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To change the expression of the flanking genes by inserting T-DNA into the genome is
commonly used in rice functional gene research. However, whether the expression of a
gene of interest is enhanced must be validated experimentally. Consequently, to improve
the efficiency of screening activated genes, we established a model to predict gene
expression in T-DNA mutants through machine learning methods. We gathered
experimental datasets consisting of gene expression data in T-DNA mutants and
captured the PROMOTER and MIDDLE sequences for encoding. In first-layer models,
support vector machine (SVM) models were constructed with nine features consisting of
information about biological function and local and global sequences. Feature encoding
based on the PROMOTER sequence was weighted by logistic regression. The second-
layer models integrated 16 first-layer models with minimum redundancy maximum
relevance (mRMR) feature selection and the LADTree algorithm, which were selected
from nine feature selectionmethods and 65 classifiedmethods, respectively. The accuracy
of the final two-layer machine learning model, referred to as TIMgo, was 99.3% based on
fivefold cross-validation, and 85.6% based on independent testing. We discovered that
the information within the local sequence had a greater contribution than the global
sequence with respect to classification. TIMgo had a good predictive ability for target
genes within 20 kb from the 35S enhancer. Based on the analysis of significant sequences,
the G-box regulatory sequence may also play an important role in the activation
mechanism of the 35S enhancer.
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1 INTRODUCTION

Rice is one of the most important models of monocotyledon plants for the analysis of plant gene
function. Rice is one of three major food crops throughout the world, and it is the staple food of more
than half of the world’s population. Rice production has doubled in the past 30 years, although the
supply of rice is expected to gradually become insufficient with the rapid increase in the world
population, climate change, and a shortage of water (Ray et al., 2013). It will not be easy to increase
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food production to the necessary levels. In 2004, the International
Rice Genome Sequencing Project (IRGSP) completed the
sequencing of the rice genome (IRGSP, 2005). The ultimate
goal of genome analysis is to realize the structure and function
of each gene within an organism. To further confirm the function
of and metabolic pathways related to each gene in rice, scientists
have focused their efforts on analyzing the rice genome and are
committed to promoting rice genome annotation to move rice
research into the post-genome era.

T-DNA insertion activation-tagging technology is widely used
in the analysis of the function of rice genes (Jeong et al., 2002;
Yang et al., 2013). This method results in the construction of four
tandem cauliflower mosaic virus (CaMV) 35S enhancers on a
T-DNA plasmid; when this T-DNA is inserted into the rice
genome, it activates genes that flank the T-DNA insertion site
(Hsing et al., 2007). The CaMV 35S enhancer can activate gene
expression in dicots and monocots and is widely used in T-DNA
transformation. Gene expression gradually increases with the
number of 35S enhancers on T-DNA, which led to the
incorporation of four tandem repeat CaMV 35S enhancers for
enhanced gene expression with this approach (Odell et al., 1985;
Fang et al., 1989; Kardailsky et al., 1999; Weigel et al., 2000;
Huang et al., 2001; Ichikawa et al., 2003). Agrobacterium-
mediated T-DNA transformation tends to insert one copy of
T-DNA, an average of 1.4 loci of T-DNA inserts in transgenic
plants (Jeon et al., 2000), reducing the complexity of rice gene
research. T-DNA inserted into the rice genome with a 35S
enhancer resulted in two states:

(1) Gene knockdown: when T-DNA is inserted into the coding
region or promoter of a gene, it is likely to destroy the structure of
the gene, resulting in reduced function or loss of function of
the gene.

(2) Activation tagging: T-DNA might enhance the activity of
genes that flank the T-DNA insertion site through the effect of the
35S enhancers.

Thus, we can make use of T-DNA insertion activation tagging
to study the association between genetic function and
morphological traits (Hsing et al., 2007). However, there has
been no basis for determining whether a target gene is activated
by the enhancer prior to experimental analyses. There has even
been a study indicating that the enhancer can activate genes that
are millions of base pairs away from the enhancer (Li et al., 2012).
Not all of the genes that flank the T-DNA insertion site are
expected to be activated by the 35S enhancer. In some T-DNA
mutants, the 35S enhancer does not activate the closer gene but
instead activates a gene that is farther away from the 35S enhancer
(Ren et al., 2004). Researchers thus cannot rely on the distance
between the enhancer and a particular gene to judge whether that
gene would be activated. They must instead determine the
activated genes experimentally to explore the related genetic
function and morphological traits. Therefore, it is a time-
consuming and laborious process to check for the expression
of a target gene.

Our team had developed a website platform, EAT-Rice (Liao
et al., 2019), for predicting the expression status of rice genes that
flank the T-DNA insertion site in activating mutants. In this
study, we used amachine learning approach to predict target gene

expression in rice T-DNA insertion mutants and improved the
efficiency of finding activated target genes. The system of EAT-
Rice applied the distance factor from T-DNA insertion site to
gene loci to weight feature encoding and used two kinds of
algorithms to build a two-layer model of machine learning.
Based on EAT-Rice with a modified sequence capturing
method, system architecture, and other additional features, we
built a more comprehensive system for target gene expression
prediction in T-DNA insertion mutants.

The datasets used in this study were experimentally validated.
We first characterized genes based on their activation by the 35S
enhancer; these genes were divided into activated genes and
nonactivated genes. The system we built refers to EAT-Rice.
We captured the DNA sequence of the promoter and the central
region of each activated gene from the start codon of the target
gene to the 35S enhancer and used nine features—CpG islands
(CGIs), Motif, Kmer, reverse complementary kmer (RevKmer),
DNP, TNP, DACC, TACC, and PseKNC—for encoding.
Moreover, we carried out a logistic regression to weight the
features of the first-layer model, depending on the probability
of gene activation and the distance from the enhancer to the gene
start codon. We then used LIBSVM (Chang and Lin, 2011) and
LADTree (Boros et al., 2011) algorithms to build a two-layer
model of machine learning. In the second layer, we used the
minimum redundancy maximum relevance (mRMR) (Peng et al.,
2005) method and incremental feature selection to determine the
most relevant features. This system is referred to as TIMgo.

The TIMgo performance was 99.3% based on fivefold cross-
validation and 85.6% based on independent testing. TIMgo had
>80% accuracy for target genes within 20 kb from the 35S
enhancer, but genes that were >20 kb away were still predicted
with >60% accuracy. We also discovered that the value of the k
parameter for Kmer, RevKmer, and PseKNC encoding within the
PROMOTER sequences was higher than that of MIDDLE
sequences. This suggested that for the analysis of longer
sequences, a greater number of features was needed to
improve the prediction performance. Finally, the G-box cis-
element has an important function in gene activation by the
35S enhancer based on the motif analysis, and among the G-box-
associated binding proteins, most are bZIP (basic region/leucine
zipper) transcription factors.

2 MATERIALS AND METHODS

2.1 Sources for T-DNA Mutant Data and
Datasets
The experimental data were collected from 11 rice T-DNA
mutants from Liang-Jwu Chen’s laboratory at NCHU and 316
mutants from Su-May Yu’s research team at Academia Sinica.
These data consisted of the T-DNA insertion point and
expression status of flanking genes [as detected by RT-PCR
(Ohan and Heikkila, 1993)]. The expression status of each
gene was characterized based on the following four categories:
activated gene (Ac), no significant effect (NE), non-detectable
(ND), and knockout (Ko). The data distribution for the
expression status of these genes is shown in Table 1.
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To maintain dataset quality and consistency, we removed the
30 ND genes from the dataset. The collected data included two Ko
genes, in which the T-DNA insertion point was located inside the
gene, thus disrupting the gene structure and most likely leading to
a loss of function. Because Ko genes were not a focus of this study,
we removed them from the dataset. We defined NE genes as
nonactivated (NAc) genes to differentiate them from the Ac
genes. Ultimately, data for 453 genes were collected in this study.

A training set was used to determine the performance of the
subsequent system. As the ratio of positive data (Ac genes) to
negative data (NAc genes) affects the performance of machine
learning (Akbani et al., 2004), this study used EAT-Rice with a 1:1
ratio to carry out the selection of the training dataset. We used
data from 300 genes in the training dataset, which was referred to
as D300. Data from the remaining 153 genes were used for
independent testing to evaluate system accuracy; this dataset
was referred to as D153 (Table 2).

2.2 Target Gene Sequence Retrieval
The analyzed genes provided from Liang-Jwu Chen’s laboratory and
Su-May Yu’s team were annotated according to the Rice Genome
Automated Annotation System (RiceGAAS) (Sakata et al., 2002) and
the MSU Rice Genome Annotation Project (TIGR) (Yuan et al., 2003;
Ouyang et al., 2007) rice gene annotation database. We hypothesized
that we could predict the expression status of a target gene by analyzing
the sequence of Ac and NAc genes. Thus, with reference to the EAT-
Rice construction process and the enhancer-related hypothesis
mechanisms (Singer et al., 2010; Singer et al., 2011), we extracted
nucleotide sequences for each gene from two regions: (1) a 1,500-bp
region upstream relative to the translation start site (TLS), referred to as
the PROMOTER region, and (2) a central region of 300 bp centered
between the TLS of the target gene and the 35S enhancer, referred to as
the MIDDLE region (Supplementary Figure S1).

2.3 Feature Encoding
In this study, we encoded information about nine features of the
sequences: five sequence information codes and four biological
functional codes. The sequence codes consisted of two local
sequence codes, two global sequence codes, and a code to reflect
both the local and global sequence information simultaneously. The
local sequence characteristics consisted of Kmer and RevKmer values,
whichwere coded by theDNAcomposition; such characteristics have
been successfully applied toward human gene regulatory sequence
prediction (Noble et al., 2005; Gupta et al., 2008) and enhancer
identification (Lee et al., 2011), among others. The two global
sequence codes, dinucleotide-based auto-cross covariance (DACC)
and trinucleotide-based auto-cross covariance (TACC), were coded
by calculating the sequence autocorrelation as global sequence
characteristics; this type of feature has been used to predict
sequence-based protein–protein interactions (Guo et al., 2008).
Another coding method, PseKNC, has been used to identify
promoters in prokaryotes (Lin et al., 2014) and incorporates the
information of contiguous local sequence order and the global
sequence order into the feature vector. The biological
characteristics included the presence of CGIs, regulatory cis-
elements (Motif), and conformational and physicochemical
properties of dinucleotide and trinucleotide sequences (DNP and
TNP, respectively). Each of these features is described in more
detail below.

2.3.1 CGIs
DNA methylation on CGIs reduces or silences gene expression
based on enhancer–promoter interactions (Antequera et al., 1990;
Volpe et al., 2002). For this analysis, we used the EMBOSS
Newcpgreport tools of EMBL-EBI to predict CGIs and
encoded their corresponding number, length, distance from
the TLS, CpG ratio, and OE (observed/expected) value,
resulting in the feature CGIs (Supplementary Equations S1–S5).

2.3.2 Regulatory Cis-Elements (Motif)
Considering that the rice transcription factor binding sites
(TFBSs) that have been confirmed may not be comprehensive
enough yet, we therefore incorporated other proven plant TFBSs.
Data for 2,087 motifs were collected from PLACE (Higo et al.,
1999) and the RegSite database (http://linux1.softberry.com/
berry.phtml?topic�regsitelist). The tool Find Individual Motif
Occurrences (FIMO) (Grant et al., 2011) in the MEME suite
was used to scan for regulatory sequences in the PROMOTER
region, and the scanning results were encoded by FIMO (Beer and

TABLE 1 | Data distribution of flanking analyzed genes in rice T-DNA mutants.

Data source Number
of mutant lines

Gene expression status Validated genesa

Ac NE ND Ko

NCHUb 11 26 22 17 0 65
Academia Sinicac 316 262 143 13 2 420
Total 327 288 165 30 2 485

Ac, activated gene; NE, nonactivated gene; ND, non-detectable gene; Ko, knockout gene.
aValidated genes indicate the target genes that were detected by RT-PCR.
bNCHU, experimental data were collected from Liang-Jwu Chen’s laboratory.
cAcademia Sinica, experimental data were collected by Su-May Yu’s research team.

TABLE 2 | Data distribution of the training dataset and independent-testing
dataset.

Data sources Training dataset
(D300)

Testing dataset
(D153)

Ac NAc Ac NAc

NCHU 20 20 6 2
Academia Sinica 130 130 132 13
Total 150 150 138 15
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Tavazoie, 2004; Yuan et al., 2007). These types of feature
encoding are referred to as follows.

Motif Number(i) � { j, j ∈N
0, otherwise

, i ∈ {1, 2,/, 2087} (1)

Motif Conserve(i) � Mi alignment score in promoter
Motif Number(i) (2)

Motif Orientation(i) � pos in Motif Number(i)
Motif Number(i)

(3)

Motif Dis(i) �
∣∣∣∣geneTLS − Motif location site

∣∣∣∣
Motif Number(i)

(4)

The number of regulatory elementswas coded by the number (j) of
motifs found in the PROMOTER (Equation 1). The conservation
score was calculated by FIMO; we used the value from the summed
motif conserved scores divided by the number of motifs in the
sequence (Equation 2). As motifs can be located on both the
DNA coding strand (codons) and the template strand
(anticodons), the orientation characteristic was calculated to
determine the proportion of motifs on the coding strand. We thus
used the number of motifs on the coding strand (i.e., positive motifs,
pos) as the numerator, and the denominator is the number of all
motifs (Equation 3). The distance characteristic was determined
based on the distance (in base pairs) from each motif to the TLS,
whichwas summed for all motif sites within a given sequence, divided
by the number of motifs (Equation 4). In these equations, i indicates
the kinds ofmotifs,Mi indicates a specificmotif, and geneTLS refers to
the translation start site of a target gene.

2.3.3 Kmer and RevKmer
Kmer refers to the local sequence information and indicates a
subsequence containing k neighboring nucleic acids in a DNA
sequence. Using a coding strand as the template, the Kmer feature
will scan for the number of occurrences of the nucleic acid
subsequence in the template. For example, when k is 2, the
subsequence composition of a Kmer will be called a 2-mer,
which contains 16 subsequences (based on the four nucleotides
G, A, T, and C). In the case of the dinucleotide AA, if this
subsequence appeared twice in the DNA template, it would be
encoded as 2; if it was not present in the template, it would be
encoded as 0. In eukaryotes, the average length of TFBSs is 10 bp
(Stewart et al., 2012), which suggests that the number of k
neighboring nucleic acids in this study could be increased. We
encoded the sequence with 3- to 6-mer, 3- to 7-mer, 3- to 8-mer,
and 3- to 9-mer, which produced 5,440, 21,824, 87,360, and 349,504
different nucleotide compositions, respectively. The Kmer
encoding was carried out based on the number of occurrences
in the template sequence (Supplementary Equation S6).

RevKmer is a variant of kmer, in which the kmers are not expected
to be strand specific, so reverse complements are collapsed into a
single value. In this study, the RevKmer feature was encoded in the
same manner as Kmer and produced 2,760, 10,952, 43,848, and
174,920 nucleotide compositions for the 3- to 6-mer, 3- to 7-mer, 3-
to 8-mer, and 3- to 9-mer, respectively. RevKmer encoding was
carried out according to the number of occurrences in the template
sequence (Supplementary Equation S7).

2.3.4 Nucleotide Conformational and Physicochemical
Properties (DNP and TNP)
The nucleotide conformation and physicochemical properties
of dinucleotides and trinucleotides were also encoded.
DiProDB provides information about 125 properties of
dinucleotides, and these 125 properties were integrated into
15 characteristics through a statistical principal components
analysis (PCA) method (Friedel et al., 2009). The value of each
property is based on the dinucleotide as a unit, and each
property has 16 values corresponding to all possible
dinucleotide combinations. We used the property of the
dinucleotide to produce a training model with 240
dimensions; this feature is referred to as the DNP
(dinucleotide conformation and physicochemical properties)
(Supplementary Equation S8). PseKNC-General (the general
form of pseudo k-tuple nucleotide composition) is a tool that
provides the conformation and physicochemical properties of
oligonucleotides (Chen et al., 2015). In this study, 12
trinucleotide properties were used for coding. There were
64 combinations of trinucleotides, which generated a
training model with 768 dimensions based on the 12
trinucleotide properties; this feature is referred to as the
TNP (trinucleotide conformation and physicochemical
properties) (Supplementary Equation S9).

2.3.5 Autocorrelation (DACC and TACC)
Pse-in-One provides a pseudo-component mode reflecting the
correlation between two dinucleotides or trinucleotides within a
DNA sequence via their physicochemical properties (Liu et al.,
2015). In this study, we used dinucleotide-based auto-cross
covariance (DACC) and trinucleotide-based auto-cross
covariance (TACC) as provided by Pse-in-One for encoding
(Supplementary Equations S10–S12).

In this study, DACC was based on the 15 properties from
DiProDB, and the lag value was 4, generating a training model
with 900 dimensions. TACC used the 12 Pse-in-One built-in
properties, and the lag value was 4; it generated a training model
with 576 dimensions.

2.3.6 Pseudo k-Tuple Nucleotide Composition
Pseudo k-tuple nucleotide composition (PseKNC) is one of the
encoding modes supplied by Pse-in-One. It incorporates both
the contiguous local sequence order information (like Kmer
and RevKmer) and the global sequence order information (like
DACC and TACC) into the feature vector of the DNA
sequence.

D � R1R2R3R4R5R6/RL (5)

PseKNC(u) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fu

∑4k
i�1

fi + w∑λ
j�1

θj

, u ∈ {1, 2,/4k}

wθu−4k

∑4k
i�1

fi + w∑λ
j�1

θj

, u ∈ {4k+1, (4k+1 + 1),/, (4k+1 + λ)}
(6)

θj � 1
L − j − 1

∑L−j−1
i�1

⎧⎨⎩1
μ
∑u
v�1

[Pv(RiRi+1) − Pv(Ri+jRi+j+1)]2⎫⎬⎭, j ∈ {1, 2,/, λ}, λ< L (7)
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For a DNA sequence D with L nucleic acid residues, R1

represents the nucleic acid residue at the sequence position 1,
R2 the nucleic acid residue at position 2, and so on (Equation
5). PseKNC will calculate the occurrence frequency (f) of
dinucleotides in the DNA sequence and the correlation
between two oligonucleotides that are 1 to λ nucleotides
apart from each other. In Equation 6, fu is the occurrence
frequency of dinucleotides in the DNA sequence, which is
normalized to ∑4k

i�1fi � 1; w is the weight factor; θj represents
the correlation factor that reflects the sequence-order
correlation between all two dinucleotides that are j
nucleotides away from each other along a DNA sequence; µ
is the number of physicochemical indices; Pv(RiRi+1)
represents the numerical value of the dinucleotide located at
the ith position (RiRi+1) of the vth (v � 1, 2, . . ., μ)
physicochemical property (Equation 7). The feature
number of PseKNC will be λ multiplied by 4 to the power
k. In this study, the PseKNC feature was determined with a λ
value of 4, w is 0.2, and k is from 2 to 6.

2.4 Significant Sequence Fragment Analysis
Because there are numerous features in this first-layer model, the
complexity of the model is relatively high. To reduce the interference
of excessive noise, we used independent two-sample t-tests
(implemented in R) to select features from the high-dimension
models. We used the occurrence of specific oligonucleotides in the
Ac andNAc groups to generate the t-test (Supplementary Figure S2)
and retained the oligonucleotides with p < 0.05 to encode these
significant fragments.

2.5 Model Evaluation and Cross-Validation
We used a five-fold cross-validation method and independent-
testing data to evaluate the predictive performance of the
model. Our evaluation methods included accuracy (Acc),
sensitivity (Sn), specificity (Sp), and Matthews correlation
coefficient (MCC). Acc is used to estimate the prediction
accuracy of the global prediction capability, with values
closer to 100% indicating better overall predictive
performance of a model (Equation 8). Sn and Sp evaluate
the accuracy of the prediction of positive and negative data,
respectively (Equations 9 and 10). When the number of
positive and negative data differs, Acc is not a good
evaluation indicator. MCC is, however, suitable for
assessing a dataset in which there is an imbalance between
positive data and negative data (Equation 11). When the MCC
score is closer to 1, the prediction capability is better; a score
closer to −1 indicates a worse prediction capability.

Acc � TP + TN

TP + FP + TN + FN
(8)

Sn � TP

TP + FN
(9)

Sp � TN

TN + FP
(10)

MCC � (TP × TN) − (FN × FP)�������������������������������������(TP + FN)(TN + FP)(TP + FP)(TN + FN)√ (11)

2.6 Framework of TIMgo
TIMgo is a two-layer machine learning model constructed for
predicting the effect of a 35S enhancer on the expression of the
target gene (Figure 1). The D453 was divided into a training dataset
(D300) and independent testing data (D153). The DNA sequences of
PROMOTER andMIDDLEwere retrieved for analysis betweenNAc
and Ac genes. In the first-layer module, the support vector machine
(SVM) models were constructed within nine feature-encoding
methods. And the significant sequences were analyzed by
Student’s t-test, and a model of logistic regression was used to
assist in training, which is based on the relationship between
distance from the 35S enhancer to the target gene and states of
gene expression. The features encoded from the PROMOTER region
were weighted by a logical regression model for probability of gene
activation. Then, we adopted feature selection by the LIBSVM built-
in tool in the partial SVMmodels. The prediction results of the first-
layer module were integrated into the second-layer model, and
mRMR (Peng et al., 2005) was used for feature selection and
building the LAD tree model. Finally, we evaluated the prediction
efficacy of TIMgo with the D153 independent-testing dataset.

3 RESULTS

3.1 Correlation Between Gene Activation
and Distance From the 35S Enhancer to
the TLS
The distance between the enhancer and a target gene cannot be
directly used to determine whether the target gene will be

FIGURE 1 | Flow chart of the TIMgo predictive system.
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activated, although it does have some relevance for determining
gene activation (Vandergeest and Hall, 1997; Jagannath et al.,
2001). A target gene is more likely to be activated if it is closer to
the enhancer (Marenduzzo et al., 2007). We characterized each of
the 453 genes in the entire dataset (D453) based on the distance
from the CaMV 35S enhancer on the inserted T-DNA to TLS and
calculated the ratio of Ac genes and NAc genes. We found a
negative correlation between this distance and gene activation.
Genes closer to the 35S enhancer had a greater probability of
activation (p < 0.001) (Supplementary Figure S3). The results
are the same as those indicated in a previous study (Liao et al.,
2019) (Figure 2, Supplementary Table S1).

Among the D453 dataset, there were 94 sets of duplicated data
which consist of multiple genes, and the PROMOTER sequences
corresponding to these genes were identical. Each of the
experimental data in this study represented the effect of a
single insertion event on its target gene. In the experimental
data collected in this study, when the same gene was detected for
multiple T-DNA insertion events, the PROMOTER sequences
from those genes were identical. For different T-DNA insert
events, the 35S enhancer may result in different states of
expression for the same target gene, which will lead to
contradictory results while building the machine learning
model. To distinguish between these PROMOTER sequences,
we used logistic regression to build a regression model of the
distance coefficient and the target gene activation probability
(Supplementary Equation S13). In this study, the values
calculated by logistic regression were used to weight the
promoter sequence feature, so that the same sequence could
be distinguished when quantified based on numerical values.

3.2 Comparison of Kmer and RevKmer
Combined With Motif
In the Kmer and RevKmer feature models, a t-test was used to
calculate the number of occurrences of specific sequence
fragments in Ac and NAc genes, respectively, from sequence

lengths (k) of three to nine nucleotides. The specific sequence
fragments with p < 0.05 were then used for encoding. These
fragments were combined as 3–6, 3–7, 3–8, and, 3–9
combinations for Kmer and RevKmer. The Motif feature was
used to carry out a similar analysis. The Kmer and RevKmer
features associated with the PROMOTER region were combined
with the Motif feature (Supplementary Table S2). The features
from Kmer, RevKmer, Kmer +Motif, and RevKmer + Motif were
used to build SVM models, and the best model was selected for
the second-layer model integration (Supplementary Table S3).

Before combining Motif with Kmer or RevKmer, the Acc
scores of the SVMmodels of Kmer and RevKmer were 55%–85%,
whereas the Acc scores of the Motif models were 52%–75%. After
combining Motif with Kmer or RevKmer, the Acc scores were
78%–86%, and the Acc consistently increased with the k value for
Kmer and RevKmer (Table 3).

3.3 First-Layer Model Evaluation
In the first-layer models, nine feature coding methods and two
types of sequences were used to construct 16 feature models
(Supplementary Table S4). The prediction ability of each feature
model was evaluated with fivefold cross-validation and
independent testing with the D153 data (Table 4). For the
Pse-in-One feature encoding, one gene sequence from the
training dataset (D300) did not conform to the encoding
requirements. Therefore, in the DACC, TACC, and PseKNC
models, this information was removed from the training data,
and the training dataset consisting of the remaining 299 genes
was referred to as D299. The PseKNC models used k values of
2–7, and eight models each were established for the PROMOTER
and MIDDLE sequences. A PseKNC model with k � 6 that was
selected among the PROMOTER models had an Acc of 75.3%
with fivefold cross-validation. The PseKNCmodel with k � 2 that
was selected among the MIDDLE models had an Acc of 59.5%
(Supplementary Table S5).

In the evaluation results of the first-layer featuremodels (Table 4),
the Kmer, RevKmer, Kmer +Motif, and RevKmer +Motif had the
best predictive performance based on the Kmer feature provided.
Their Acc values were 79.0%–88.3% with fivefold cross-validation.
With independent testing, their Acc values were 80.4%–84.3%, with
the exception of RevKmer, which had 67.3%. The PseKNC model
built using the PROMOTER sequence was slightly inferior to the
model built using Kmer-related features. The Acc and MCC values
for PseKNC were 75.3% and 52.9% with cross-validation,
respectively, and 56.2% for Acc and 16.5% for MCC with
independent testing. The DACC, TACC, DNP, CGIs, and TNP
constructed by the PROMOTER sequence and the PseKNC
constructed by the MIDDLE sequence had lower predictive
performance, with Acc values of 58.2%–69.9% and MCC values
of 16.4%–39.8%. Among these 16 models, CGIs and TNP
constructed using the MIDDLE sequence were the least accurate
in cross-validation, with an Acc of ∼47%. Their Acc values for
independent testing were 11.8% and 62.1%, respectively. In terms
of overall predictive performance, the PROMOTER sequence is thus
more important than the MIDDLE sequence, and Kmer, RevKmer,
Kmer +Motif, and RevKmer +Motif features have the highest
correlation with the activation of genes.

FIGURE 2 | Correlation between distance and gene activation. The data
were sorted by the distance between the 35S enhancer and the TLS, and the
ratio of Ac to NAc genes in each group was calculated. The x-axis is the
distance from the 35S enhancer to the TLS of a target gene; the y-axis is
the proportion of Ac and NAc genes in each group.
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3.4 Comprehensive Feature Selection in the
Second-Layer Model
The second-layer model integrated the prediction results from the
16 feature models in the first layer and obtained the ultimate
prediction result by machine learning. The features used in the
second-layer model of this study included predictive results and
positive and negative predictive confidence scores, generating 48
features. We used incremental feature selection and an SVM
model with cross-validation to carry out comprehensive feature
selection among these 48 features to pick out the best feature
combinations with nine feature selection methods. The top 33
features of the mRMR (Peng et al., 2005) were selected as the best
feature combination with the highest Acc and the fewest features
(Figure 3, Supplementary Table S6). Among the 33 selected
features, we knew that the encoding contributed for classification
is Kmer related, DACC was better than PseKNC and TACC, and
CGIs, TNP, and DNP are worse.

3.5 Second-Layer Model Evaluation
We assessed the best-suited machine learning algorithm for the
second-layer model through the WEKA (Holmes et al., 1994)
analysis platform. In this study, we used the 65 algorithms

provided by WEKA to establish the model separately and
evaluated the effectiveness of these models with cross-validation
(Supplementary Table S7). In this experiment, the LADTree
algorithm was used to construct the second-layer integration
model according to the above conditions. The Acc was 99.3%,
MCC was 98.7%, and Sn and Sp were 99.3%. In independent
testing, the model Acc reached 85.6%, MCC was 35.3%, Sn was
89.1%, and Sp was 53.3%. Among the testing data, there were only 15
negative data, such that each predictive result with these data would
lead to a substantial impact on the overall predictive effectiveness
assessment. Among these models built with multiple algorithms, Sp
values ranged from 46.7% to 73.3%, which corresponded to a
difference of only six correctly predicted negative data.

3.6 Correlation Between Predictive
Accuracy and Distance From the 35S
Enhancer to TLS
To analyze the relationship between distance and TIMgo prediction
accuracy, the training dataset and independent-testing dataset were
grouped according to the distance between the TLS and 35S enhancer
(Figure 4). In cross-validation, Acc was 99.3%, and predictions for

TABLE 3 | Data distribution of the training dataset and independent-testing dataset.

Feature ka Without motif With motif

Sp (%) Sn (%) Acc (%) MCC (%) AUC (%) Sp (%) Sn (%) Acc (%) MCC (%) AUC (%)

Kmer 6 72.7 66.0 69.3 38.8 79.0 79.3 77.3 78.3 56.7 88.1
7 86.7 73.3 80.0 60.5 89.1 83.3 78.7 81.0 62.1 89.7
8 75.3 35.3 55.3 11.6 65.3 83.3 84.7 84.0 68.0 93.6
9 84.7 85.3 85.0 70.0 93.2 86.7 85.3 86.0 72.0 93.7

RevKmer 6 71.3 60.7 66.0 32.2 72.7 78.0 77.3 77.7 55.3 85.7
7 84.7 76.0 80.3 60.9 87.9 79.3 77.3 78.3 56.7 88.1
8 77.3 32.7 55.0 11.2 64.9 84.0 80.0 82.0 64.1 91.5
9 74.7 88.0 81.3 63.2 90.6 84.0 84.7 84.3 68.7 92.9

ak refers to the maximum k value used in Kmer and RevKmer, with a range of 3-k nucleotides in length for each analysis.

TABLE 4 | Performance of the first-layer features with the SVM models.

Feature
encoding

Sequence Cross-validation Independent testing

Sp (%) Sn (%) Acc (%) MCC (%) AUC (%) Sp (%) Sn (%) Acc (%) MCC (%) AUC (%)

CGIs PROMOTER 71.3 48.7 60.0 20.5 58.5 53.3 40.6 41.8 −3.7 48.2
MIDDLE 77.3 18.0 47.7 −5.8 47.2 100.0 2.2 11.8 4.7 65.0

DNP PROMOTER 56.0 64.7 60.3 20.7 64.3 26.7 71.7 67.3 −1.1 45.1
MIDDLE 59.3 62.0 60.7 21.3 60.0 60.0 53.6 54.3 8.1 48.7

TNP PROMOTER 56.0 61.3 58.7 17.4 62.2 53.3 68.1 66.7 13.5 57.4
MIDDLE 64.7 30.0 47.3 −5.7 47.4 26.7 65.9 62.1 −4.7 45.0

Kmer + Motif PROMOTER 86.7 85.3 86.0 72.0 93.7 73.3 85.5 84.3 43.5 79.1
RevKmer + Motif PROMOTER 84.0 84.7 84.3 68.7 92.9 73.3 81.2 80.4 37.8 83.6
Kmer MIDDLE 92.0 84.7 88.3 76.9 94.2 66.7 86.2 84.3 40.1 86.4
RevKmer MIDDLE 85.3 72.7 79.0 58.5 88.2 53.3 68.8 67.3 14.0 66.5
DACC PROMOTER 67.1 72.7 69.9 39.8 78.6 46.7 59.4 58.2 3.7 54.6

MIDDLE 76.5 58.0 67.2 35.1 74.1 53.3 49.3 49.7 1.6 47.5
TACC PROMOTER 60.4 58.0 59.2 18.4 60.3 13.3 63.0 58.2 −14.8 41.6

MIDDLE 59.7 56.7 58.2 16.4 57.8 46.7 45.7 45.8 −4.6 45.1
PseKNC PROMOTER 89.9 60.7 75.3 52.9 84.5 73.3 54.3 56.2 16.5 59.1

MIDDLE 56.4 52.7 59.5 19.1 61.7 66.7 58.0 58.8 14.7 54.5
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only two genes were incorrect (Table 5); these two genes were
10–15 kb away from the 35S enhancer. In independent testing,
the prediction accuracy for genes within 20 kb from the 35S
enhancer was >84%. For genes located >20 kb from the 35S
enhancer, the prediction accuracy decreased with increasing
distance but still was >60% (Table 6).

4 DISCUSSION

4.1 Comparison of the Framework Between
TIMgo and EAT-Rice
In a previous study, the PROMOTER region for most genes
was defined as the upstream region from the transcription

start site (TSS) (Chang et al., 2008). For the EAT-Rice
analysis, however, as the collected gene data had
information about only the TLS, the PROMOTER region,
including the upstream sequence of the TSS, was based on a
1,000-bp region upstream of the TLS. The upstream sequence
of the TSS contains the 5′ untranslated region of the mRNA,
and sequences downstream of the TSS may also be involved
with transcription factor regulation of gene expression
(Heyndrickx et al., 2014). Given an average length of
500 bp for 5′ untranslated regions in rice and the 1,000 bp
upstream of the TSS as the condition, we used the 1,500-bp
sequence upstream of the TLS as the PROMOTER region in
this study.

For our prediction models, we retained the EAT-Rice CGIs
and DNP (dinucleotide conformation and physicochemical
properties encoding) and increased the TNP coding with the
DNP coding concept. We also used the Pse-in-One tool to
generate codes for DACC, TACC, and PseKNC. Given the
strand specificity of Kmer, we added RevKmer coding, and the
Motif coding of the PROMOTER region was combined with
Kmer and with RevKmer. The ranges of overall predictive
accuracy for Kmer + Motif and RevKmer + Motif models were
small, which indicated that Motif was complementary with
Kmer and RevKmer, and the combination of these two features
could improve the classification ability. Predictive accuracy
increased with the length of k for both Kmer and RevKmer,
because that Motif feature consisted of experimentally
validated regulatory sequences, but the number of proven
regulatory sequences in plants is limited, whereas Kmer and
RevKmer considered all the sequence combinations that
provided higher data integrity than Motif, so using longer
Kmer and RevKmer should lead to better prediction

FIGURE 3 | Accuracy trend in the second-layer feature selection.

FIGURE 4 | Accuracy trend of TIMgo for cross-validation and
independent testing of data within different distances. Train represents the
Acc from fivefold cross-validation with D299. Test represents the Acc from
independent testing with D153. The x-axis indicates each distance
interval, and the y-axis indicates the predictive accuracy.
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performance. Although Kmer and RevKmer had higher data
integrity than Motif, the complexity of the Kmer and RevKmer
data increased exponentially with the increase in sequence
length, resulting in processing time that was too lengthy.
Therefore, we used Kmer (and RevKmer) with limited k
length and retained Motif with longer sequences, to
preserve important regulatory sequence data and reduce the
computational complexity significantly.

4.2 Specific Regulatory Sequences Within
Genes Activated by the 35S Enhancer
To find out whether a specific regulatory sequence was related to
gene activation in the T-DNA insertion mutants, we analyzed the
2,087 motifs with a t-test. We found that there were 181 regulatory
sequences that had significant difference in their occurrence
frequency between Ac and NAc genes. Among these 181
regulatory sequences, 20 were G-box and G-box-related
sequences. The G-box contains a core region, CACGTG, and
flanking sequences that are composed of other nucleotides. The
G-box-binding protein has different binding preferences and
affinities according to the different flanking sequences in the
G-box. bZIP (basic region/leucine zipper) transcription factors
account for the majority of G-box-binding proteins.
Transcription regulation in plants is often affected by G-box
sequences, such as stress hormones (e.g., abscisic acid), seed
germination, protein storage, and light response (Marcotte et al.,
1989; Donald and Cashmore, 1990; Mason et al., 1993). Thus, the
G-box may have important biological significance in the regulation
of gene expression by the 35S enhancer and may affect whether the
35S enhancer will activate a target gene in rice.

4.3 Correlation Between Length of
Sequence and Nucleotide Length
Parameter
In the feature coding of TIMgo, the coding of Kmer, RevKmer,
and PseKNC can be adjusted based on the nucleotide length
parameter (k). We needed to find a suitable nucleotide length
parameter for encoding. For these three kinds of coding, the k

value selected for the PROMOTER region was greater than that
for the MIDDLE region. A higher value for k results in a higher
number of features being generated, which requires more
features to be improved to increase the predictive accuracy of
the PROMOTER region, relative to the MIDDLE region. Thus,
an excessive number of features would reduce the predictive
performance of the model. From the optimal k value for the
MIDDLE sequence, we could see that a higher number of
features did not necessarily make the classification better. By
comparing the optimal k value selected for the PROMOTER and
MIDDLE regions, we note that a longer sequence does seem to
require more features to make the classification better.
Moreover, among the local, global, and local + global
sequence characteristics used to build the TIMgo, the local
sequences had a greater contribution with respect to
identifying activation of the target genes (Table 4).

4.4 Performance Comparison of TIMgo and
EAT-Rice
To confirm that themodel constructed by the framework of TIMgo is
superior to that of EAT-Rice, the training dataset and testing dataset
used to develop EAT-Rice were used to build models in the TIMgo
framework and to evaluate TIMgo by comparing their predictive
performance. The training dataset used with EAT-Rice had data for
280 validated genes, and these 280 data points were separated into
two subsets (subset1 and subset2) with 180 validated genes (Liao,
et al., 2019). The independent-testing dataset used with EAT-Rice
had 48 validated genes. Two training datasets (subset1 and subset2)
were used to build training models within the framework of TIMgo,
and the predictive efficacy of EAT-Rice and TIMgo was evaluated
with an independent-testing dataset consisting of an additional 48
validated genes (Table 7). With the use of subset1 as the training
dataset and of the EAT-Rice system to establish themodel, the Acc in
the independent testing was 72.9%, the Acc for TIMgo was 79.2%,
and the Sp value of TIMgo was 12.8% higher than that of EAT-Rice.
With subset2 as the training dataset, theAccwith independent testing
was 77.1% for EAT-Rice and 77.6% for TIMgo. In the case of using
the same training dataset and testing dataset, the accuracy of the
TIMgo framework is better than that of EAT-Rice.

TABLE 5 | Performance of the LADTree model in the second-layer.

TP FP TN FN Sn (%) Sp (%) Acc (%) MCC (%)

Cross-validation 149 1 148 1 99.3 99.3 99.3 98.7
Independent testing 123 7 8 15 89.1 53.3 85.6 35.3

TABLE 6 | Predictive accuracy of TIMgo for different distance groups.

Distance from the 35S enhancer (kb)

Dataset 0–2 2–5 5–10 10–15 15–20 20–25 >25

Training set 100.0% 100.0% 100.0% 97.0% 100.0% 100.0% 100.0%
Testing set 89.0% 91.0% 84.0% 86.0% 93.0% 71.0% 60.0%
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5 CONCLUSION

In this study, we analyzed the DNA sequence and constructed
a two-layer model system using the machine learning method
to predict whether the 35S enhancer would affect the
expression of a target gene in T-DNA insertion mutants.
The first layer of the system was built with the
PROMOTER and MIDDLE sequences and was encoded
using nine features. We analyzed significant sequence
fragments in Motif, Kmer, and RevKmer and weighted the
PROMOTER based on a logistic regression analysis of the
distance between the 35S enhancer and the TLS of each gene.
Some of the first-layer SVM models were built with LIBSVM
feature selection. The second-layer model used the mRMR
feature selection tool to select the predicted values from the 16
models in the first layer, and these were integrated with the
LADTree algorithm as the second-layer model. The predictive
performance of TIMgo had Acc of 99.3% and 85.6% with
cross-validation and with independent testing, respectively.
TIMgo can more accurately predict the activation of genes
located within 20 kb of the 35S enhancer. We analyzed the
2,087 motifs and found that there was a significant difference
in the frequency of G-box sequences between Ac and NAc
genes, suggesting that the G-box may play an important role
in the activation mechanism of 35S enhancer genes. Our
model has improved the predictive ability of determining
target gene activation based on the CaMV 35S enhancer in
rice T-DNA insertion mutants.
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