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ABSTRACT: We revisit here the lowest vertical excitations of
cyanine dyes using quantum Monte Carlo and leverage recent
developments to systematically improve on previous results. In
particular, we employ a protocol for the construction of compact
and accurate multideterminant Jastrow-Slater wave functions for
multiple states, which we have recently validated on the excited-state
properties of several small prototypical molecules. Here, we obtain
quantum Monte Carlo excitation energies in excellent agreement
with high-level coupled cluster for all the cyanines where the
coupled cluster method is applicable. Furthermore, we push our
protocol to longer chains, demonstrating that quantum Monte Carlo
is a viable methodology to establish reference data at system sizes
which are hard to reach with other high-end approaches of similar
accuracy. Finally, we determine which ingredients are key to an accurate treatment of these challenging systems and rationalize why a
description of the excitation based on only active π orbitals lacks the desired accuracy for the shorter chains.

1. INTRODUCTION
Cyanine dyes are a family of charged π-conjugated molecules
which are employed in very diverse applications ranging from
dye-synthesized solar cells to the labeling of biomolecules.1−3

Their characteristic structure consists of a chain of an odd
number of carbons with two amine groups at the ends. While
their photophysical properties are strongly regulated by the
length of the carbon chain, the lowest bright state of the
cyanines always maintains a π → π* character and can be
predominantly described as a HOMO to LUMO (HL)
transition. Despite the apparent simplicity of this excitation,
its accurate treatment is known to be challenging, and
consequently, cyanine dyes have often been used as model
systems to assess the quality of electronic structure methods
for excited states.4−12

Here, we employ quantum Monte Carlo (QMC) to revisit
the vertical excitation energies of cyanine dyes of the simple
form CnHn(NH2)2

+ with n an odd number ranging from 1 to
17, combining the use of sophisticated multideterminant wave
functions with recent developments for their efficient
optimization in variational Monte Carlo (VMC).13−16 In
particular, we build on our successful treatment at chemical
accuracy of the excitation energies and optimal excited-state
structures of small, prototypical molecules,17−19 where the
determinantal components of the multiple states are generated
in an automatic and balanced manner with the configuration
interaction using a perturbative selection made iteratively
(CIPSI) approach.20 Studying the bright excitation of cyanine
dyes enables us to demonstrate the accuracy of our protocol

for the shorter chains, where high-level coupled cluster (CC)
offers a good compromise in terms of accuracy versus
computational cost. Importantly, it also establishes the
applicability of QMC to larger sizes where the use of other
high-level approaches is more challenging. Finally, we identify
the key descriptors of orbital correlations for these systems and
elucidate why earlier QMC studies with limited active space
wave functions lacked the expected accuracy.4

2. METHODS
We employ QMC wave functions of the so-called Jastrow-
Slater form, namely
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where is the Jastrow correlation factor, and Di are
determinants of single-particle orbitals. The Jastrow factor
explicitly depends on the interparticle coordinates and includes
here electron−electron and electron−nucleus correlation
terms.21
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To generate the determinantal components for the two
states, we employ the CIPSI approach which, starting from a
given reference space, builds expansions by iteratively selecting
determinants based on their second-order perturbation (PT2)
energy contribution obtained via the Epstein-Nesbet partition-
ing of the Hamiltonian22,23

E(2)
CIPSI 2

CIPSI CIPSI
δ

α
α α

= |⟨ | ̂ |Ψ ⟩|
⟨Ψ | ̂ |Ψ ⟩ − ⟨ | ̂ | ⟩α

(2)

where ΨCIPSI is the current CIPSI wave function for the state
under consideration, and |α⟩ denotes a determinant outside
the current CI space. Since the ground and excited states of the
cyanines have different symmetries, a state-specific approach
can be used to perform the selection for the two states
separately, using different orbitals.
We are here interested in computing excitation energies and,

therefore, wish to achieve a balanced CIPSI description of the
states of interest, which leads to converged excitation energies
in QMC already for relatively small expansions. A measure of
the quality of a given CIPSI wave function is its PT2 energy
contribution, which represents an approximate estimate of the
error of the expansion with respect to the full CI (FCI) limit.
Therefore, we can compute the excitation energies using
expansions for the two (or more generally multiple) states with
matched PT2 energy and, therefore, ensure comparable
quality. We refer the reader to ref 19 on how to impose the
“iso-PT2” criterion when treating multiple states of the same
symmetry expanded on a common set of determinants.
Alternatively, one can match the CI variance of the relevant

states, which is defined as the variance of the FCI Hamiltonian:
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As the CIPSI wave function approaches the FCI limit, the CI
variance goes to zero. For various small molecules,17−19 we
have found that matching the PT2 energy contributions leads
to expansions with also very similar variances. In general, this is
not always the case, and one of the two criteria might be more
suitable than the other for the computation of the CI excitation
energies of a particular system.
While we discuss in detail below the impact of this choice on

the QMC excitation energies, we stress already here that the
convergence of the QMC results is established not based on
their agreement with available reference data but in an
“internally consistent” manner based on the similarity of the
VMC and DMC excitation energies19 and their convergence
with respect to the number of determinants.
Finally, as an alternative to the CIPSI expansions, we test

complete active space (CAS) expansions for the determinantal
components of our QMC wave functions. We start from
separate CASSCF calculations for the two states and consider
minimal active spaces by correlating the π electrons in the π
orbitals constructed from the 2pz orbitals. For the smaller
cyanines with up to 7 heavy atoms, CN3−CN7 (we label a
cyanine as CNm with m the total number of C and N atoms),
we also explore the use of a larger active space with molecular
orbitals constructed from the 2pz and 3pz atomic orbitals.
Finally, in some cases, we also test the performance of a simple
one-configuration ansatz, namely, the Hartree−Fock (HF) and

HOMO−LUMO (HL) configurations for the ground and
excited states, respectively.

3. COMPUTATIONAL DETAILS

Unless otherwise specified, we employ scalar-relativistic
energy-consistent HF pseudopotentials and the correlation-
consistent Gaussian basis sets specifically constructed for these
pseudopotentials.24,25 For most of the calculations, we use a
double-ζ basis set minimally augmented with s and p diffuse
functions on the heavy atoms and denoted here as maug-cc-
pVDZ. Convergence tests are performed with the fully
augmented aug-cc-pVTZ basis set. The exponents of the
diffuse functions are taken from the corresponding all-electron
Dunning’s correlation-consistent basis sets.26

The HF and CASSCF computations are performed with the
program GAMESS(US) .27,28 When using the CASSCF wave
functions in QMC, we truncate the CAS expansion for CN11
and CN13, using a threshold on the CSF coefficients so that
the configurations make up respectively about 0.9985 and
0.9765 of the weight of the total wave functions of the two
states. The CIPSI expansions are generated with Quantum
Package29 and constructed to be eigenstates of Ŝ2.17 We
perform the selection for the two states separately, starting
from CASSCF orbitals obtained with the larger active spaces
for the cyanine molecules up to CN7 and the minimal CAS
from CN9 to CN15. We use the HF orbitals for CN17 and
CN19. As shown in Figure S1 and Table S5 for CN3 and
Figure S6 for CN15, the use of different orbitals to generate
the CIPSI expansions has no appreciable impact on the CI or
QMC excitation energies.
The QMC calculations are carried out with the CHAMP

code.30 The determinantal part of our QMC wave functions is
expressed in terms of spin-adapted configuration state
functions (CSF) to reduce the number of parameters during
the VMC optimization. In the wave function optimization, we
sample a guiding wave function that differs from the current
wave function close to the nodes31 to guarantee finite variances
of the estimators of the gradients with respect to the wave
function parameters. All wave function parameters (Jastrow,
CI, and orbital coefficients) are optimized in state-specific
energy minimization following the stochastic reconfiguration
scheme.14,32 In the DMC calculations, we treat the
pseudopotentials beyond the locality approximation using the
T-move algorithm33 and employ an imaginary time-step of
0.05 au which we have already tested for one of the cyanine
chains and shown to yield excitation energies converged to
better than 0.01 eV.18

We compute all energies on the ground-state geometries of
CN3−CN11 determined with all-electron PBE0/cc-pVQZ in
ref 8 and obtain the geometries for CN13 to CN19 at the same
level of theory with the Gaussian 09 program.34 We employ
the programs CFour v2.135 and Molcas36 for the approximate
coupled cluster singles and doubles (CC2) and singles,
doubles, and triples models (CC3) and the CASPT2
calculations, respectively, using the all-electron aug-cc-pVDZ
basis set and the frozen-core approximation, unless otherwise
specified.

4. RESULTS

We compute the lowest π → π* vertical excitation energy of
cyanine dyes of the form CnHn(NH2)2

+ with n ranging from 1
up to 17. The structures of the CN3 and CN9 molecules are
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shown in Figure 1. In all cases, the point group of the molecule
is C2v with the ground (GS) and excited (ES) states having A1

and B1 symmetry, respectively.

For CN3 up to CN15, we compare the QMC excitation
energies with the all-electron CC3/aug-cc-pVDZ results. The
use of the CC3 method as reference for the bright excitation of
these systems is supported by the agreement of the CC3
excitation energies with the corresponding extrapolated FCI
(exFCI) estimates in a small basis of the smaller CN3 and
CN5 to better than 0.05 eV.12 Employing the aug-cc-pVDZ
basis set is sufficient given the agreement with the
corresponding aug-cc-pVTZ values (see Table S1). Impor-
tantly, the all-electron CC3/aug-cc-pVDZ excitation energies

are very close to the BFD CC3/aug-cc-pVDZ values,
confirming that the use of pseudopotentials does not introduce
appreciable errors. The reference CC3/aug-cc-pVDZ values
also agree with the corresponding CC3 excitation energies
computed with the BFD maug-cc-pVDZ basis set for all
cyanines except the smallest CN3 (see Table S1), where a fully
augmented double-ζ basis is needed also in the BFD
calculations.
For dyes larger than CN15, we are however not able to run

the CC3 calculations due to memory requirements,37 and the
DMC excitation energy with our best CIPSI wave function
becomes then the reference for other calculations.

4.1. Building the Expansions. To compute accurate
QMC excitation energies for the cyanine dyes, one needs
balanced Jastrow-Slater wave functions to describe the ground
and excited states. This is achieved in two stages, where the
first is the construction of CIPSI expansions with the iso-PT2
and/or iso-variance scheme, and the second is a validation
criterion that the resulting excitation energies in VMC and
DMC are close to each other and converged with respect to
the number of determinants.
In particular, we generate the ground- and excited-state

expansions at the CIPSI level to have either matched PT2
energy corrections or CI variances, which we use as measures
of the “distance” of the wave functions from the FCI limit.
Imposing that the determinantal components satisfy either the
iso-PT2 or iso-variance criterion was previously found to lead
to QMC excitation energies which were converged to the best
reference values with a handful of determinants,17,18 even when
the error on the starting CI excitation energy was relatively
large.19

In Figure 1, we illustrate the convergence of the CI
excitation energies of CN3 and CN9 versus the total number
of determinants for expansions characterized by similar PT2
corrections or CI variances. For CN3, the iso-PT2
construction leads to a somewhat faster convergence of the
excitation energy for small expansions, but the two criteria
become quickly equivalent beyond a few 1000 determinants.
The situation is reversed for CN9, where matching the PT2
correction yields a much slower converging CI excitation
energy, while the iso-variance criterion leads to a good
agreement with the CC3 value in the same basis set for little
more than 1000 determinants. In fact, we find that variance-
matched expansions yield a faster converging CI excitation
energy starting from CN7 and that, surprisingly, fewer
determinants are needed to obtain a good estimate for the
larger system sizes considered (see Figure S4). Consequently,

Figure 1. CI vertical excitation energies of CN3 (top) and CN9
(bottom) versus the total number of determinants, computed for
ground- and excited-state CIPSI expansions having either matched
PT2 energy contributions or CI variances. The VMC and DMC
excitation energies obtained using the iso-variance expansions are also
shown (the statistical error is smaller than the symbol size). The BFD
pseudopotentials and the maug-cc-pVDZ basis are used here also for
the CC3 calculations.

Table 1. Vertical Excitation Energies (eV) for the Cyanine Dyes Computed with QMC and Other Highly-Correlated Methodsb

method CN3a CN5 CN7 CN9 CN11 CN13 CN15 CN17 CN19

VMC-CAS 7.67(1) 5.13(1) 3.97(1) 3.11(1) 2.58(1) 2.13(1)
DMC-CAS 7.49(1) 5.04(1) 3.83(1) 3.04(1) 2.55(1) 2.15(1)
VMC-CIPSI 7.23(1) 4.83(1) 3.65(1) 3.03(1) 2.55(1) 2.18(1) 1.85(1) 1.66(1) 1.59(2)
DMC-CIPSI 7.23(1) 4.86(1) 3.66(1) 2.98(1) 2.54(1) 2.15(1) 1.90(1) 1.65(1) 1.57(1)
CASPT2/aug-cc-pVDZ 6.94 4.64 3.56 2.91 2.45 2.11 1.85 1.65
CC2/aug-cc-oVDZ 7.29 4.97 3.80 3.10 2.64 2.30 2.04 1.84
CC3/aug-cc-pVDZ 7.20 4.85 3.67 2.97 2.50 2.16 1.91
exFCI/aug-cc-pVDZ12 7.17(2) 4.89(2)

aThe QMC-CIPSI calculations for CN3 are performed with the aug-cc-pVTZ basis. bThe BFD pseudopotentials are used in QMC, while all other
calculations are all-electron. All energies are computed on PBE0/cc-pVQZ geometries.
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the CI treatment of the smallest cyanine, CN3, appears to be
the most difficult as further elaborated in section 4.3.
Importantly, in Figure 1, we also show that QMC largely

corrects for possible shortcomings of the starting CIPSI
expansions, yielding excitation energies which display a rather
small dependence on the number of determinants, especially at
the DMC level. For CN3 and small expansions, where the iso-
variance criterion significantly overestimates the CI excitation
energy, VMC and DMC reduce the error at the CI level by
about 0.2 and 0.3 eV, respectively. As the expansions become
larger, the difference between the VMC and the DMC values
diminishes, falling well below chemical accuracy (about 0.05
eV) for both CN3 and CN9. The robustness of the QMC
results is further corroborated for CN7 in Table S6, where we
show that, for a comparable number of determinants, the use
of PT2- and variance-matched wave functions yields excitation
energies which differ by about 0.2 eV at the CI level but are
very close in VMC and completely equivalent in DMC.
4.2. Best QMC Vertical Excitations. In Table 1, we

summarize the VMC and DMC excitation energies of all
cyanine dyes obtained with the largest CIPSI expansions of
Table S6 and the iso-variance selection criterion. We also list
the QMC and CASPT2 excitation energies computed with
minimal CAS expansions, together with our CC2 and CC3
results and the exFCI estimates from the literature.12 We refer
the reader to Table S6 for additional QMC calculations with
different numbers of determinants in the Jastrow-CIPSI wave
functions.
For the reported CIPSI expansions, the VMC and DMC

excitation energies are very close and also agree within
chemical accuracy with the CC3 and exFCI values in all cases
where these methods are applicable. This is in line with our
previous findings that the agreement between VMC and DMC
excitation energies is a strong indication of the balanced quality
of the corresponding wave functions.19 Furthermore, we find
that the QMC values for the larger dyes are in very good
agreement with the estimates given by the extrapolation of the
CC3 results as a function of the number of electrons (see the
SI). Since DMC can be employed in all cases, we plot all
excitation energies in Figure 2 in terms of their distance to the
DMC-CIPSI results, which we use as reference values.
The CASPT2 and QMC-CAS energies computed with the

minimal active spaces are instead very different from the
DMC-CIPSI results: CASPT2 always underestimates the

excitation energies, whereas QMC-CAS tends to overestimate
them, similarly to what was reported for CAS wave functions in
ref 4. For CN3−CN7, we test the effect of including more π
orbitals in the active space, which somewhat ameliorates the
VMC excitation energies but does not sufficiently affect the
DMC values, which remain far from the DMC-CIPSI reference
(see Table S7). Interestingly, we note that both the CASPT2
and QMC-CAS methods approach the best DMC results as
the size of the molecule increases, suggesting an easier
treatment of the longer chains as already found at the CI
level and as further discussed below.

4.3. Capturing Orbital Correlation. To understand the
different performance of CAS and CIPSI expansions when
used in QMC wave functions, we focus here on CN3 and
analyze in Figure 3 the VMC and DMC vertical excitation

energies calculated using different determinantal components
in the trial wave functions. As already mentioned, despite being
the smallest cyanine dye, CN3 appears to be the most
challenging one: the use of Jastrow-CAS wave functions leads
to quite big errors. and the number of CIPSI determinants
needed to converge the excitation energy is larger than for the
longer dyes.
The simplest QMC calculations are performed with a one-

configuration (HF/HL) wave function and the maug-cc-pVDZ
basis set. We then proceed to CAS determinantal components
and CIPSI expansions also employing the aug-cc-pVTZ basis
set. The VMC excitation energy computed with the minimal
CAS wave functions is worse than the HF/HL value since the
active space comprises more determinants for the ground state
but only the HL configuration for the excited state. DMC
ameliorates the result, but using a larger CAS space on the π
orbitals only marginally helps (see Table S7). On the other
hand, with the CIPSI selected determinants, we have a
considerable improvement on the excitation energy, and with
the use of just a few hundred determinants, the DMC error
reduces to less than 0.1 eV. Employing larger expansions with
the maug-cc-pVDZ basis set, we finally converge to VMC
values which are consistent with the DMC ones and
approximately 0.04 eV higher than the reference. The use of
the aug-cc-pVTZ basis set further reduces the excitation energy
by about 0.02 eV. We note that, for the longer cyanine chains,
the smaller maug-cc-pVDZ basis set is found to be sufficient
for the computation of this excitation energy.18

The superior performance of the use of a CIPSI with respect
to the CAS expansions in QMC indicates that some key

Figure 2. Excitation energies (eV) at different levels of theory with
respect to the DMC values computed with the CIPSI wave functions
(DMC-CIPSI line).

Figure 3. VMC (full circle) and DMC (empty circle) vertical
excitation energies of CN3 for different wave functions. The maug-cc-
pVDZ (green) and aug-cc-pVTZ (Ta, blue) are used.
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descriptor of correlation is missing from the active space and is
not recovered through the addition of the Jastrow factor and
the subsequent full optimization in VMC nor through a DMC
calculation with the optimal Jastrow-Slater wave function. In
this work as in ref 4, the active space is chosen to correlate the
π electrons in the π orbitals. From the QMC-CIPSI results, we
can therefore infer that, while the excitation of interest is
predominantly of π → π* character, other orbital correlations
are important and cannot be omitted in the QMC wave
function of the shorter cyanines.
To better understand this, we present a CI study for CN3−

CN7 with the small 6-31G basis set in Table 2. We correlate
only the valence electrons and use state-average natural orbitals
obtained with a preliminary calculation at the CIPSI level. For
each state, we compute the energy with only one CSF, and on
top of this configuration, we perform a CAS-CI calculation
restricted to the σ and the π orbitals in a CAS-σ and CAS-π,
respectively. The reference FCI excitation energy in this basis
and the associated confidence interval are computed following
the scheme presented in ref 38 rather than extrapolating the
variational energies of the individual states in the limit of the
PT2 energy correction going to zero. Indeed, the uncertainties
of the extrapolated FCI energies of both states are larger than
the uncertainty on the estimated excitation energy computed
with this scheme. Since the CC3 estimate for CN3 and CN5 is
in excellent agreement with the FCI value, we use the CC3
excitation energy as reference for CN7. We note that, because
of the use of the simple 6-31G basis set, the FCI and CC3
excitation energies are much higher than the more accurate
results presented above, but this is not relevant for the present
discussion.
For the CN3 molecule, the excitation energy obtained with a

single CSF for each state is 8.91 eV, namely, higher by 1.4 eV
than the FCI result. The CAS-π calculation corrects only 60%
of the error, indicating that the σ orbitals also play an
important role in the stabilization of the excited state.
Similarly, the excitation energy obtained with the CAS-σ
improves the excitation energy with respect to the single CSF

by recovering about 31% of the error. These results indicate
the importance of both σ and π orbitals in the calculation of
the excitation energy of CN3.
Therefore, to partially account for both π and σ correlations,

we perform a multireference CI calculation, applying all
possible single and double excitations to the CAS-π
determinants. Such a CAS-π+SD-σ calculation also enables
the relaxation of the CAS-π CI coefficients in the presence of
most of the σ correlation. The resulting excitation energy is
now significantly improved but still 0.1 eV higher than the FCI
reference, confirming that a similar computational effort needs
to be made for the π and σ orbitals. This justifies the use of
CIPSI where the most important Slater determinants will be
chosen to describe σ, π, and σ−π correlation in a “democratic”
way based on their contribution to the second-order
perturbation energy.
For CN5, the situation is somewhat different. While the

single CSF still overestimates the excitation energy by 1.47 eV,
the CAS-π wave function behaves better than for CN3,
recovering 80% of the error. Consequently, omitting the σ
orbitals in the active space results in an excitation energy closer
to the reference than in the CN3 case. Once the σ orbitals are
introduced, as for CN3, we improve the excitation energy but
still observe an overestimation of the CAS-π+SD-σ result by
almost 0.2 eV, pointing to the importance of describing the σ
as well as the π correlation. The situation for CN7 is similar as
for CN5, suggesting that the whole series behaves like CN5
and that CN3 is an exception because of the particularly small
length of the chain.

5. CONCLUSION

We have presented a QMC benchmark study of the lowest
vertical excitation energies of cyanine chains. We constructed
the determinantal components of the Jastrow-Slater wave
functions through an automatic selected-CI procedure and
obtained a balanced description of the relevant states by
ensuring similar quality of the corresponding expansions, for
instance by matching their CI variances. With compact

Table 2. CI Total Energies (au) and Vertical Excitation Energies (ΔEexc, eV) of CN3 Computed with the 6-31G Basis Set and
Different Orbital Setsa

E(GS) E(ES) ΔEexc err

CN3
1 CSF −149.39966 −149.07223 8.91 1.39(2)
CAS-σ −149.613(1) −149.307(1) 8.32 0.80(2)
CAS-π −149.44486 −149.14840 8.07 0.55(2)
CAS-π + SD-σ −149.7151(5) −149.4346(5) 7.65 0.13(2)
CC3 −149.74049 −149.46354 7.54 0.02(2)
FCI −149.741(1) −149.465(1) 7.52(2)
CN5
1 CSF −226.27705 −226.04468 6.32 1.48(1)
CAS-σ −226.581(1) −226.373(1) 5.66 0.82(1)
CAS-π −226.34204 −226.15212 5.17 0.33(1)
CAS-π + SD-σ −226.745(2) −226.557(2) 5.03 0.19(1)
CC3 −226.80736 −226.62972 4.83 −0.01(1)
FCI −226.809(1) −226.631(1) 4.84(1)
CN7
1 CSF −303.14723 −302.95611 5.20 1.64
CAS-σ −303.580(4) −303.409(4) 4.73(4) 1.17(4)
CAS-π −303.23260 −303.09606 3.72 0.16
CC3 −303.86766 −303.73676 3.56

aThe last column reports the error with respect to the FCI excitation energy for CN3 and CN5 and with respect to the CC3 value for CN7.
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expansions of only a few thousand determinants, upon
optimization of all parameters in our wave functions, we
obtained QMC excitation energies which improve on the
starting CI values and, for the shorter chain lengths where CC3
calculations are feasible, agree with the CC3 results to chemical
accuracy. We also applied our protocol to longer cyanines and
validated the accuracy of our estimates via the consistent
closeness of the determined VMC and DMC excitation
energies. Finally, we showed that key to a successful
description of this excitation over all chain lengths is to
account for π, σ, and σ−π correlations, therefore going beyond
a CAS treatment based on π-orbitals only. In conclusion, we
believe that the present study further establishes QMC
methods as accurate and robust tools for the treatment of
excited states of relatively large systems and parameter spaces.
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