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Evidence for an interaction between alcohol consumption and the serotonin system has
been observed repeatedly in both humans and animal models yet the specific relation-
ship between the two remains unclear. Research has focused primarily on the serotonin
transporter (SERT) due in part to its role in regulating extracellular levels of serotonin. The
hippocampal formation is heavily innervated by ascending serotonin fibers and is a major
component of the neurocircuitry involved in mediating the reinforcing effects of alcohol.
The current study investigated the effects of chronic ethanol self-administration on hip-
pocampal SERT in a layer and field specific manner using a monkey model of human
alcohol consumption. [3H]Citalopram was used to measure hippocampal SERT density in
male cynomolgus macaques that voluntarily self-administered ethanol for 18 months. Hip-
pocampal [3H]citalopram binding was less dense in ethanol drinkers than in controls, with
the greatest effect observed in the molecular layer of the dentate gyrus. SERT density
was not correlated with measures of ethanol consumption or blood ethanol concentra-
tions, suggesting the possibility that a threshold level of consumption had been met. The
lower hippocampal SERT density observed suggests that chronic ethanol consumption is
associated with altered serotonergic modulation of hippocampal neurotransmission.
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INTRODUCTION
Alcohol abuse and dependence are widespread disorders that con-
stitute a significant public health concern, with the prevalence
of alcohol abuse in the United States increasing in recent years
(Grant et al., 2004). Alcohol use has been identified as the third
leading preventable cause of death in the United States (Mokdad
et al., 2004) and its financial burden has increased in magnitude
over time (Harwood, 2000). Identifying the neurobiological con-
sequences of excessive alcohol consumption and illuminating the
mechanisms underlying those effects can provide a framework
from which to develop new treatment strategies aimed at reduc-
ing the significant human and financial costs associated with this
disease.

A long history of research using animal models has reported a
role for the serotonin system in regulating virtually every aspect of
the progression to alcohol dependence, including intake, prefer-
ence, tolerance, and withdrawal (Myers and Veale, 1968; Griffiths
et al., 1974; Frankel et al., 1975; Richardson and Novakovski, 1978).
Despite an abundance of studies, the relationship between ethanol
and serotonin remains unclear (for review LeMarquand et al.,
1994; Kenna, 2010; Sari et al., 2011). In an effort to better under-
stand the specific effects of chronic ethanol on this system, much
research has focused on the serotonin transporter (SERT), as it
is the main cellular constituent controlling extracellular levels of
serotonin.

Although frequently thought of as a single functional entity,
the hippocampal formation is comprised of a discrete set of

subregions, each of which make a unique contribution to the
classical trisynaptic pathway characteristic of this region. Input
to the hippocampal formation comes through projections from
the entorhinal cortex to the dentate gyrus via the perforant path.
Mossy fibers projecting from the dentate gyrus terminate on CA3
pyramidal neurons, which then project via the Schaffer collaterals
to CA1 pyramidal neurons. An additional projection is evident
from CA1 to the subiculum, the hippocampal formation’s major
source of information output (Amaral and Lavenex, 2007). This
brain region serves as a major biological substrate mediating the
reinforcing effects of drugs of abuse including alcohol (Haber and
Knutson, 2009; Belujon and Grace, 2011) and is heavily innervated
by ascending serotonergic fibers emanating from the raphe nuclei
(Wilson and Molliver, 1991). Despite this, most studies examining
the effects of ethanol on the SERT have focused on other regions
involved in the mesocorticolimbic dopamine pathway.

The few studies that have investigated the effects of ethanol
on hippocampal SERT report conflicting results. For example,
genetically bred lines of ethanol-preferring and non-preferring
rats exhibit no differences in hippocampal SERT regardless of
ethanol self-administration history (Chen and Lawrence, 2000;
Casu et al., 2004). Interestingly, Wistar rats exposed to ethanol
in their drinking water for a period of 6 weeks exhibit a reduc-
tion in hippocampal SERT immunoreactivity (Tagliaferro et al.,
2002), whereas greater SERT immunoreactivity has been reported
in CA1–CA3 of mice made dependent following 9 days of ethanol
vapor chamber exposure (Shibasaki et al., 2010).
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The human literature is equally conflicted. In vivo imag-
ing studies have reported no differences in hippocampal SERT
availability in two populations of abstinent alcoholics (Brown
et al., 2007; Martinez et al., 2009). Analyses of SERT density
in human postmortem hippocampal brain tissue have reported
either increases or decreases as a function of alcohol consumption.
Gross-Isseroff and Biegon (1988) reported greater SERT density in
the stratum oriens of the CA fields in individuals with detectable
blood ethanol concentrations at time of death. In contrast, Chen
et al. (1991) reported lower postmortem hippocampal SERT den-
sity in individuals classified only as heavy drinkers compared
to controls.

Rodent models have provided the foundation of our current
understanding of serotonergic involvement in acute and chronic
ethanol self-administration. However, comparatively few studies
have examined similar changes in the primate brain. Non-human
primates more closely model human physiology, brain structure,
and alcohol drinking patterns than rodents. While the same gen-
eral fields and functions are present in both the rodent and primate
hippocampal formation, there are important species differences
that illustrate how the monkey hippocampus more closely resem-
bles that of humans. For example, greater differentiation and
laminar organization is observed within the primate entorhinal
cortex along with a thicker and more laminated principal cell layer
within the CA fields of primates (Amaral and Lavenex, 2007). In
addition, substantial differences in dentate gyrus intrinsic neuro-
circuitry have been noted between primates and rodents (Amaral
et al., 1984). Similarly, the distribution of serotonergic fibers inner-
vating the hippocampal formation differs significantly between
rodents and primates (Azmitia and Gannon, 1986).

While in vivo imaging is a useful tool, particularly for studies in
humans, data using PET and SPECT can be difficult to interpret
due to competition of the radiotracer with the endogenous ligand,
in this case, serotonin. Studies utilizing human postmortem tissue
have also been informative but are often plagued by small sam-
ple sizes and diverse alcohol dependent populations that vary in
age, sex, ethnicity, and alcoholic subtype. Human studies are fre-
quently further confounded by variables that may directly impact
various biochemical measures and are often impossible to control
(e.g., comorbid psychiatric conditions, periodicity, and chronic-
ity of alcohol consumption, polysubstance use especially nicotine,
and time in recovery). In addition to these limitations, the major-
ity of studies investigating the effects of ethanol on hippocampal
SERT have examined the structure as a single entity. While this
strategy is often useful from a technical perspective, it fails to recog-
nize the unique regional and laminar organization that makes up
functionally and molecularly distinct components of the under-
lying circuitry within the system (Small et al., 2011). Without
this type of analysis, the functional implications of any findings
remain limited.

Using a well-established non-human primate model of human
alcohol drinking (Vivian et al., 2001; Grant et al., 2008) we
examined the effects of chronic ethanol self-administration on
hippocampal SERT density. Based on previous data reporting
decreased serotonin levels (Murphy et al., 1982; Borg et al., 1985;
Fils-Aime et al., 1996) and serotonin fiber number (Halliday et al.,
1993; Zhou et al., 1994) in alcoholics and alcohol-preferring rats,

we hypothesized that ethanol drinkers would exhibit lower hip-
pocampal SERT density than controls. Furthermore, using in vitro
receptor autoradiography we were able to examine SERT density
in a layer by field specific manner allowing us to identify distinct
areas of the hippocampal formation that may be more or less
vulnerable to the effects of chronic ethanol.

MATERIALS AND METHODS
SUBJECTS
Adult male cynomolgus macaques (Macaca fascicularis) were indi-
vidually housed in quadrant cages (1.6 m × 0.8 m × 0.8 m) allow-
ing visual, auditory, and olfactory contact with conspecifics, in a
room with constant temperature (68–72˚F), humidity (65%), and
a 12-h light cycle (lights on at 7:00 AM). At approximately 6 years
of age (range = 5.67–6.58 years) nine monkeys were allowed to
voluntarily self-administer water and ethanol as described pre-
viously (Grant et al., 2008). Briefly, monkeys were trained to
self-administer food, water, and ethanol using an operant panel
permanently attached to the side of their home cage. Animals
were initially exposed to ethanol in progressively increasing doses
of 0.5, 1.0, and 1.5 g/kg using a schedule-induced polydipsia tech-
nique with scheduled food delivery of one 1 gram banana-flavored
pellet (Research Diets Incorporated, New Brunswick, NJ, USA)
every 5 min. Following induction, all animals were allowed to
voluntarily self-administer ethanol, food, and water during daily
22 h sessions for a period of 12 months. Each animal’s intake var-
ied throughout the 22-h phase of the study with daily average
consumption ranging from 1.17 to 4.25 g/kg (Table 1). Intake
correlated positively with blood ethanol concentration (r2 = 0.70;
p = 0.005). Imaging and neuroendocrine data not reported here
were collected following this 12 month period putting the total
duration of drinking at approximately 18 months for each animal
(range = 18–20 months). Additional data from these animals are
reported elsewhere (Morrow et al., 2006; Porcu et al., 2006; Cheng
et al., 2010; Freeman et al., 2010, 2011; Lebold et al., 2010; Helms
et al., 2011).

Controls were adult male cynomolgus monkeys that had lived
at the Oregon National Primate Research Center for 3 years prior
to assignment to this protocol. A set of four formed a group
of “caloric controls” and were housed in the same room as the
ethanol monkeys. Each monkey was allowed to self-administer a
volume of a maltose–dextrin solution on a daily basis that was
matched (yoked) in calories to the ethanol-caloric intake of an
assigned ethanol monkey matched by body weight. Caloric con-
trols were provided the same banana-flavored food pellets through
the panels as their primary food source. The laboratory personnel
interacted with these monkeys daily in the same manner as the
ethanol monkeys for 10 months prior to necropsy.

Additional controls were assembled from a separate study
because a sufficient number of caloric control animals were not
available at this time. Therefore, a second set of four formed
a group of “housing control” monkeys who were housed indi-
vidually in quadrant cages in a room identical to the ethanol
self-administration room (light cycle, temperature, humidity)
and remained on regular laboratory diet (Purina monkey chow).
The laboratory personnel interacted with the monkeys daily for
4 months prior to necropsy.
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Table 1 | Correlation coefficients for hippocampal [3H]citalopram binding and measures of ethanol consumption and blood ethanol

concentration (BEC).

Animal Lifetime EtOH (mL) Lifetime EtOH (g/kg) 6 month ave daily

intake (g/kg)

12 month ave daily

intake (g/kg)

6 month ave

BEC (mg/dL)

12 month ave

BEC (mg/dL)

Monkey 1 119884.1 931.9 2.40 2.07 52 50

Monkey 2 265182.2 1583.6 3.92 3.76 143 124

Monkey 3 283762 1774.2 4.58 4.25 137 157

Monkey 4 199960.9 1469.4 3.25 3.40 88 113

Monkey 5 97556.9 718.3 1.63 1.52 24 18

Monkey 6 169733.6 1072.5 2.96 2.45 166 123

Monkey 7 162786.3 1110.0 2.68 2.53 92 81

Monkey 8 144425 1001.6 2.25 2.29 129 135

Monkey 9 68458.8 588.6 1.06 1.17 9 11

DGmol (r2) 0.003 0.011 0.007 0.010 0.050 0.036

CA1slm (r2) 0.006 0.001 0.006 0.001 0.187 0.048

Individual measures include lifetime intake as well as average intake and blood ethanol concentration at 6 and 12 months into the 22-h self-administration portion of

the drinking paradigm.

All procedures were approved by the Wake Forest University
School of Medicine and Oregon Health and Sciences University
Institutional Animal Care and Use Committees and adhered to
NIH’s Guide for the Care and Use of Laboratory Animals (National
Research Council, 1996).

NECROPSY
All monkeys were necropsied at the end of their final 22 h self-
administration session at 9:00 AM. Each monkey was sedated with
ketamine (15 mg/kg intramuscular) and brought to a deep surgi-
cal plane of anesthesia with intravenous pentobarbital adminis-
tered to effect (30–50 mg/kg). Following a complete craniotomy
to speed access to the brain, each subject was perfused transcar-
dially with ice-cold, oxygenated Krebs-Henseleit buffer (in mM:
NaCl 137, Na2HPO4 6.5, Na2PO4 1.4, KCl 2.7, CaCl2 0.3, MgCl2
1.0, glucose 5.0; pH = 7.4) for 1.5 min. The brain was then quickly
removed from the skull and blocked. Blocks were frozen either
in isopentane at −35˚C for 15 min or between aluminum slabs
cooled on dry ice and subsequently stored at −80˚C until ready
for sectioning. Blocks containing the hippocampus were sectioned
coronally at 20 μm using a cryostat maintained at −20˚C. Sections
were thaw mounted to frost plus slides, placed immediately on
wet ice and then in a desiccator overnight at 4˚C before being
placed at −80˚C until ready to be processed for in vitro receptor
autoradiography.

IN VITRO RECEPTOR AUTORADIOGRAPHY
SERT density was determined at two separate levels within the
rostrocaudal extent of the hippocampus corresponding to approx-
imately A8-10 (mid rostrocaudal) and A4-6 (caudal) in the atlas of
Szabo and Cowan (1984). SERT was labeled with [3H]citalopram
(PerkinElmer, Inc., Boston, MA, USA) according to procedures
adapted from Strazielle et al. (1996). Briefly, sections from each
animal were preincubated for 15 min at room temperature in
50 mM Tris–HCl buffer containing 120 mM NaCl and 5 mM KCl
(pH 7.4). Two adjacent sections per animal per level were used
to determine total binding by incubation for 60 min at room

temperature in the same buffer containing 2 nM [3H]citalopram
(70.0 Ci/mmol) while non-specific binding was determined using
the same conditions with the addition of 10 μM fluoxetine (one
adjacent section per animal per level). Sections were subsequently
washed in ice-cold preincubation buffer (2 × 10 min) followed by
a rinse in ice-cold distilled water and then dried overnight in a
hood under a stream of cool air. Dried sections and [3H] standards
(American Radiolabeled Chemicals, Inc.,St. Louis,MO,USA) were
apposed to [3H] Hyperfilm for 5 weeks. Films were subsequently
developed with Kodak GBX developer, stopbath, and Kodak Rapid
Fixer.

Autoradiograms were analyzed by quantitative densitometry
using MCID (Imaging Research, St. Catharines, ON, Canada).
Standard curves from [3H] standards were used to convert opti-
cal density values to tissue equivalent values (fmol/mg wet weight
tissue). Two adjacent measurements were taken in each region
analyzed on each section measuring total binding (i.e., four mea-
surements per region per level per animal). Specific binding was
determined by subtracting non-specific binding from total bind-
ing in adjacent sections. Adjacent nissl stained sections were used
to confirm the anatomical placement of the measurements taken
in each field and layer.

STATISTICAL ANALYSIS
Prism 5 for Mac OS X (San Diego, CA, USA) was used for sta-
tistical analyses. Two-way analysis of variance was employed for
each region measured with group (ethanol versus control) and
level (mid rostrocaudal versus caudal) as the factors. Linear regres-
sion was used to identify the relationship between [3H]citalopram
binding and drinking measures.

RESULTS
For all animals, [3H]citalopram binding was greatest in the mole-
cular layer of the dentate gyrus (DGmol) with moderate binding
in the stratum lacunosum moleculare of CA1 (CA1slm) reflect-
ing the normal distribution of serotonin fibers innervating the
primate hippocampus (Figure 1; Wilson and Molliver, 1991).
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FIGURE 1 | Representative [3H]citalopram binding in ethanol

drinkers and controls. (A) A nissl stain of the non-human primate
hippocampus in coronal view with relevant regions and layers labeled.
(B) A representative example of hippocampal [3H]citalopram binding in a
healthy control. (C) A representative example of hippocampal

[3H]citalopram binding following chronic ethanol self-administration. Note
that lower binding is visually apparent in the ethanol drinker.
Abbreviations: gcl, granule cell layer; mol, molecular layer; pcl, pyramidal
cell layer; pol, polymorphic layer; slm, stratum lacunosum moleculare; so,
stratum oriens; sr, stratum radiatum.

There were no significant differences in [3H]citalopram bind-
ing in either DGmol or CA1slm between the two control groups,
one of which drank only water and remained on standard monkey
chow, and the other, which received a calorically matched volume
of maltose dextrin and ate the pelleted diet (p = 0.22 and p = 0.39
respectively; data not shown). As a result, data from both control
groups were pooled for subsequent analyses.

[3H]Citalopram binding was less dense in ethanol drinkers
than in controls. In CA1slm a main effect of group approached
significance [F(1, 30) = 3.370, p = 0.076] with no effect of level
[F(1, 30) = 0.008, p = 0.783] (Figure 2A). The effect was signifi-
cant in DGmol,again with a main effect of group [F(1,30) = 8.636,
p = 0.006] and no effect of level [F(1, 30) = 0.802, p = 0.378;
Figure 2B).

[3H]Citalopram binding was not significantly correlated with
measures of ethanol intake or blood ethanol concentration over
the 12-month 22 h drinking period (Table 1).

DISCUSSION
Chronic ethanol self-administration was associated with lower
hippocampal SERT density in cynomolgus macaques,an effect that
was most pronounced in the molecular layer of the dentate gyrus.
This is the first study to investigate the effects of chronic ethanol
self-administration on hippocampal SERT density in a layer by
region specific manner in a macaque model that closely resembles
human physiology, neurobiology, and voluntary alcohol drinking
patterns. In addition, we have shown that self-administration and
human interaction had no significant effect on hippocampal SERT
density suggesting that housing controls are sufficient for future
studies.

The lower hippocampal SERT density observed in ethanol
drinkers may be the result of a compensatory down-regulation of
the transporter secondary to decreased serotonin concentrations
associated with chronic ethanol consumption (Borg et al., 1985;
Fils-Aime et al., 1996). Indeed, the hippocampus appears to be par-
ticularly vulnerable to decreased serotonergic neurotransmission
following chronic ethanol consumption (Wu et al., 1986). Alter-
natively, lower hippocampal SERT density may indicate a loss of
serotonergic innervation. The human literature both supports and
challenges this suggestion. Halliday et al. (1993) reported degener-
ation of midbrain serotonergic neurons identified by tryptophan

FIGURE 2 | [3H]Citalopram binding is lower in animals that chronically

self-administered ethanol. (A) CA1slm [3H]citalopram binding is lower in
ethanol drinkers than controls. (B) DGmol [3H]citalopram binding is
significantly lower in ethanol drinkers than controls. #p = 0.08; *p < 0.01.

hydroxylase (TPH) immunoreactivity in the brains of alcoholics
with and without Wernicke–Korsakoff ’s syndrome. This study was
contradicted by a subsequent study in which midbrain serotoner-
gic neuron degeneration was not observed in alcoholics without
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Wernicke–Korsakoff ’s (Baker et al., 1996). Recent studies suggest
a more complex picture. In a comprehensive analysis, Under-
wood et al. (2007) investigated a heterogenous population of
alcoholics and reported no differences in dorsal raphe serotonin
neuron number or size but greater TPH immunoreactivity and
density of TPH+ neuron processes in the dorsal raphe of alco-
holics than controls. Similar findings were reported by Bonkale
et al. (2006) who observed greater TPH immunoreactivity in a
single subnucleus of the dorsal raphe of depressed alcoholic sui-
cides than in healthy controls. Unfortunately, it is difficult to make
comparisons among these studies due to small sample sizes and
sample heterogeneity, but overall they suggest that chronic alco-
hol consumption is associated with serotonergic neuroplasticity.
Importantly, however, recent work has shown that the SERT is a
more accurate marker of serotonin positive neurons than seroton-
ergic biosynthetic enzymes (Nielsen et al., 2006), the use of which
can frequently produce false negatives. In addition, differences (or
lack thereof) in raphe neuron number are not necessarily indica-
tive of the density of serotonergic projections to regions outside the
midbrain, making it possible that previously reported results are
region specific. Further investigation will be required to determine
the impact of serotonergic neurodegeneration and the extent that
brain regions receiving these midbrain serotonergic projections
are affected.

No correlational relationship was observed between hippocam-
pal SERT density and individual measures of ethanol intake or
blood ethanol concentration. It is possible that the neurobiolog-
ical adaptations observed are reached at a lower threshold level
of alcohol intake. The animals used in the present study had an
average daily ethanol intake ranging from 1.16 to 4.20 g/kg (Grant
et al., 2008) suggesting that changes in hippocampal SERT occur at
alcohol intakes lower than 1.16 g/kg/day (about an average of four
drinks per day). Several studies have reported correlations between
amount of ethanol intake and neurobiological endpoints (Adell
and Myers, 1995; Heinz et al., 1998; Acosta et al., 2010; Cuzon
Carlson et al., 2011). However, in extrapolating to the human
literature, accurate measures of intake are difficult to ascertain
whereas duration of drinking is more quantifiable. Chronicity of
drinking may in fact be a more accurate predictor of the neurobi-
ological adaptations induced by of chronic ethanol consumption,
as has been reported in previous studies examining effects on the
serotonergic system (Preuss et al., 2000; Berggren et al., 2002; John-
son et al., 2008). While the monkeys in the present study varied in
overall levels of consumption, the duration of drinking was identi-
cal, which may explain the lack of correlation between intake and
blood ethanol concentration measures and hippocampal SERT
density.

With the identification of a SERT polymorphism affecting tran-
scriptional control of the protein product (5-HTTLPR), a signifi-
cant amount of research has investigated whether basal SERT levels
play a role in the risk for alcohol dependence. The 5-HTTLPR is
a 44 base pair insertion/deletion with the short allele conferring
reduced SERT mRNA, density, and activity compared to the long
variant (Lesch et al., 1996). The alcohol literature is replete with
contradictory findings, but a recent meta-analysis revealed a mod-
est association between dependence and the presence of at least
one short allele of the 5-HTTLPR polymorphism. Importantly,

however, the study also uncovered the potential for publication
bias toward positive results (McHugh et al., 2010). We are unable to
conclusively determine whether lower hippocampal SERT density
is a risk factor for heavy or compulsive ethanol self-administration,
but the data we report here suggest that basal SERT density may
not be a risk factor for the amount an individual drinks. All of
the subjects in this study were randomly assigned to drinking and
control groups so there is no reason to expect that drinkers, as a
group, would have lower SERT densities before they were exposed
to ethanol. In addition, the absence of any correlation between
individual consumption and hippocampal SERT density, while
not conclusive, does not support the hypothesis that basal SERT
density is a risk factor for or predictor of the amount consumed.

Our findings contradict those of Shibasaki et al. (2010) who
reported greater hippocampal SERT immunoreactivity in mice
exposed to ethanol chronically using a vapor chamber appara-
tus, but support Tagliaferro et al. (2002) who observed lower
hippocampal SERT immunoreactivity in rats exposed to ethanol
in their drinking water for 6 weeks. These contradictory results
are likely due to strain/species differences, exposure methods,
and perhaps the stress induced by involuntary ethanol exposure.
Various rodent species and strains exhibit marked differences in
neurochemistry and neuroanatomy (Ingram and Corfman, 1980;
Nguyen et al., 2000; Chen et al., 2006; Kapasova and Szumlin-
ski, 2008). Furthermore, voluntary drug self-administration can
produce drastically different effects from non-contingent drug
exposure (Hemby et al., 1997; Jacobs et al., 2003). Both of these
factors may contribute to the disparate findings reported in rodent
models.

Two studies have assessed the effects of alcohol on hippocam-
pal SERT density in humans. The first examined the hippocampal
formation in a regionally specific manner and reported greater
SERT density in individuals with a positive blood ethanol concen-
tration at time of death as measured by [3H]imipramine binding
(Gross-Isseroff and Biegon, 1988). These results are difficult to
attribute to an effect of chronic alcohol consumption, however,
because [3H]imipramine binds to both the SERT and a second,
low affinity binding site (D’Amato et al., 1987) and subjects were
assigned to the alcohol group simply on the basis of the presence
of alcohol at time of death, which is not necessarily indicative of
chronic consumption. In contrast, a more recent study reported
lower SERT density in the brains of alcoholics than controls
using [3H]paroxetine (Chen et al., 1991). These authors, however,
failed to examine the hippocampus by its functionally distinct
subregions as reported in the present study.

Other studies have reported lower SERT binding or availabil-
ity in brain regions outside the hippocampus in chronic drinkers
(Heinz et al., 1998, 2000; Szabo et al., 2004; Storvik et al., 2006a,b,
2007). It is tempting to suggest that SERT density is lower globally
in animals and humans exposed to chronic ethanol, but compar-
isons between the existing literature and our own data are difficult
to make due to significant species and methodological differences,
most notably the heterogeneity of the samples investigated. Fur-
ther work is needed to determine whether the differences observed
in the hippocampal formation are also observed elsewhere in the
brain, how these differences may affect neurotransmission and the
responsivity to pharmacotherapeutics aimed at reducing drinking.
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If the lower hippocampal SERT density we observed in the
present study following chronic ethanol consumption is related
to serotonergic fiber degeneration, then the hippocampus may be
operating under a serotonin deficit in chronic ethanol drinkers.
The dentate gyrus, which we found was most vulnerable to this
effect, is the first step in the unidirectional circuit that makes up
the hippocampal formation (Insausti and Amaral, 2004), receiv-
ing all incoming sensory information from the entorhinal cortex
(Insausti and Amaral, 2004). Because of the complexity of the sero-
tonin system and the abundance of functionally distinct receptors
in the serotonin family (Barnes and Sharp, 1999) it is difficult
to speculate on the functional consequences of the changes we
observed. The 5-HT1A receptor, however, is particularly abundant
in the hippocampal formation in the same regions where the SERT
is localized (Stuart et al., 1986). The 5-HT1A receptor is coupled to
Gi/o and consequently inhibits adenylate cyclase ultimately result-
ing cellular inhibition and decreased neurotransmission (De Vivo
and Maayani, 1986; Pugliese et al., 1998). Lower serotonin concen-
trations would likely reduce the activation of the 5-HT1A receptor
and ultimately result in a relief of the inhibitory modulation that
the hippocampal circuit is typically under. An alteration at the

beginning of this circuit is likely to have downstream effects and
ultimately modify the circuit’s final output.

Drugs targeting the serotonin system, including selective sero-
tonin reuptake inhibitors (SSRIs), which increase extracellular
serotonin levels in the brain by blocking SERT activity, have
been proposed for the treatment of alcohol dependence (Johnson,
2004). Unfortunately, these drugs have had only limited success
despite an abundance of promising preclinical data (Kranzler et al.,
1995; Kabel and Petty, 1996). This preclinical data has relied,
however, mainly on rodent models, which exhibit important sero-
tonergic differences compared to primates (Azmitia and Gannon,
1986; Duncan et al., 1998). As such, the field can benefit from work
using primate models, including the present study, to better under-
stand the interaction between chronic alcohol consumption and
serotonergic perturbations in the brain. The results reported here
suggest that continued exploration of drugs targeting the serotonin
system is warranted for the treatment of alcohol use disorders.
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