoleucine, hydroxybutyric acid, glutaric acid, and glutamine) showed a p
value of <0.05 (Figure 4). Of these five metabolites, phenylalanine and isoleucine showed
significant differences between regions by Mann–Whitney U test and were also identified
by the lasso logistic model, suggesting that they would be potential biomarkers.



Int. J. Environ. Res. Public Health 2022, 19, 541 8 of 14

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 8 of 15 
 

 

variables (i.e., phenylalanine, isoleucine, hydroxybutyric acid, glutaric acid, and gluta-

mine) showed a p value of <0.05 (Figure 4). Of these five metabolites, phenylalanine and 

isoleucine showed significant differences between regions by Mann–Whitney U test and 

were also identified by the lasso logistic model, suggesting that they would be potential 

biomarkers. 

Analysis using MBROLE2 at FDRs of <0.2 and at least two compounds per metabolic 

pathway revealed that the candidates were associated with various pathways (i.e., urea 

cycle; superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis; phenylala-

nine degradation IV; tRNA charging; indole-3-acetyl-amide conjugate biosynthesis; su-

perpathway of indole-3-acetate conjugate biosynthesis; aminoacyl-tRNA biosynthesis; 

and ATP-binding cassette (ABC) transporters) for both the lasso logistic regression model 

and random forest model. In the same analysis, the jasmonoyl-amino acid conjugates bi-

osynthesis I; jasmonoyl-amino acid conjugates biosynthesis II; biosynthesis of alkaloids 

derived from ornithine, lysine and nicotinic acid; glucosinolate biosynthesis; and tropane, 

piperidine, and pyridine alkaloid biosynthesis pathways were recorded for the random 

forest model only (Supplementary Table S1). 

 

Fig 3

Lead blood

Lead liver

Lead kidney

Alanine

Allantoic acid

Cadaverine

Creatinine

D glucose

D 3 phenyllactic acid

Ethanolamine

Fructose

Fumaric acid

Glutamine

Glutaric acid

Hydroxybutyric acid

Isoleucine

Lactic acid

L alanine

L aspartic acid

L methionine

L valine

N methylalanine

Phenylalanine.minor

Pyruvic acid

Threonine

Tryptophan

Uracil

Urea

L
e

a
d

 b
lo

o
d

L
e

a
d

 l
iv

e
r

L
e

a
d

 k
id

n
e

y

A
la

n
in

e

A
lla

n
to

ic
a

c
id

C
a

d
a

v
e

ri
n

e

C
re

a
ti
n

in
e

D
 g

lu
c
o

s
e

D
 3

 p
h

e
n

y
lla

c
ti
c

a
c
id

E
th

a
n

o
la

m
in

e

F
ru

c
to

s
e

F
u

m
a

ri
c
 a

c
id

G
lu

ta
m

in
e

G
lu

ta
ri

c
 a

c
id

H
y
d

ro
x
y
b

u
ty

ri
c
 a

c
id

Is
o

le
u

c
in

e

L
a

c
ti
c
 a

c
id

L
 a

la
n

in
e

L
 a

s
p

a
rt

ic
 a

c
id

L
 m

e
th

io
n

in
e

L
 v

a
lin

e

N
 m

e
th

y
la

la
n

in
e

P
h

e
n

y
la

la
n

in
e

.m
in

o
r

P
y
ru

v
ic

 a
c
id

T
h

re
o

n
in

e

T
ry

p
to

p
h

a
n

U
ra

c
il

U
re

a

−0.2

−0.4

−0.6

−0.8

−1.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3. Correlation matrix of the levels of lead in tissue and concentration of metabolites in
plasma. The number in each cell indicates the p value, and the colored circle indicates the correlation
coefficient.

Analysis using MBROLE2 at FDRs of <0.2 and at least two compounds per metabolic
pathway revealed that the candidates were associated with various pathways (i.e., urea
cycle; superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis; pheny-
lalanine degradation IV; tRNA charging; indole-3-acetyl-amide conjugate biosynthesis;
superpathway of indole-3-acetate conjugate biosynthesis; aminoacyl-tRNA biosynthesis;
and ATP-binding cassette (ABC) transporters) for both the lasso logistic regression model
and random forest model. In the same analysis, the jasmonoyl-amino acid conjugates
biosynthesis I; jasmonoyl-amino acid conjugates biosynthesis II; biosynthesis of alkaloids
derived from ornithine, lysine and nicotinic acid; glucosinolate biosynthesis; and tropane,
piperidine, and pyridine alkaloid biosynthesis pathways were recorded for the random
forest model only (Supplementary Table S1).
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4. Discussion

In this study, we captured wild rodents from a Pb-contaminated site and a control
site to verify the metabolomic alterations induced by environmental exposure to Pb. This
was the first study to evaluate the relationship between environmental exposure to Pb and
alteration of metabolomics in terrestrial wild animals. Eighteen and 10 rodents from the
polluted and control sites, respectively, were used for metal and metabolomics analysis.
An animal species bias was observed in the two areas. This is one of the limitations of
this study; however, due to the nature of field research, it is often difficult to avoid. Most
of the animals in the contaminated and control sites were R. rattus and M. natalensis, re-
spectively. Mastomys is the most widespread kind of rodent in the African continent [39],
diverging 11.3 ± 0.5 My from rats and 10.2 ± 0.6 My from mice [40,41]. However, there
is limited knowledge regarding the biological characteristics of Mastomys. In contrast,
R. rattus is well investigated and widely used as a sentinel animal in environmental re-
search. Anatomical and morphological differences between these two species of rodents
have been reported [42,43]. Nevertheless, the differences between these animal species in
metabolomics are completely unknown. A report on establishing a breeding colony of M.
natalensis was recently published [44]. Therefore, it is expected that M. natalensis will be
investigated further in the near future; however, the currently available data are limited.

For the above reasons, in the data analysis, we treated all animals as a single group
in each site. Although there was a significant difference in body weight and estimated
age between the two sites, it is unlikely that these had a significant effect on the patterns
of Pb accumulation in tissues, according to the findings of previous studies [15,19]. The
significantly elevated levels of Pb detected in the blood, liver, and kidney of animals
collected from the site near the mine were consistent with those reported in previous
studies in wild rodent animals [18,19] and confirmed the pollution in this area.

Our study revealed a significant increase in isoleucine and phenylalanine in the plasma
of rodents collected from the Pb-contaminated site. In the PCA, these two metabolites
exhibited almost identical vectors in the same direction. The correlation matrix showed
a marginally significant association between the levels of Pb and isoleucine in the liver,
in agreement with the significant elevation observed in the polluted site. However, the
correlation matrix did not demonstrate a significant correlation between the levels of Pb and
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phenylalanine. Similarly, there was a marginally significant difference in the concentration
of hydroxybutyric acid between areas, but it was not correlated with the concentration of
Pb. Hydroxybutyric acid is a major ketone body synthesized from acetyl-coenzyme A in
the liver via the fatty acid metabolism. When the energy supply from carbohydrates is
insufficient, the liver compensates by promoting the degradation of lipids to produce hy-
droxybutyric acid. In turn, hydroxybutyric acid is used by the body as an alternative energy
source. Previous studies suggested that exposure to Pb induces disturbance of the lipid
metabolism in smelter workers exposed to arsenic, cadmium, and Pb [9], as well as in adult
male zebrafish (Danio rerio) [45]. Additionally, Gao et al. [14] showed that gut-microbiome-
community structures and bile acid homeostasis were affected in C57BL/6 mice exposed to
Pb and suggested that these changes affected energy metabolism. Conversely, there are
multiple pathways for the synthesis and metabolism of acetyl-coenzyme A. It is conceivable
that an increase in hydroxybutyrate production by metabolism of acetyl-coenzyme A may
have occurred as a secondary effect due to changes occurring in other pathways. It is
difficult to discuss this point in detail based on the results of this study and the previous
studies available at this moment, but it is a point that should be the focus of future research.
Additionally, since our results did not show a significant association between the levels
of Pb and hydroxybutyric acid, other two possibilities should be considered. One such
possibility is differences in the nutritional status due to regional differences in dietary
habits or available food resources. Insufficiency of carbohydrates in animals that inhabited
the Pb-contaminated area is implied by the negative association of D-glucose and lactic
acid, which are the substrate and metabolite of glycolysis, respectively, with the levels
of Pb noted in the correlation matrix. Another possible reason is differences in energy
metabolism between the R. rattus and M. natalensis species. Our results implied that M.
natalensis rodents could be more likely to use fatty acids as an energy source than carbohy-
drates. However, although species differences in lipid metabolism at the class level have
been determined [46], there is limited knowledge on species differences among rodents.
In this study, the animals in the contaminated area had lower carbohydrate metabolism
and higher lipid metabolism compared with those in the control area. Nevertheless, it is
unclear whether this is caused by endogenous reasons (e.g., differences in animal species)
or exogenous reasons (e.g., differences in nutrient sources).

The significantly higher levels of phenylalanine detected in the plasma of animals
collected from the Pb-contaminated areas in this study are consistent with those previously
reported that suggested the disturbance of amino acid metabolism in smelter workers [9].
Isoleucine, another essential amino acid, was identified along with phenylalanine by the
lasso linear regression model in our study. Currently, there is insufficient knowledge
regarding the changes in isoleucine caused by exposure to Pb; thus, the interpretation of
this result is difficult.

A random-forest model was also applied to distinct areas. The model identified some
amino acids, including those (phenylalanine and isoleucine) highlighted by the aforemen-
tioned analyses. The identification of hydroxybutyric acid was supportive of the possible
effect of Pb exposure on lipid metabolism, as suggested by previous reports [9,14,45];
however, thus far, there are no reports concerning glutaric acid and glutamine. The same
compound was shown as a candidate biomarker in metabolomics studies involving differ-
ent animal species and sample types. Nevertheless, the selected potential biomarkers in
our study did not overlap with the molecules reported in a previous study that examined
adult male Wistar rats experimentally exposed to Pb [13]. Of note, the analytical methods
used for metabolome analysis in studies differed (i.e., GC–MS in this study and liquid
chromatography–MS in previous studies). Such differences in analytical methods are gen-
erally recognized as a challenge in the field of metabolomics research and should be taken
into account.

Enrichment analysis of altered metabolic pathways in plasma highlighted several
pathways related to the degradation and biosynthesis of amino acids, as well as some
chemical compounds with an FDR of <0.2. Figure 5 summarizes the potential biomarkers
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and pathways identified in our analysis. The ABC transporters and urea cycle were
previously detected in a metabolomics analysis of urine collected from a Vietnamese
population exposed to Pb from a smelter [10]. Moreover, the results concerning ABC
transporters are in line with those obtained in an experimental exposure study involving
C57BL/6 mice [14]. Identical pathways were identified for the different species, although
the interpretation of observations between species and sample types should be made with
caution. This study had some limitations, such as animal species bias and a relatively
small sample size due to its nature (i.e., field-based study). However, the present findings
contribute to the accumulation of knowledge with regard to metabolomic changes following
exposure to Pb and showed consistency with previous data obtained from human and
laboratory animal studies.
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Figure 5. Suggested biomarkers (bold and underline) and metabolic pathways identified in rodents
in this study.

Under the concept of “Toxicometabolomics”, metabolomic studies in toxicology have
become increasingly important in recent years. Conversely, metabolomic knowledge is
still insufficient not only for Pb, but also for other metals. Although in vivo studies have
generally taken the lead, it is desirable to accumulate knowledge in the field as in this study.
In our study, it was difficult to demonstrate the further analysis regarding other metals due
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to insufficient sample size and sample bias. In the future, it is expected to expand the target
metals to other metals and to study the combined effects of multiple metals.

5. Conclusions

This was the first metabolomics study of wild rodents environmentally exposed to
Pb in the field. The blood, liver, and kidneys of animals captured in the contaminated
area accumulated significantly higher concentrations of Pb than those of animals in the
control area. Metabolomic analysis of plasma was carried out by GC-MS. The high levels
of hydroxybutyric acid detected in the contaminated area suggest an enhanced lipid
metabolism in animals; however, the possibility that this observation may be due to species
bias or regional dietary differences should be considered. Phenylalanine and isoleucine
were identified as possible biomarkers through comparison of regional differences, lasso
analysis and random-forest model. In addition to the three compounds mentioned above,
the random-forest model also identified glutaric acid and glutamine. Consistent with
previous studies, the urea cycle and ABC transporters pathway were identified among the
altered metabolic pathways. Although the relatively small sample size and the existence
of animal species bias in different areas should be considered as study limitations, the
results obtained in this study are extremely important for understanding Pb toxicity and its
mechanisms. Importantly, a certain degree of commonality was found between previous
studies on Pb-exposed humans and experimental animals and the present study on wild
animals.
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