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Immune evasion is an important cancer hallmark and the understanding of its
mechanisms has generated successful therapeutic approaches. Induction of
immunogenic cell death (ICD) is expected to attract immune cell populations that
promote innate and adaptive immune responses. Here, we present a critical advance
for our adenovirus-mediated gene therapy approach, where the combined p14ARF and
human interferon-b (IFNb) gene transfer to human melanoma cells led to oncolysis, ICD
and subsequent activation of immune cells. Our results indicate that IFNb alone or in
combination with p14ARF was able to induce massive cell death in the human melanoma
cell line SK-MEL-147, though caspase 3/7 activation was not essential. In situ gene
therapy of s.c. SK-MEL-147 tumors in Nod-Scid mice revealed inhibition of tumor growth
and increased survival in response to IFNb alone or in combination with p14ARF. Emission
of critical markers of ICD (exposition of calreticulin, secretion of ATP and IFNb) was
stronger when cells were treated with combined p14ARF and IFNb gene transfer. Co-
culture of previously transduced SK-MEL-147 cells with monocyte-derived dendritic cells
(Mo-DCs) derived from healthy donors resulted in increased levels of activation markers
HLA-DR, CD80, and CD86. Activated Mo-DCs were able to prime autologous and
allogeneic T cells, resulting in increased secretion of IFNg, TNF-a, and IL-10.
Preliminary data showed that T cells primed by Mo-DCs activated with p14ARF+IFNb-
transduced SK-MEL-147 cells were able to induce the loss of viability of fresh non-
transduced SK-MEL-147 cells, suggesting the induction of a specific cytotoxic population
that recognized and killed SK-MEL-147 cells. Collectively, our results indicate that
org October 2020 | Volume 11 | Article 5766581
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p14ARF and IFNb delivered by our adenoviral system induced oncolysis in human
melanoma cells accompanied by adaptive immune response activation and regulation.
Keywords: melanoma, adenovirus (Ad) vector, oncolysis, immunogenic cell death (ICD), immunotherapy
INTRODUCTION

Suppression of the immune system during tumor progression
and spread is an important cancer hallmark (1). Tumor cells
actively evade recognition and destruction by both innate and
adaptive branches of the immune system (2, 3). Acquisition of
defects in anti-viral pathways in tumor cells, such as those
mediated by interferons (IFNs), contributes to immune evasion
(4, 5). This opens important perspectives for immunotherapies
that seek to restore anti-tumor immune responses. Oncolysis, the
rupture of malignant cells in response to a therapeutic modality,
represents an important first step. However, to be effective,
induction of oncolysis alone would have to reach essentially all
tumor cells. Instead, oncolysis that is accompanied by immune
activation would be expected to provide a broader effect at the
site of treatment and may even provide a systemic benefit. This
has been seen in therapy with oncolytic viruses, though
combination with other immunotherapies may be required in
order to achieve elimination of non-treated tumor foci (6, 7).

There are different strategies for inducing oncolysis, yet cell
death, such as by apoptosis, may not elicit an immune response
and may even lead to tolerance (8). In contrast, cell death
accompanied by the release of immunogenic cell death (ICD)
factors serves to alarm the immune system by attracting and
activating immune cell populations (9–11). To this end, virus-
mediated oncolysis, such as that seen with oncolytic virotherapy,
promotes cell death along with the liberation of pathogen-
associated molecular patterns (PAMPs), damage-associated
molecular patterns (DAMPs), as well as tumor antigens that
together can cooperate with the activation of dendritic cells
which, in turn, prime tumor-specific T cells (5, 12–14). Viruses
that trigger oncolysis have revealed strong potential as
immunotherapeutic approaches (14, 15) with many clinical
trials currently recruiting (as per clinicaltrials.gov), as well as
FDA approval for use in patients (16, 17).

Our group has been working on the development of non-
replicating adenoviral vectors that induce oncolysis due to the
combined activity of the p14ARF and IFNb transgenes as well as
antiviral response (18). While p14ARF (alternate reading frame
of the CDKN2a locus, p19Arf in mice, p14ARF in humans) acts
as the functional partner of p53, IFNb is a critical cytokine that
contributes to innate and adaptive anti-tumor responses (19).
Using mouse models, our data indicate that transgene activity
plus an antiviral response culminate in ICD, thus our approach
may be considered as a strategy for cancer immunotherapy (20–
22). However, IFNb acts in a species specific manner (23), thus
the phenomena seen in mouse models must be verified using
human cell lines.

Melanoma is a highly lethal neoplasm due to the difficulty in
treatment after metastatic spread (24, 25). Peculiarities in the
org 2
melanoma genotype shaped the rationale of the adenoviral
strategy used in this work. Since 80% of melanomas preserve
p53 in its wild-type form (26), we have incorporated a p53-
responsive promoter (PG) to drive transgene expression (18).
The p14ARF transgene is expected to activate endogenous p53,
in turn providing both tumor suppressor function and
transactivation from the PG promoter (27). In addition to its
role in immune activation, the IFNb pathway is also known to
promote cell death via the p53/p14ARF axis (28, 29). Besides
that, deletions are commonly found in the chromosome 9p21
gene cluster where CDKN2a, p14ARF, and IFNb are located (30–
33), reinforcing the importance of the p14ARF and IFNb
transgene combination.

Here, we show a critical advance in the development of our
approach since we explore combined p14ARF and IFNb gene
transfer in a human melanoma cell line, SK-MEL-147. We
confirmed oncolysis and also reveal that combined gene
transfer is required for the induction of ICD, characterized by
emission of DAMPS, activation of dendritic cells from healthy
donors and their ability to prime T cells to, then, carry out tumor
cell cytolysis. Thus, we suggest that the oncolysis and subsequent
activation of immune functions predict that our adenovirus-
mediated p14ARF plus IFNb gene transfer approach could act as
an immunotherapy in humans.
MATERIAL AND METHODS

Cell Lines
The SK-MEL-147 human melanoma cell line was authenticated
by analysis of short tandem repeats using GenePrint 10
(Promega, Internal Standard-ILS 600, performed by the Rede
Premium Core Facility, FMUSP) and tested negative for
mycoplasma by a PCR assay using conditioned medium as
template and amplification using the following oligonucleotides:

Myco F: 5’-GGG AGC AAA CAC GAT TAG ATA CCC T -3’

Myco R: 5’-TGC ATT ATC TGT CAC TCT GTT AAC CTC -3’

This cell line as well as HEK293 were cultured in DMEMwith
10% fetal calf serum, supplemented with antibiotic-antimycotic
(Thermo Fisher Scientific, Waltham, MA, USA) and maintained
at 37°C and 5% CO2 atmosphere.

Construction, Production, and Titration of
Adenoviral Vectors
The strategy for constructing the adenoviral vectors has been
described previously (21).

For the generation of the recombinant adenovirus we first
constructed the “pEntr-PG” vector containing transgenes of
October 2020 | Volume 11 | Article 576658
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interest: i) Luc2, used as control, ii) Luc2-p14ARF, and iii) Luc2-
hIFNb (Figure S1). Next, site directed recombination was
performed with the “destiny” vector encoding the Ad5
backbone (non-replicating, E1/E3 deleted, RGD modified fiber)
utilizing Gateway L/R Clonase II Enzyme (Life Technologies,
Carlsbad, CA, USA) as previously described (21, 34), giving rise
to AdRGD-PG-Luc2, AdRGD-PG-Luc2-p14ARF, and AdRGD-
PG-Luc2-hIFNb. Following viral amplification, purification was
performed using an iodixanol gradient followed by desalting, as
described by Peng et al. (35) and as per our previous studies (21,
36). For the determination of biological titer, we used the Adeno-
X Rapid Titer Kit (Clontech, Mountain View, CA, USA) which is
based on immunodetection of the adenoviral hexon protein in
transduced cells. The biological titer (transducing units per
milliliter, TU/ml) was used for the calculation of the
multiplicity of infection (MOI) indicated in each experiment.

Cell Transduction
SK-MEL-147 cells were seeded in medium containing 2% FBS
together with the corresponding vectors at a final MOI of 50: i)
AdRGD-PG-Luc2, ii) AdRGD-PG-Luc2-p14ARF, and iii)
AdRGD-PG-Luc2-hIFNb and iv) combination of AdRGD-PG-
Luc2-p14ARF and AdRGD-PG-Luc2-hIFNb (p14ARF+IFNb,
MOI 25 each). After 4 h incubation at 37°C, an equal volume
of DMEM/10% FBS was added and the cells incubated for 24 and
48 h, unless otherwise noted. The described strategy was
employed to guarantee the consistent number of viral particles
for each treatment condition.

Transgene Expression
For validation of luciferase transgene activity, we used the
Luciferase Assay System kit as per the manufacturer’s protocol
(Promega, Madison, WI, USA). Sample luminescence was read on
a 1420 Multilabel Counter VICTOR3 (Perkin Elmer, Waltham,
MA, USA). The luminescence results were normalized by protein
concentration. Interferon-b detection was performed using the
Verikine human IFN beta ELISA kit (PBL Assay Science,
Piscataway, NJ, USA) and conditioned medium derived from
transduced cell cultures. For p14ARF, we use immuno-
fluorescence and Western blot as previously described (37–39),
using anti-p14ARF antibody (Santa Cruz Biotechnology, Dallas,
TX, USA). Immunofluorescence detection was obtained using
EVOS FL Cell Imaging System (Thermo Fisher Scientific).

Evaluation of Cell Death by Flow
Cytometry
Cells were transduced and incubated as described before harvest
of both detached and adherent cells, fixation in 70% ethanol,
RNAse treatment and staining with PI (21). Alternatively, fresh
cells were treated with the LIVE/DEAD ™ Fixable Green Dead
Cell Stain Kit, for 488 nm excitation (Thermo Fisher Scientific,
#L23101) following the manufacturer’s recommendations. For
either assay, cells were subjected to flow cytometry and analysis
using the manufacturer’s software (Attune™, Thermo Fisher
Scientific). For measurement of caspase activity, transduced cells
were collected and treated with Cell Event Caspase 3/7 Green
Detection reagent (Thermo Fisher Scientific, Cat. No. C10423)
Frontiers in Immunology | www.frontiersin.org 3
diluted and incubated according to the recommendations of the
manufacturer. The proportion of fluorescent cells resulting from
activation of caspases 3 and 7 was assessed by flow cytometry
(Attune™, Thermo Fisher Scientific).

In Situ Gene Therapy
All animal experimentation and the protocols described here
were approved by the Ethics in Animal Use Committee
(FMUSP) and performed at the Centro de Medicina Nuclear
(CMN), FMUSP, São Paulo, Brazil. Assays were performed using
8–12 weeks old female Nod-Scid mice obtained from the Bioterio
Central, FMUSP. After local trichotomy, SK-MEL-147 cells (1 ×
106) were implanted subcutaneously in the left flank and animals
were observed until tumors reached 60 mm3 and treatment was
initiated. Intratumoral injection was performed on four
occasions at 48-h intervals (days 1, 3, 5, and 7), applying 2 ×
108 TU in 50 µl of 1× PBS as excipient. Tumors were treated with
PBS, AdRGD-PG-Luc2 or AdRGD-PG-Luc2-IFNb, AdRGD-
PG-Luc2-p14ARF, and combination of p14ARF+IFNb. The
number of animals/group is indicated in the figure legends.
Tumors were measured with calipers and the volume
calculated according to the formula: ½ × (length) × (width)2

(39, 40). We consider the tumor volume of 1000 mm3 as
experimental end point when the animals were anesthetized in
a chamber with 4% isoflurane and euthanized by CO2 inhalation.
Otherwise, animals that did not reach the end point were
monitored until 60 days. Distribution of animals/cage was
maintained according to the pre-defined experimental groups
at the beginning of the treatment. Alternatively, on experimental
day 9 (48 h after the last treatment), some of these animals were
euthanized and samples collected for histologic analyses.

Immunogenic Cell Death Assays
The ICD markers were analyzed following the protocols
previously described (21). For each assay, 1 × 105 cells were
treated with the vectors for 48 h, and then, cells and supernatant
were collected. For the evaluation of calreticulin exposure through
flow cytometry, cells were probed with rabbit anti-calreticulin
antibody (Novus Biologicals, Littleton, CO, USA), followed by the
Alexa488-conjugated anti-rabbit secondary antibody (Thermo
Fisher Scientific). The cells were then analyzed using the Attune
cytometer (Thermo Fisher Scientific). The ATP secreted in the
media was evaluated using the ENLITEN ATP Assay System
(Promega), following the manufacturer protocol, and the
luminescence obtained with tube reader Sirius L Tube
Luminometer (Titertek Berthold, Germany).

Isolation of Peripheral Blood Mononuclear
Cells (PBMCs), Mo-DCs Differentiation,
and Activation With Transduced
Tumor Cells
All experiments were performed after the approval of the
institutional Committee for Ethics in Research (Fundação Pró-
Sangue, CEP#03, FMUSP). Healthy donors’ peripheral blood was
obtained from leukoreduction chambers (41) after signed written
informed consents. PBMCs were isolated by density gradient
October 2020 | Volume 11 | Article 576658
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centrifugation over Ficoll-Paque (GE Healthcare, Uppsala,
Sweden). For the generation of monocyte-derived DCs, PBMCs
were either plated for 2 h for adherence of monocytes to the
plastic and subsequent removal of non-adherent cells (42) or by
positive magnetic selection (Milteny Biotec, Bergisch Gladbach,
Germany) for the isolation of CD14+ monocytes. The monocytes
were cultured at 37°C and 5% CO2 in RPMI-1640 medium
supplemented with 10% FBS, antibiotic-antimycotic (Thermo
Fisher Scientific) and 50 ng/ml of IL-4 plus 50 ng/ml of GM-CSF
(both from PeproTech, Rocky Hill, NJ, USA) for 5 days to obtain
immature monocyte-derived dendritic cells (iDCs) (43). At day
5, iDCs cells were harvested, washed, counted, and activated for
24 h with previously transduced SK-MEL-147 cells at a 1:1 and
1:10 ratios. Cells were harvested and analyzed by flow cytometry
using CD209 (DCN46, #551545, BD), HLA-DR (G46-6,
#556643, BD), CD80 (L307.4, #340294, BD), CD83 (HB15e,
#561132, BD), CD86 (2331, #561124, BD) or used for the
priming of autologous T cells.

T Cell Isolation and Priming
T cells were enriched by either recovery of non-adherent cells
after 2 h of PBMCs plastic adherence or by negative magnetic
selection with the Pan T cell isolation kit (Milteny Biotec).
Aliquots of T cells were cryopreserved until used in subsequent
experiments. For T cell priming, activated Mo-DCs were harvest,
washed, counted, and co-cultured for 7 days with autologous T
cells at a 1:10 ratio in 96-well U-bottom plates (Corning,
Tewksbury, MA, USA), with human IL-7 (50ng/ml), IL-2 (250
U/ml), and IL-15 (5 ng/ml) (all from Peprotech) with media
replacement with fresh cytokines every 3 days. T cell proliferation
was determined by carboxyfluorescein succinimidyl ester
(CellTrace™ CFSE Cell Proliferation Kit, #C34554, Thermo
Fisher Scientific) dilution, where T cells were previously stained
with 5 mM CFSE. After 7 days, T cells were harvested and stained
for surface markers CD3 (SK7, #340542, BD), PD1 (EH12.1,
#561273, BD), TIM3 (F38-2E2, #25-3109-42, Thermo Fisher
Scientific), LAG3 (3DS223H, #12-2239-41, Thermo Fisher
Scientific), and CFSE dilution was determined by flow cytometry.

Cytolytic T Cell Activity
Primed T cells were seeded in 96-well U-bottom plates together
with fresh non-transduced SK-MEL-147 in a 10: 1 ratio. After
48 h of incubation, SK-MEL-147 viability was assessed through
LIVE/DEAD staining (Thermo Fisher Scientific) by flow
cytometry. SK-MEL-147 cells were gated based on size (FSChi)
and absence of CD3 staining.
Cytokine Measurements by CBA
To determine the cytokine profiles of stimulated T cells, we use
co-cultures with allogeneic Mo-DCs primed with adenoviral-
transduced SK-MEL-147 cells. Supernatants were collected after
3 days of cultures and analyzed by CBA. Analysis of IL-2, IL-4,
IL-6, IL-10, IL-17A, TNF-a, and IFN-g levels was performed
using the Cytokine Bead Array Th1/Th2/Th17 kit (BD Biosciences,
San Jose, CA, USA). Samples were acquired with a FACS II LRS
Fortessa (Becton, Dickinson and Company, USA) according to the
Frontiers in Immunology | www.frontiersin.org 4
manufacturer’s instructions and analyzed using the FCAP Array
Software 3.0 (BD Biosciences, San Jose, CA, USA).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software version 5.0 (GraphPad Software, San Diego, CA,
USA). Statistical significance was calculated using one-way or
two-way ANOVA when appropriate, followed by Bonferroni
post-test. Differences were considered significant when p < 0.05.
Number of replicates and sample sizes for all experiments are
detailed in the figure legends.
RESULTS

Adenovirus-Mediated Gene Transfer of
p14ARF and IFNb Induces Cell Death in
Human Melanoma Cells
Adenoviral vectors encoding Luc2, p14ARF or IFNb were
constructed (Figure S1) and transgene expression was validated
(Figures S2 and S3). In this work, we focus on the SK-MEL-147
human melanoma cell line since it harbors wild-type p53.
Subsequently, we measured hypodiploid cell populations after
transduction, revealing that the combination of adenoviruses
p14ARF+IFNbwas superior to individual gene transfer for the
induction of hypodiploidy (Figure 1A). Figure 1B shows the
increase hypodiploidy over time, reaching 45% of cells in 48 h.

Next, we assessed the alteration of cell membrane
permeability in a live/dead assay (L/D) and also measured
caspase 3/7 activity 48 h after transduction. Figure 1C shows
that the number of live cells (Caspase 3/7neg, L/Dneg) was
significantly reduced in the groups that received IFNb,
p14ARF or the combination as compared to the Mock or Luc
control groups. Representative dot-blot graphs are shown in
Figure S4. Apoptotic cells, those positive for caspase 3/7 activity
(Casp3/7+) and with cell membrane integrity (L/Dneg), were more
frequent upon treatment with p14ARF (Figure 1D). In contrast,
combined gene transfer was associated with necrosis (Casp3/7neg,
L/D+), indicating loss of cell membrane integrity even without
caspase 3/7 activity (Figure 1E). Caspase activity with
concomitant loss of cell membrane integrity (Casp 3/7+, L/D+)
was associated with IFNb treatment alone or in combination with
p14ARF (Figure 1F). These data indicate that treatment with
p14ARF+IFNb may induce cell death by a mechanism that is
independent of caspase 3/7 activity.

Nod-Scid Mouse Model of In Situ Gene
Therapy Reveals Prolonged Survival in
Response to Combined Gene Transfer
After seeing that adenovirus carrying the p14ARF and IFNb
transgenes triggered cell death in human melanoma cells in vitro,
we questioned whether this potential could also be observed in
vivo. For this, tumors were established by injection (s.c.) of 1 ×
106 cells in the right flank of Nod-Scid mice. Once the tumors
had reached a volume of 60 mm3, we initiated the treatment
regimen consisting of four doses of adenovirus (2 × 108 TU per
October 2020 | Volume 11 | Article 576658
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dose) administered by intratumoral injections with 48-h intervals
between doses. The first day of treatment is considered as day 1
(thus virus was administered on days 1, 3, 5, and 7). The
experimental endpoint in the PBS and Luc controls was reached
around the tenth day of treatment, while IFNb alone or in
combination with p14ARF show significantly reduced tumor
growth (Figure 2A) and prolonged survival (Figure 2B). We
noticed an intermediate effect when p14ARF was used alone.
While IFNb was sufficient to inhibit tumor progression, we
postulate that the benefit of p14ARF may lie in the mechanism
of cell killing and the impact of oncolysis on the host response.

Evidence of Immunogenic Cell Death
Resulting From Adenoviral Treatments
Having verified the potential to generate oncolysis, we
investigated whether treatment with the adenoviral vectors
Frontiers in Immunology | www.frontiersin.org 5
would trigger ICD, measured by the emission of DAMPs and
activation of cellular mediators of the immune response. For this,
SK-MEL-147 cells were transduced with the vectors encoding
p14ARF, IFNb or the combination and then incubated for 48 h
before observing the exposure of calreticulin in the cell
membrane and the secretion of ATP. Figure 3A shows that
the increase in calreticulin exposure in the cell membrane of
transduced cells was greatest in response to the IFNb and
p14ARF combination. This condition also resulted in increased
granularity, indicating cellular stress. Figure 3B shows that
secretion of ATP is most intensely induced by the
p14ARF+IFNb combination. The production of IFN-b, another
DAMP, is also supported by our gene transfer approach (Figure
3C). Thus, combined gene transfer of p14ARF and IFNb resulted
in the emission of three critical DAMPs expected to contribute to
immune cell activation.
A B

D

E F

C

FIGURE 1 | p14ARF and IFNb gene transfer triggers cell death in human melanoma cells. SK-MEL-147 cells without treatment (Mock) or transduced with AdRGD-
PG-Luc2 (Luc), AdRGD-Luc2-PG-p14ARF (p14ARF), AdRGD-PG-Luc2-IFNb (IFNb) or the combination (p14ARF + IFNb) were subjected to cell death assays.
(A, B) Graphs depict propidium iodide labeling performed 24 and 48 h after transduction. (C–F) Next, 48 h after transduction, cells were doubly marked for active
caspase 3/7 and with LIVE/DEAD® (L/D) to measure cellular membrane permeability. Thus, the following graphs demonstrate: (C) Live: Caspase 3/7neg, L/Dneg,
(D) Apoptotic: Caspase 3/7+, L/Dneg, (E) Necrotic: Caspase 3/7neg, L/D+, and (F) Apoptotic/Dead: Caspase 3/7+, L/D+. Samples were acquired by flow cytometry.
Mean and standard deviation were obtained from three independent assays each performed with technical triplicates. Statistical analyses were performed using one-
way ANOVA test followed by Bonferroni post-test. *p < 0.05, **p < 0.005, and ***p < 0.0005.
October 2020 | Volume 11 | Article 576658
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SK-MEL-147 Cells Transduced With
p14ARF+IFNb Adenoviral Vectors Induce
Activation of Monocyte-Derived
Dendritic Cells
To further investigate whether the induction of cell death and
immunogenic factors upon transduction with the p14ARF+IFNb
adenoviral vectors could elicit an immune response, we exposed
immature monocyte-derived dendritic cells (iDCs) to previously
transduced SK-MEL-147 cells (Figure 4A). Combined
p14ARF+IFNb gene transfer was shown to be especially efficient
for the release of ICDmarkers, thus was used in these assays. First,
we verified that the viability of iDCs was not lost when co-cultured
at different ratios (1:1 and 1:10) with SK-MEL-147 cells previously
transduced atMOI 10, 50, or 100 (Figure S5). By gating on the live
CD209+ iDCS, we are able to demonstrate that the frequency and
expression level of HLA-DR, CD80, and CD86 increased in iDCs
exposed to p14ARF+IFNb-transduced SK-MEL-147 cells
compared to iDCs exposed to mock-transduced SK-MEL-147
cells (representative histograms presented in Figure 4B).
Frontiers in Immunology | www.frontiersin.org 6
Statistically, iDCs behaved the same when treated at a ratio of
1:1 (black dots) or 5:1 (gray dots) iDC:SK-MEL-147 transduced
cells, thus these results were pooled. When co-cultured in direct
contact with iDC, p14ARF+IFNb-transduced SK-MEL-147 cells
induced an increase in expression of HLA-DR, CD80, and CD86
in iDCs, while co-culture in a transwell chamber revealed that
soluble factors induced the upregulation of only HLA-DR in iDCs
(Figure 4C). This suggests that membrane-associated factors
presented by the transduced SK-MEL-147 cells are responsible
for most of their dendritic cell activation effect.

iDCs Activated With p14ARF+IFNb-
Transduced SK-MEL-147 Cells Modulate
the Priming and Function of T Cells
Next, we explored whether iDCs exposed to transduced SK-
MEL-147 cells were able to prime T cells and polarize cytokine
production (Figure 5A). Using an autologous system supported
by IL-15, IL-7, and IL-2, we found that iDCs activated with Luc
and p14ARF+IFNb-transduced SK-MEL-147 cells were able to
switch the CD4/CD8 ratio, favoring the proliferation of CD8+ T
cells rather than CD4+ (Figure 5B). Compared to unstimulated
CD8+ T cells, iDCs activated with mock-transduced, Luc-
transduced and p14ARF+IFNb-transduced SK-MEL-147 cells
favored a non-significant upregulation of the checkpoint
molecules LAG-3, PD-1, and TIM-3 among the CD8+ T cell
population (Figure 5C). To characterize the cytokine milieu
induced during antigen presentation and co-stimulation, we co-
cultured activated DCs with allogeneic T cells to avoid the
interference of external cytokines needed in the autologous
system. We found that iDCs activated with p14ARF+IFNb-
transduced SK-MEL-147 cells potently induced the production
of IFN-g by T cells, compared to iDCs activated with Luc-
transduced SK-MEL-147 cells; TNF-a and IL-10 were also
significantly increased, however at lower concentrations than
IFN-g. In turn, IL-6 was upregulated in T cells co-cultures with
both, iDCs activated with Luc and p14ARF+IFNb-transduced SK-
MEL-147 cells. When iDCs were activated with p14ARF+IFNb-
transduced SK-MEL-147 cells separated through a transwell
membrane, they lost the ability to induce cytokine production
by T cells. No significant differences were found when iDCs were
activated at a 1:1 (black) or 5:1 (gray) ratio with p14ARF+IFNb-
transduced SK-MEL-147 cells (Figure 5D).

T Cells Primed by iDCs Activated With
p14ARF+IFNb-Transduced SK-MEL-147
Cells Kill Fresh Non-Transduced SK-MEL-
147 Cells
Finally, to explore whether iDCs activated with adenovirus-
transduced SK-MEL-147 cells were able to induce a specific
cytotoxic population, autologous primed T cells from two
healthy donors were challenged with fresh non-transduced SK-
MEL-147 cells. After 48 h, we assessed the abundance of T cells
in samples and the viability of CD3neg cells within the SK-MEL-
147 gate (higher FSC). We observed that within the lymphocyte
gate, more than 90% of the cells were CD3+ (Figure 6A). For
both donors, we found higher viability loss among fresh SK-
A

B

FIGURE 2 | In situ gene therapy with the combination of p14ARF and IFNb
impaired tumor progression and improved survival rates in mouse xenograft
model. Fresh SK-MEL-147 cells were inoculated in Nod-Scid mice,
generating tumors after 7 days. The therapeutic regimen comprised four intra-
tumoral injections at 48-h intervals with excipient alone (PBS, n = 9) or
containing 2 × 108 TU of AdRGD-PG-Luc2 (Luc, n = 5), AdRGD-PG-Luc2-
p14ARF (p14ARF, n = 13), AdRGD-PG-Luc2-IFNb (IFNb, n = 11) or the
combination (p14ARF + IFNb, 1 × 108 TU each virus, n = 12). (A) The tumor
volume (mean +/- standard error) is shown in the graph. Statistical differences
between IFNb and p14ARF + IFNb versus PBS and Luc were revealed on
day 14 using unpaired t test with Welch’s correction. ***p < 0.0005. (B)
Kaplan Meier graph shows survival (percent of mice with sub-maximum tumor
size). Log-rank (Mantel-Cox) Test. p < 0.0001.
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MEL-147 cells when challenged with T cells primed by iDCs
activated with p14ARF+IFNb-transduced SK-MEL-147 cells,
compared to all controls (Figure 6B). Based on these findings,
we propose in Figure 6C the mechanism of immune activation
in response to treatment of SK-MEL-147 cells with the
combination of p14ARF+IFNb gene transfer.
DISCUSSION

The classic conception of cancer therapy involves the use of
chemotherapy and radiotherapy to induce cell death
preferentially in tumor populations (44, 45). Frequently, these
agents induce apoptosis, a well-known mechanism of cell death
that involves the activation of caspases 3 and 7, fragmentation of
DNA and packaging of cell content within portions of integral
cell membrane (46–49). The maintenance of membrane integrity
is an important feature of programmed cell death since this does
not alarm the immune system (50). However, apoptosis may
activate the proliferation of the remaining cells and thus
reestablish the tumor mass (46, 51); therefore, alternative
approaches that induce tumor cell death are needed.
Frontiers in Immunology | www.frontiersin.org 7
In this paper, we constructed novel adenoviral vectors
expressing p14ARF and IFNb and used them individually or in
combination for the transduction of SK-MEL-147 cells.
Interestingly, our results show that the combination of p14ARF
and IFNb adenoviruses induced cell death independent of
caspases3/7, unlike the IFNb vector when used alone,
corroborating other findings of our group when using mouse
(21) or human cell lines (SM, OC, and BS, unpublished data).

The use of animal models to test in situ cancer gene therapy is
an approach that allows us tomake valuable inferences. Our group
has accumulated evidence from previous studies that show
adenoviral vectors, when injected intratumorally, are well
tolerated by animals (20, 22, 52). Serum levels of ALT and AST
did not show significant changes in a model of in situ gene therapy
where only the IFNb vector was administered, thus hepatotoxicity
did not occur (53).

In this work, we investigated the potential antitumor effects of
AdRGD-PG-IFNb and AdRGD-PG-p14ARF in a model of in
situ gene therapy using the human melanoma cell line SK-MEL-
147 engrafted in Nod-Scid mice. Our results indicate that IFNb
gene transfer alone or when combined with p14ARF conferred
potent inhibition of tumor progression, which directly reflects on
A

B C

FIGURE 3 | Emission of immunogenic cell death markers induced by combined adenoviral p14ARF + IFNb gene transfer. SK-MEL-147 cells transduced as
previously described, incubated for 48h h before cells and supernatants were collected for ICD assays. (A) Calreticulin exposure was assessed by flow cytometry
after specific antibody staining. Representative dot plots and a bar graph showing the mean and standard deviation from three independent tests with three technical
replicates each. (B) Supernatant from the same cultures were collected and evaluated for ATP secretion using a luciferase-based assay (RLU, relative light units).
Data represent the mean and standard deviation from at least three independent experiments. (C) Detection of secreted IFNb protein from cell supernatant by ELISA.
Data represent the mean and standard deviation from at least three independent experiments. For both (A–C), statistical analyses were performed using one-way
ANOVA test followed by the Bonferroni post-test. *p < 0.05, **p < 0.005, and ***p < 0.0005.
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the survival of these animals. In agreement with the in vitro cell
death assays, p14ARF alone was less effective. The in vivo
performance of our gene transfer approach corroborates with
previous work (20, 22, 52), but nevertheless, it is unprecedented
since this is the first demonstration of the use of a p53-responsive
adenoviral vector for the transfer of p14ARF+IFNb to human
melanoma cells. Although the results were encouraging, the use
of human cells in animal models brings an important limitation,
the use of immunocompromised animals. Our previous data
using the B16 cell line in immunocompetent mice pointed out
that the contribution of the immune system to the control of
Frontiers in Immunology | www.frontiersin.org 8
tumors treated with the mouse transgenes (p19Arf + mIFNb) is
crucial (18, 20, 52).

One of our main motivations for the use of gene transfer to
promote oncolysis was precisely the potential to modulate the
tumor microenvironment, release tumor antigens, and DAMPs
to stimulate the immune response. To this end, we investigated
the occurrence of ICD. In this work, we focus on the exposure of
calreticulin (54) and secretion of ATP (55) in response to gene
transfer. Considered an early event of ICD, exposure of
calreticulin on the cell surface acts as an “eat-me” signal for
phagocytosis by macrophages, neutrophils, and DCs and is
A

B

C

FIGURE 4 | SK-MEL-147 cells transduced with p14ARF+IFNb adenoviral vectors induced activation of monocyte-derived dendritic cells. (A) Schematic
representation of the co-culture assay where SK-MEL-147 cells without treatment (Mock) or transduced with AdRGD-PG-Luc2 (Luc) or the combination AdRGD-
Luc2-PG-p14ARF + AdRGD-PG-Luc2-IFNb (p14ARF + IFNb) were used to activate immature monocyte-derived dendritic cells (iDC). (B) Representative histograms
and (C) frequency multiplied by MFI (iMFI) of HLA-DR, CD80 and CD86 in iDCs co-cultured in direct contact with transduced SK-MEL-147 cells or through a
transwell membrane (0.4-mm pore size). Statistical analyses were performed using one-way ANOVA followed by the Bonferroni post-test. *p < 0.05, **p < 0.005.
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necessary for subsequent antigen cross-presentation to cytotoxic
T cells (54, 56). Our data indicate that combined p14ARF+IFNb
gene transfer was the strongest inducer of ICD as measured by
the release of DAMPS and motivated us to focus only on this
group to continue the work. There are an increasing number of
markers for characterizing ICD, including type I interferon (9,
10). Although we did not focus on expanding the number of ICD
markers, we consider that the production of IFNb encoded by
the adenoviral vectors contribute to the ICD process.

Next, we characterized the immunogenic response itself,
through assays with DCs and T cells. Our data suggest that the
DAMPs and tumor antigens produced during the ICD of SK-
MEL-147 cells upon transduction with p14ARF+IFNb were able
to activate iDCs, which in turn primed T cells to produce IFN-g,
TNF-a, and IL-10, and could also induce a specific cytotoxic
population recognizing and killing SK-MEL-147 cells. In iDCs
exposed to the factors induced by p14ARF+IFNb, soluble factors,
such as ATP and IFNb, may be sufficient for the upregulation of
HLA-DR, whereas calreticulin exposure and other contact-
Frontiers in Immunology | www.frontiersin.org 9
dependent factors are needed in addition to soluble factors to
significantly increase the expression of the co-stimulatory
molecules CD80 and CD86. Extracellular ATP released by
dying cells guides the recruitment of antigen-presenting cells
and promote debris uptake and clearance (54, 55, 57, 58) that in
an IFN-b milieu, will increase the expression of interferon-
stimulated genes, sustain MHC class II synthesis, antigen-
processing and presenting capacity (59). The effect of
calreticulin exposure, in turn, relies on the contact between
iDCs and dying cells and the blockage of this pathway
abolishes the immunogenicity of cell death (54, 60), perhaps by
modulating the expression of co-stimulatory molecules in
activated DCs as we observed in our transwell experiments.
Indeed, the lack of contact between dying cells and iDCs (a.k.a.
calreticulin-exposure signaling) also affects the subsequent
polarization of T cells, which fail to improve their cytokine-
producing capacity.

We explored antigen dosage by varying the number of
transduced-SK-MEL-147 cells cultured with iDCs. While dosage
A

B

D

C

FIGURE 5 | iDCs activated with p14ARF+IFNb-transduced SK-MEL-147 cells modulate the priming and function of T cells. (A) Schematic representation of the DC-
mediated priming of T cells. DCs (pre-activated with transduced SK-MEL-147 cells) were co-cultured with autologous T cells in the presence of IL-15, IL-7 and IL-2
to determine T cell proliferation and phenotypic profile. (B) Frequency of CD4+ and CD8+ T cells within CD3+ CFSElo (proliferating) T cells, primed by DCs previously
activated with transduced SK-MEL-147 cells. Graphs show the mean and standard deviation from three independent assays. (C) Expression profile of checkpoint
receptors in primed T cells. Graphs show the mean and standard deviation from three independent assays. (D) To determine the polarized cytokine profile, DCs
were co-cultured with allogeneic T cells from two different donors (black and gray), to avoid the interference of external cytokines used in the autologous system.
Cell-free supernatants were assessed for IFN-g, TNF-a, IL-10, and IL-6 secretion by cytometric bead array. Gray line indicates the detection limit of each cytokine.
Statistical analyses were performed using one-way ANOVA test followed by the Bonferroni post-test. *p < 0.05, **p < 0.005, and ***p < 0.0005.
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had no significant impact on HLA-DR, CD80, and CD86
expression or the ability to induce cytokine-production by
T cells, it appears that less antigen was better for the activation
of DCs, particularly relevant when it comes to the induction of
viable memory antigen-specific CD8+ T cells without exhausted
phenotype (61, 62), that in our system remains to be investigated.
Preliminary evidence obtained from four healthy donors show
that iDCs activated with both Luc and p14ARF+IFNb-transduced
SK-MEL-147 cells were biased to induce the proliferation of CD8+

T cells, due to the adenoviral-transduction itself and not
necessarily by p14ARF+IFNb. However, only p14ARF+IFNb
was able to polarize the cytokine milieu toward a Th1 profile,
suggesting that our combination could effectively trigger a
desirable cytokine setting for an antitumor response (63).

The upregulation of checkpoint molecules in CD8+ T cells has
been proposed to distinguish tumor-specific clones that had
recent TCR activation (64). The transient invigoration of
exhausted CD8+ T cells to potent tumor-reactive cells has been
achieved through the combination of anti-PD-1 therapy with
PEGylated IL-10, leading to the expansion of a rare population of
Frontiers in Immunology | www.frontiersin.org 10
LAG-3+ PD-1+ CD8+ T cells that positively correlates with
clinical response (65). Intriguingly, iDCs activated with
p14ARF+IFNb-transduced SK-MEL-147 cells favored the
upregulation of LAG-3 and PD-1 in CD8+ T cells simultaneously
with IL-10 production; the significance of this phenomena to our
strategy is unknown but noteworthy since one of the biggest
challenges of modern immunotherapy strategies is the induction
of potent antitumor response without the adverse events arising
from an uncontrolled immune response. Future studies of our
strategy will address the kinetics of cytotoxic and exhausted CD8+

T cell populations and the significance of the simultaneous
checkpoint molecule and IL-10 upregulation.

Beyond the phenotype and function of the CD209+

monocyte-derived DCs characterized here, DAMPs and ICD
triggered by p14ARF+IFNb could also influence other
circulating DC populations potentially present in the adherent
and non-adherent fractions, sources of monocytes and T cells. Of
note, plasmacytoid DCs (pDC) with its remarkable antiviral
capacity and production of type I interferons, slanDCs the
major source of IL-12 that favor Th1 responses and cDC1
A B

C

FIGURE 6 | T cells primed by iDCs activated with p14ARF+IFNb-transduced SK-MEL-147 cells induced viability loss of fresh non-transduced SK-MEL-147 cells.
T cells primed with autologous DCs (previously activated with transduced SK-MEL-147 cells) from two healthy donors were challenged with fresh SK-MEL-147 cells
to assess viability 48 h later. (A) Representative histogram of the frequency of CD3+ T cells, which comprised over 90% of the cell population among the lymphocyte
gate (FSClo). (B) Histograms showing the viability of SK-MEL-147 (CD3neg FSChi) after challenge with previously primed T cells. For both donors, there was an
increase in dead cells triggered by the p14ARF + IFNb combination group compared to the controls. (C) Schematic representation of the mechanisms of oncolysis
and immune activation triggered by p14ARF + IFNb gene therapy of melanoma cells.
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CD141+, specialists in antigen cross-presentation to CD8+ T cells
(66, 67). Each subpopulation, that substantially differ in terms of
function, might also have important differences in their capacity
to internalize calreticulin-exposing dying cells, the repertoire of
pattern recognition receptors (PRRs) recognizing p14ARF+IFNb-
induced DAMPs, as well as signaling toward inflammatory and
anti-inflammatory cytokines and ability to polarize adaptive
responses (68, 69). Also, by our methods, we could not rule out
the participation of other immune cells, such as NK cells; previous
in vivo work from our group points to the participation of NK
cells in our strategy and poorer antitumor effect after in situ IFNb-
vector treatment of SK-MEL-147 tumors in Nod-Scid mice versus
nude (OC and BS, manuscript submitted). In a mouse model, we
have observed activation of ULBP1, IL-15, Killer/DR5 and Fas/
Apo1 in B16 tumor cells specifically in response to combined
p19Arf+mIFNb gene transfer (52). Additional studies are needed
to understand the participation of other lymphocyte populations,
such as CD4+ helper T cells and NK cells in the mechanisms
described here.

In summary, we present evidence that p14ARF+IFNb-
transduction of human melanoma cells leads to ICD that
activates iDCs, which in turn, induce and polarize the adaptive
immune response toward a Th1 profile. Data from our
experiments with T cells suggest that the expansion of antigen-
specific CD8+ T cells would be expected to participate in
controlling tumor progression in vivo. Based on our in vitro
proof of concept data, further exploration of immune cell
activation using healthy donors or, ideally, from melanoma
patients is warranted.
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